16
Recent Status of NEMS/NMMB-AQ Development Youhua Tang 1 , Jeffery T. McQueen 2 , Sarah Lu 1 , Thomas L. Black 2 , Zavisa Janjic 2 , Mark D. Iredell 2 , Carlos Pérez García-Pando 3 , Oriol Jorba Casellas 3 , Pius Lee 4 , Daewon Byun 4 , Paula M. Davidson 5 , and Ivanka Stajner 6 1. Scientific Applications International Corporation 2. NOAA/NCEP/EMC 3. Barcelona Supercomputing Center, Edificio Nexus II c/ Jordi Girona 29, Barcelona, Spain 4. NOAA Air Resource Laboratory 5. Office of Science and Technology,NOAA/National Weather Service 6. Noblis Inc, Falls Church, VA

Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Embed Size (px)

Citation preview

Page 1: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Recent Status of NEMS/NMMB-AQ Development

Youhua Tang1, Jeffery T. McQueen2, Sarah Lu1,

Thomas L. Black2, Zavisa Janjic2, Mark D. Iredell2,

Carlos Pérez García-Pando3, Oriol Jorba Casellas3,

Pius Lee4, Daewon Byun4, Paula M. Davidson5, and Ivanka Stajner6

1. Scientific Applications International Corporation2. NOAA/NCEP/EMC3. Barcelona Supercomputing Center, Edificio Nexus II c/ Jordi Girona 29, Barcelona, Spain4. NOAA Air Resource Laboratory5. Office of Science and Technology,NOAA/National Weather Service 6. Noblis Inc, Falls Church, VA

Page 2: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

• An inline model allows frequent interaction between meteorological and air quality processes.

- Especially important for non-hydrostatic scales when meteorological features have fine temporal and spatial scales.

• This air quality model can be driven by different meteorological models (which can be on different grids, e.g. for quick testing)

• A common framework allows varying degrees of coupling and flexibility.

Advantages of the ESMF Framework for Air Quality Application

Page 3: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Pros and Cons of the Inline Model

• Immediate and fast data access to the corresponding meteorological model.

• Overall efficiency by reducing the intermediate I/O files

• Can provide in-situ feedback to the met model

• Depends more on the met model than the offline version.

• Could slow down the meteorological forecast when running in the same domain

Page 4: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Analysis--------------

Ocean-------------

Wind Waves--------------

LSM--------------Ens. Gen.--------------

Other

Physics(1,2,3)

ESMF Utilities(clock, error handling, etc)

Bias CorrectorPost processor & Product Generator

VerificationResolution change

1-11-21-32-12-22-3

ESMF Superstructure(component definitions, “mpi” communications, etc)

Multi-component ensemble+

Stochastic forcing

Coupler1Coupler2Coupler3Coupler4Coupler5Coupler6

Etc.

Dynamics(1,2)

Application Driver

NOAA Environmental Modeling System (NEMS)(uses standard ESMF compliant software)

* Earth System Modeling Framework (NCAR/CISL, NASA/GMAO, Navy (NRL), NCEP/EMC), NOAA/GFDL

2, 3 etc: NCEP supported thru NUOPC, NASA, NCAR or NOAA institutional commitmentsComponents are: Dynamics (spectral, FV, NMM, FIM, ARW, FISL, COAMPS…)/Physics (GFS, NRL, NCAR, GMAO, ESRL…)

Atmospheric Model

Chemistry

Page 5: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

NEMS Atmosphere

Atmospheric Model

Dynamics Physics and ChemistryDyn-PhyCoupler

NMM-B

Spectral

FIM

Color KeyComponent class

Coupler class

Completed Instance

Under Development

NAM Phy

GFS PhySimple

unified atmosphereincluding digital filter Future Development

ARW

FVCORE

FISL

NOGAPS WRF Phy

Navy PhyCOAMPS

Regrid,Redist,Chgvar,Avg, etc

CMAQ Chemistry

FVCORE: Finite-Volume Dynamical Core

NOGAPS: Navy's Operational Global Atmospheric Prediction System

COAMPS: Coupled Ocean/Atmosphere Mesoscale Prediction System

NMM-B: Nonhydrostatic Multiscale Model on B grid

FIM: Flow-following finite-volume Icosahedral Model

FISL: Fully-Implicit Semi-Lagrangian

GOCART Aerosol model

Simple Chemistry

sylu
GOCART aerosol module include dust, sea salt, OC/BC and sulfate
Page 6: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Two Inline MethodsMeteorological Model Dynamics Physics

Air Quality Model Dynamics Physics Chemistry

Exchange data via the memory with specified time frequency

A)

B) Meteorological Model/Air Quality Model Dynamics with passive tracers Physics with AQ species Chemistry

Meteorological I/OAQ I/O

Unified I/O

sylu
Does the NEMS/GFS-GOCART system fall within A or B? It is flexible, allows different grids if needed, and supports concurrent development between institutes. But, the GOCART only contains chemistry, source, and removal (no dynamics and physics)
Page 7: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Method A: Allows flexibility and can be made consistent• Can keep most of the original AQM architecture with minimal changes.• Different components can run on different grids supported by ESMF

• Inconsistencies may exist between meteorological and air quality models • Overhead due to different dynamics/physics and diagnostic variables

Method B: Focuses on efficiency and is inherently consistent • All computation uses common native grid and dynamics• High efficiency

• Low flexibility. Introduces dependency on certain meteorological dynamics or physics components• Require positive-definite mass-consistent advection scheme and inclusion of AQ processes in the meteorological modules

Pros and Cons of the two Methodsin NEMS

Page 8: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

MAIN Program

MAIN Gridded ComponentINIT-RUN-FINALIZE

Import StateExport State

DYNAMICS Gridded ComponentINIT-RUN-FINALIZE

Chemical Initialization Lateral Boundary Conditions

Chemical AdvectionChemical Output

Import StateExport State

PHYSICS Gridded ComponentINIT-RUN-FINALIZE

Input Emissions Input Dry Depositions

PBL Mixing (MYJ)Photolysis Calculation

Chemical ReactionsConvective Mixing

Wet/Cloud Scavenging

Import StateExport State

Dyn-Phys COUPLER

Component

INIT-RUN-FINALIZE

Import StateExport State

General OutputGridded Component

INIT-RUN-FINALIZE

Import StateExport State

General OutputGridded Component

INIT-RUN-FINALIZE

Import StateExport State

Framework of NEMS/NMMB-AQ

Method B

Page 9: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

• Coordinate System and Grid

– Global lat-lon, regular grid– Regional rotated lat-lon, more uniform grid size– Arakawa B grid (in contrast to the WRF-NMM E grid)

Pressure-sigma hybrid (Sangster 1960; Arakawa and Lamb 1977; Simmons and Burridge 1981)

• Flat coordinate surfaces at high altitudes where sigma problems worst (e.g. Simmons and Burridge, 1981)• Higher vertical resolution over elevated terrain• No discontinuities and internal boundary conditions

– Lorenz vertical grid

• NMM-B Advection Scheme for Passive Tracers

– Conservation through flux cancelations, not forced a posteriori– Quadratic conservative advection scheme coupled with continuity equation

• Crank-Nicholson for vertical advection• Modified Adams-Bashforth for horizontal advection

– Advection of square roots of tracers (c.f. Schneider, MWR 1984) provides positive definiteness

– Quadratic conservation provides tracer mass conservation– Monotonization with a posteriori forced conservation to correct oversteepening

NMM-B Dynamical Core

Page 10: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

The NMM-B’s new scheme is shown to be mass conservative

Page 11: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Courtesy: Barcelona Supercomputing Center (BSC)Designated center within WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS), NMM/BSC-DUST model

Page 12: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

CMAQ WRF-CHEM NMMB-AQ

Model Framework CMAQ WRF NEMS/ESMF

Input Meteorology

Offline, recalculate some variables, like w and PBL

heights

Inline Inline

Input frequency hourlyEvery advection

time StepEvery advection

time Step

Advection scheme

piecewise parabolic method

WRF-ARW,WRF-NMM

NMM-B

PBL MixingACM2 (derived

from input meteorology)

Kz (calculated from YSU, MYJ

etc)Inline MYJ

Convective Mixing ACM (derived) Grell (derived)

BMJ adjustment or Grell (derived)

GaseousMechanism

CB04, CB05, SAPRC

RADM2, CBMZ, CB05, RACM

CB05

PhotolysisLook-up-table,Simplified TUV

Fast-J, Fast-TUV TUV, Fast-TUV

Page 13: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

NMMB Dry Run ONLYwithout convective mixing or wet scavenging

Page 14: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Solutions to avoid slowing down the Met forecast

• Run AQM on sub-domains• Run AQM as a separate cycle from the operational Met model

Page 15: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Summary

• The development of NEMS/NMMB inline air quality model has started using ESMF framework

• Most of related chemical/physical modules are zero-dimensional or one dimensional, which can be placed into this system directly, either as normal subroutines or as an ESMF gridded component. We will use CMAQ existing chemical modules in this system.

• The new mass-conservative NMM-B advection scheme can support air quality applications.

Page 16: Recent Status of NEMS/NMMB- AQ Development Youhua Tang 1, Jeffery T. McQueen 2, Sarah Lu 1, Thomas L. Black 2, Zavisa Janjic 2, Mark D. Iredell 2, Carlos

Next steps for NEMS/NMMB-AQ development

• Add convective mixing for passive tracers• Add in-cloud and under-cloud chemical

scavenging.• Replace interpolated emissions with native-

grid emissions (CMAQ SMOKE package)• Biogenic emission and Dry deposition inline• Alternative more flexible coupling approach

through a separate chemistry grid component (method A) will be explored

• Feedback case testing – leverage NEMS radiative interactions