21
92 REFERENCES 1. Choi, S.U.S., Lee, S., Li, S., Eastman, J.A., “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, Journal of Heat Transfer, vol.121, (1999) pp.280-289. 2. Missana, T., and Adell, A., “On the applicability of DLVO theory to the prediction of clay colloids stability”, Journal of Colloid and Interface Science, vol. 230, (2000) pp. 150–156. 3. Popa, I., Gillies, I., Papastavrou, G., and. Borkovec, M., “Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes”, Journal of Physical Chemistry B, vol. 114, (2010) pp. 3170–3177. 4. Kamiya, H., Fukuda, Y., Suzuki, Y., Tsukada, M., Kakui, T., and Naito, M., “Effect of polymer dispersant structure on electrosteric interaction and dense alumina suspension behavior”, Journal of the American Ceramic Society, vol. 82, (1999), pp. 3407–3412. 5. Choi, S. U. S., “Enhancing Thermal Conductivity of Fluids with Nanoparticles- Developments and Applications of Non-Newtonian Flows”, D. A. Siginer, and H. P. Wang, eds., The American Society of Mechanical Engineers, New York, FED- Vol. 231 / MD-Vol.66 (1995), pp. 99-105. 6. JP Yadav , Bharat Raj Singh., “Study on Performance Evaluation of Automotive Radiator” Journal Samriddhi, vol-2(2011), pp:47-56 7. Choi, S.U.S., Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke “Anomalous thermal conductivity enhancement in nanotube suspensions”, Applied Physics Letters 79(14) (2001) pp. 2252-2254. 8. Eastman, J.A., S.U.S. Choi., S. Li., W. Yu., and L.J. Thompson., “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles” Applied Physics Letters, vol.78 (6) (2001) pp. 718- 720. 9. Keblinski, P., Eastman, J. A., Cahill, D. G., “Nanofluids for thermal transport” Material Today, vol.8 (6), 2005, PP. 36-44.

REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

92

REFERENCES

1. Choi, S.U.S., Lee, S., Li, S., Eastman, J.A., “Measuring Thermal Conductivity of

Fluids Containing Oxide Nanoparticles”, Journal of Heat Transfer, vol.121,

(1999) pp.280-289.

2. Missana, T., and Adell, A., “On the applicability of DLVO theory to the

prediction of clay colloids stability”, Journal of Colloid and Interface Science,

vol. 230, (2000) pp. 150–156.

3. Popa, I., Gillies, I., Papastavrou, G., and. Borkovec, M., “Attractive and repulsive

electrostatic forces between positively charged latex particles in the presence of

anionic linear polyelectrolytes”, Journal of Physical Chemistry B, vol. 114,

(2010) pp. 3170–3177.

4. Kamiya, H., Fukuda, Y., Suzuki, Y., Tsukada, M., Kakui, T., and Naito, M.,

“Effect of polymer dispersant structure on electrosteric interaction and dense

alumina suspension behavior”, Journal of the American Ceramic Society, vol. 82,

(1999), pp. 3407–3412.

5. Choi, S. U. S., “Enhancing Thermal Conductivity of Fluids with Nanoparticles-

Developments and Applications of Non-Newtonian Flows”, D. A. Siginer, and H.

P. Wang, eds., The American Society of Mechanical Engineers, New York, FED-

Vol. 231 / MD-Vol.66 (1995), pp. 99-105.

6. JP Yadav , Bharat Raj Singh., “Study on Performance Evaluation of Automotive

Radiator” Journal Samriddhi, vol-2(2011), pp:47-56

7. Choi, S.U.S., Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke “Anomalous

thermal conductivity enhancement in nanotube suspensions”, Applied Physics

Letters 79(14) (2001) pp. 2252-2254.

8. Eastman, J.A., S.U.S. Choi., S. Li., W. Yu., and L.J. Thompson., “Anomalously

increased effective thermal conductivities of ethylene glycol-based nanofluids

containing copper nanoparticles” Applied Physics Letters, vol.78 (6) (2001) pp.

718- 720.

9. Keblinski, P., Eastman, J. A., Cahill, D. G., “Nanofluids for thermal transport”

Material Today, vol.8 (6), 2005, PP. 36-44.

Page 2: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

93

10. Kreibig, U., Bour, G., Hilger, A., Gartz, M., “Optical properties of cluster-

matter: Influences of interfaces”, Physica Status Solidi A, vol.175, (1999)

pp.351-366.

11. Zhu, H., Lin, Y., Yin, Y., “A novel one-step chemical method for preparation of

copper Nanofluids”, Journal of Colloid and Interface Science, vol. 277, (2004)

pp.100-103.

12. Temgire, M. K., Joshi, S. S., “Optical and structural studies of sliver

nanoparticles”, Journal of Physical Chemistry, vol.71, (2004) pp.1039-1044.

13. Patel, K., Kapoor, S., Dave, D. P., Mukherjee, T., “Synthesis of nanosized silver

colloids by microwave dielectric heating”, Journal of Chemical Science, vol.117,

(2005) pp.53-60.

14. Gao, Y.; Jiang, P., Song, L., Liu, L., Yan, X., Zhou, Z., Liu, D., Wang, J., Yuan,

H., Zhang, Z., Zhao, X., Dou, X., Zhou, W., Wang, G., Xie, S., “Growth

mechanism of sliver nanowires synthesized by polyvinylpyrrolidone assisted

polyol reduction”, Journal of Physics D: Applied Physics, vol.38, (2005)

pp.1061-1067.

15. Bonet, F., Tekaia-Elhsissen, K., Sarathy, K. V., “Study of interaction of ethylene

glycol/PVP phase on noble metal powders prepared by polyol process”, Bulletin

of Material Science, vol.23, (2000), pp.165-168.

16. Brust, M., Walker, M., Bethell, D., David J.S., Whyman, R., “Synthesis of thiol-

derivatised gold nanoparticles in a two-phase Liquid–Liquid system”, Journal of

Chemical Society, Chemical Communications, vol.7, (1994), pp.801-802.

17. Lo, C. H., Tsung, T.T., Chen, L.C., Su, C.H., Lin, H.M., “Fabrication of copper

oxide nanofluids using submerged arc nanoparticle synthesis system

(SANSS)”Journal of Nanoparticle Research, vol. 7, (2005) pp.313-320.

18. Brust, M., Walker, M., Bethell, D., David J.S., Whyman, R., “Synthesis of thiol-

derivatised gold nanoparticles in a two-phase Liquid–Liquid system”, Journal of

Chemical Society, Chemical Communications, vol.7, (1994) pp.801-802.

19. Masala, O., Seshadri, R., “Synthesis routes for large volumes of nanoparticles”,

Annual Review of Materials Research, vol.34, (2004) pp.41-81.

Page 3: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

94

20. Edlestein, A. S., Cammarata, R. C., “Nanomaterials: Synthesis, Properties and

Applications) London: Institute of Physics (2001).

21. Van Hyning, D. L., Klemperer, W. G., Zukoski, C. F., “Silver nanoparticle

formation: Predictions and verification of the aggregative growth model”,

Langmuir, vol.17, (2001), pp.3128-3135.

22. Sondi, I., Goia, D. V., Matijevic, E., “Preparation of highly concentrated stable

dispersions of uniform silver nanoparticles” Journal of Colloid and Interface

Science, vol.260, (2003) pp.75-81.

23. Mallick, K., Witcomb, M. J., Scurrell, M. S., “Polymer stabilized silver

nanoparticles: a Photochemical synthesis”, Journal of Materials Science, vol.39,

(2004) pp.4459- 4463.

24. Bonnemann, H., Paulus, U. A., Endruschat, U., Feldmeyer, G. J., Schmidt, T.J.,

Behm, R. J., “New PtRu alloy colloids as precursors for Fuel cell catalysts”,

Journal of Catalysts, vol.195, (2000) pp.383-393.

25. Ma, H., Yin, B., Wang, S., Jiao, Y., Pan, W., Huang, S., Chen, S., Meng, F.,

“Synthesis of silver and gold nanoparticles by novel electrochemical method”,

ChemPhysChem, vol.5, (2004) pp.68-75.

26. Bonnemann, H., Angermund, K., Buhl, M., Endruschat, U., Mauschick, F.T.,

Mortel, R., Mynott, R., Tesche, B., Waldofner, N., “In Situ study on the wet

chemical synthesis of Nanoscopic Pt colloids by “ Reductive Stabilization”,

Journal of Physical Chemistry B, vol.107, (2003) pp.7507-7515.

27. Assael, M. J., Chen, C. F., Metaxa, I., and Wakeham, W. A. (2004). "Thermal

Conductivity of Suspensions of Carbon Nanotubes in Water" International Journal

of Thermophysics, vol.25(4), pp.971-985.

28. Hwang, Y., Lee, J. K., Lee, J. K., Jeong, Y. M., Cheong, S. I., Ahn, Y. C., and

Kim, S. H., “Production and dispersion stability of nanoparticles in nanofluids”

Powder Technology, vol.186, (2008), pp.145-153.

29. Bang, I. C., and Heung Chang, S. "Boiling heat transfer performance and

phenomena of Al2O3-water nanofluids from a plain surface in a pool"

International Journal of Heat and Mass Transfer, vol. 48, (2005), 2407-2419.

Page 4: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

95

30. Ma, H. B., Wilson, C., Borgmeyer, B., Park, K., Yu, Q., Choi, S. U. S., and

Tirumala, M. "Effect of nanofluid on the heat transport capability in an

oscillating heat pipe" Applied Physics Letters, vol. 88, (2006), ID.143116, 3

pages.

31. Xuan, Y., and Li, Q., “Heat transfer enhancement of Nanofluids”, International

Journal of Heat and Fluid flow, vol.21, (2000), pp. 58-64.

32. Kim, Ch., Kiyuel, K., “Viscosity and thermal conductivity of copper oxide

nanofluid dispersed in ethylene glycol”, Korea-Australia Rheology Journal,

vol.17, (2005) pp.35-40.

33. Bom, D., Andrews, R., Jacques, D., Anthony, J., Chen, B., “Meier M.S., Seleque

J.P., “Thermo gravimetric analysis of oxidation of multiwalled carbon nanotubes:

Evidence for the role of defect sites in carbon nanotube Chemistry”, Nano

Letters, vol.2, (2002) pp.615-619.

34. Eastman, J.A., Choi, S.U.S., Li, L.J. Thompson, S. Lee, “Enhanced thermal

conductivity through the development of nanofluids”, Materials Research Society

Symposium – Proceedings, vol. 457, Materials Research Society, Pittsburgh, PA,

USA, Boston, MA, USA, (1997), pp. 3–11.

35. Lee, S., Choi, S.U.S., Li, S. ., Eastman, J.A.., “Measuring thermal conductivity of

fluids containing oxide nanoparticles” , Journal of Heat Transfer, vol.121,(1999)

pp.280–289.

36. Wang, X., Xu, X., Choi, S.U.S.,“Thermal conductivity of nanoparticle–fluid

mixture”, Journal of Thermophysics and Heat Transfer, vol.13, (1999) 474–480.

37. Bharat Bhushan, “Springer Handbook of Nanotechnology” Springer 2nd edition,

(2007).

38. Chen, G, Tao, D., “An experimental study of stability of oil-water emulsion”, Fuel

Process Technology, vol.86, (2005) pp.499-508.

39. Patel, H. E.; Das, S. K.; Sundararagan, T.; Nair, A. S.; Geoge, B.; Pradeep, T.

“Thermal conductivities of naked and monolayer protected metal nanoparticles

based nanofluids: Manifestation of anomalous enhancement and chemical

effects” Applied Physics Letters, vol.83,(2003), pp.2931-2933.

Page 5: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

96

40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit

review and peer evaluation” Annual Report, Argonne National Laboratory, 2006.

41. Chen, L., Xie, H., Li, Y., and Yu, W., “Nanofluids containing carbon nanotubes

treated by mechanochemical reaction”, Thermochimica Acta, vol.477, (2008) pp.

21–24.

42. Wei, X., and Wang, L., “Synthesis and thermal conductivity of microfluidic

copper nanofluids”, Particuology, vol. 8, (2010) pp. 262–271

43. Li, X., Zhu, D., Wang. X., “Evolution on dispersion behavior of the aqueous

copper nano suspensions”, Journal of collid interface science, vol.310, (2007)

pp.456-63.

44. Liu Yang, Kai Du, Xiao Song Zhang, Bo Cheng, “Preparation and stability of

Al2O3 nano-particle suspension of ammonia–water solution”, Applied Thermal

Engineering, vol.31, (2011), pp.3643–3647.

45. Necula, B.S., Apachitei, I., Fratila-Apachitei, L.E., Teodosiu, C., Duszczyk, J.,

“Stability of nano-/microsized particles in deionized water and electroless nickel

solutions”, Journal of Colloid Interface, vol.314, (2007), pp.514-22.

46. Shen, ZG., Chen, J.F., Zou, H.K., Yun, J.J., “Dispersion of nanosized aqueous

suspensions of barium titanate with ammonium polyacrylate”, Journal of Colloid

Interface Science, vol.275, (2004), pp.158-64.

47. Li, X., Zhu, D., Wang, X., “Evolution on dispersion behavior of the aqueous

copper nano suspensions”, Journal of colloid interface science, vol.310, (2007),

pp.456-63.

48. Kim, H. J., Bang, I. C., and Onoe, J., “Characteristic stability of bare Au-water

nanofluids fabricated by pulsed laser ablation in liquids”, Optics and Lasers in

Engineering, vol. 47, (2009), pp. 532–538.

49. Wang, X. J., Li, X., and Yang, S., “Influence of pH and SDBS on the stability and

thermal conductivity of nanofluids”, Energy and Fuels, vol. 23, (2009), pp. 2684–

2689.

50. Cherng-Yuan Lin., Jung-Chang Wang., Teng-Chieh Chen., “Analysis of

suspension and heat transfer characteristics of Al2O3nanofluids prepared

through ultrasonic vibration”, Applied Energy, vol.88, (2011), pp.4527–4533.

Page 6: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

97

51. Liu Yang, Kai Du, Xiao Song Zhang, Bo Cheng, “Preparation and stability of

Al2O3 nano-particle suspension of ammonia–water solution”, Applied Thermal

Engineering, vol.31, (2011), pp.3643–3647.

52. Bourlinos, A., Giannelis, E., Zhang, Q., Archer, L., Floudas, G., and Fytas, G.,

“Surface-functionalized nanoparticles with liquid-like behavior: The role of the

constituent components” The European Physical Journal E - Soft Matter, vol.20,

(2006), pp.109 -117.

53. Chang, H., Tsung, T. T., Chen, L. C., Jwo, C. S., Tsung, J. W., and Lu, Y.

C.,“The electrochemical properties of SiC nanoparticle suspension” Journal of

Materials Engineering and Performance, vol.14, (2005), pp.158-162.

54. Ding, Y., Alias, H., Wen, D., and Williams, R. A.., “Heat transfer of aqueous

suspensions of carbon nanotubes (CNT nanofluids)” International Journal of Heat

and Mass Transfer, vol.49, (2006), pp.240-250.

55. Hwang, Y., Park, H. S., Lee, J. K., and Jung, W. H., “Thermal conductivity and

lubrication characteristics of nanofluids” Current Applied Physics, Nano Korea

Symposium, (2006) pp.67-71.

56. Li, Y., Zhou, J., Tung, S., Schneider, E., and Xi, S., “A review on development of

nanofluid preparation and characterization”, Powder Technology, vol. 196,

(2009) pp. 89–101.

57. Singh, A. K., and Raykar, V. S., “Microwave synthesis of silver nanofluids with

polyvinylpyrrolidone (PVP) and their transport properties”, Colloid and Polymer

Science, vol. 286, (2008) pp. 1667–1673

58. Li, D., and Kaner, R. B., “Processable stabilizer-free polyaniline nanofiber

aqueous colloids”, Chemical Communications, vol. 14, (2005) pp. 3286–3288.

59. Chen, L., and Xie, H., “Properties of carbon nanotube nanofluids stabilized by

cationic gemini surfactant”, Thermochimica Acta, vol. 506, (2010) pp. 62–66.

60. Huang, J., Wang, X., Long, Q., Wen, X., Zhou, Y., and Li, L., “Influence of pH

on the stability characteristics of nanofluids”, Proceedings of the Symposium on

Photonics and Optoelectronics (SOPO ’09), (2009).

61. Farahmandjou, M., Sebt, S. A. , Parhizgar, S. S. , Aberomand, P., and Akhavan,

M., “Stability investigation of colloidal FePt nanoparticle systems by

Page 7: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

98

spectrophotometer analysis”, Chinese Physics Letters, vol. 26, (2009) Article ID

027501.

62. Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., and Li, H., “Dispersion behavior

and thermal conductivity characteristics of Al2O3-H2O nanofluids”, Current

Applied Physics, vol. 9, (2009) pp. 131–139.

63. Hwang, Y., Lee, J. K., Lee, C. H., “Stability and thermal conductivity

characteristics of nanofluids”, Thermochimica Acta ,vol. 455, (2007) pp. 70–74.

64. Andrew D. Sommers, Kirk L. Yerkes, “Experimental investigation into the

convective heat transfer and system-level effects of Al2O3-propanol nanofluid”,

Journal of Nanoparticle Research (2009) DOI:11051-009-9657-3.

65. Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N., “Alteration of Thermal

Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles

(Dispersions of γ-Al2O3, SiO2, and TiO2 Ultra-Fine Particles),” Netsu Bussei

(Japan), vol.7, (1993) pp. 227–233.

66. Wang, X.W., Xu, X.F., and Choi, S.U.S., “Thermal conductivity of nanoparticle-

fluid mixture”, Journal of Thermophysics and Heat Transfer, vol.13, (1999) pp.

474- 480.

67. Das, S.K., Putra, N., Thiesen, P., and Roetzel, W., “Temperature dependence of

thermal conductivity enhancement for nanofluids”, Journal of Heat Transfer-

Transactions of the ASME, vol.125, (2003) pp. 567-574.

68. Xie H, Wang J, Xi T, Liu Y, Ai F, “Thermal conductivity enhancement of

suspensions containing nanosized alumna particles” Journal of Applied Physics,

vol.91, (2002), pp.4568-4572.

69. Hwang D, Hong KS, Yang HS, “Study of thermal conductivity nanofluids for the

application of heat transfer fluids” Thermochim Acta, vol.455, (2007), pp. 66-69.

70. Lee JH, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, Choi CJ, “Effective

viscosities and thermal conductivities of aqueous nanofluids containing low

volume concentrations of Al2O3 nanoparticles” International journal of Heat and

Mass Transfer, vol.51, (2008) pp.2651-2656.

Page 8: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

99

71. Li, C.H., and Peterson. G.P., “Experimental investigation of temperature and

volume fraction variations on the effective thermal conductivity of nanoparticle

suspensions (nanofluids)”, Journal of Applied Physics, vol.99, (2006).

72. Warrier, P., Teja, A., “Effect of particle size on the thermal conductivity of

nanofluids containing metallic nanoparticles” Nanoscale Research Letters, vol.22,

(2011)doi: 10.1186/1556-276X-6-247.

73. Chopkar, M., Das, P. K., and Manna, I., “Synthesis and Characterization of

Nanofluid for Advanced Heat Transfer Applications,” Scripta Mater., vol.55,

(2006) pp. 549-552.

74. Li, C.H., and Peterson, G.P., “The effect of particle size on the effective thermal

conductivity of Al2O3-water nanofluid”, Journal of Applied Physicsvol.101,

(2007).

75. Kim, S.H., S.R. Choi, and D. Kim “Thermal conductivity of metal-oxide

nanofluids: Particle size dependence and effect of laser irradiation” Journal of

Heat Transfer-Transactions of the ASME, vol.129, (2007), pp. 298-307.

76. Beck, M., Yuan, Y., Warrier, P., and Teja, A., “the effect of particle size on the

thermal conductivity of alumina nanofluids” Journal of Nanoparticle Research,

vol.11, (2009), pp. 1129-1136.

77. Mintsa, H. A., Roy, G., Nguyen, C. T., and Doucet, D., “New Temperature

Dependent Thermal Conductivity Data for Water-Based Nanofluids”

International Journal of Thermal Sciences, vol.48, (2009), pp. 363-371.

78. Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S., “Empirical correlation finding

the role of temperature and particle size for nanofluid (Al2O3) thermal

conductivity enhancement” Applied Physics Letters, vol.87, (2005), p153107.

79. Duangthongsuk, W., Wongwises, s., “Measurement of temperature-dependent

thermal conductivity and viscosity of TiO2-water nanofluids” Experimental

Thermal and Fluid science, vol.33, (2009), pp.706-714.

80. Beck MP, Yuan Y, Warrier P, Teja AS, “The thermal conductivity of alumina

nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures”

Journal of Nanoparticle Research, vol.12, (2010) pp:1469-1477.

Page 9: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

100

81. Kole M, Dey TK, “Thermal conductivity and viscosity of Al2O3 nanofluid based

on car engine coolant” Journal of Applied Physics, vol.43, (2010) pp:1-10.

82. Prasher, R., Song, D., Wang, J., and Phelan, P., “Measurements of Nanofluid

Viscosity and Its Implications for Thermal Applications”, Applied Physics

Letters, vol.89, (2006) pp.1331083.

83. Chen, H., Ding, Y., and Lapkin, A., 2009, “Rheological Behaviour of Nanofluids

Containing Tube / Rod-Like Nanoparticles,” Powder Technology, vol.194,

(2009), pp. 132-141.

84. Buongiorno, J., “Convective transport in nanofluids”, Journal of Heat Transfer,

vol. 128, (2006), pp. 240–250.

85. Zhou, S.Q., and Ni, R., “Measurement of the specific heat capacity of water-

based Al2O3nanofluid”, Applied Physics Letters, vol. 92, (2008).

86. Zhou, L. P., Wang, B. X., Peng, X. F., Du, X. Z., and Yang, Y. P., “On the

specific heat capacity of CuO nanofluid”, Advances in Mechanical Engineering,

vol. 2010, (2010).

87. Namburu, P.K. “Experimental investigation of viscosity and specific heat of

silicon dioxide nanofluids” Micro & Nano Letters, vol.2, (2007) pp.67-71.

88. Sohel Murshed, S.M., “Determination of effective specific heat of nanofluids”,

Journal of Experimental Nanoscience , Vol. 6, (2011), pp. 539-546.

89. Yu, Z., Shao, X., and Wachs, A., “A direct-forcing fictitious domain method for

particulate flows”, Journal of Computational Physics, Vol.227, (2007), pp. 292-

314.

90. Riehl, R.R., “Analysis of Mini-Loop Heat Pipe Behavior Using Nanofluid”, Heat

Powered Cycles International Conference (HPC) UK 06102 (2006).

91. John Shelton, Frank Pyrtle, “An Investigation into the Non-Uniformity of Density

in Nanofluids”,ASME 2010 8th International Conference on Nanochannels,

Microchannels, and Minichannels: Parts A and B, (2010).

92. Choi, S.U.S., Zhang, Z.G., Keblinski, P., “Nanofluids, in Encyclopedia of

Nanoscience and Nanotechnology ed.”, H.S. Nalwa, vol. (6) (2004), American

scientific publishers, LosAngels, Califorina, pp.757-773.

Page 10: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

101

93. Khanafer, K., Vafai, K., and Lightstone, M., “Buoyancy-driven heat transfer

enhancement in a two dimensional enclosure utilizing nanofluids”, International

Journal of Heat and Mass Transfer (2003) pp.3639-3653.

94. Heris, S., Etemad, S.G., Esfahany, M., “Experimental investigation of oxide

nanofluids laminar flow convective heat transfer”, International Communications

in Heat and Mass Transfer, vol.33, (2006) pp.529-535.

95. Wen, D., Ding, Y., “Formulation of nanofluids for natural convective heat

transfer applications”, International Journal of heat and fluid flow, vol. 26,

(2005) pp.855-864.

96. Ho CJ, Liu WK, Chang YS, Lin CC, “Natural convection heat transfer of

alumina-water nanofluid in vertical square enclosures: an experimental study”

International Journal of Thermal Sciences, 2010, pp.1345-1353.

97. Nayak AK, Gartia MR, Vijayan PK, “Thermal-hydraulic characteristics of a

single-phase natural circulation loop with water and Al2O3 nanofluids” Nucl Eng

Des 2009, 239:526-540.

98. Wen, D., and Ding, Y., “Experimental Investigation into Convective Heat

Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions”,

International Journal of Heat Mass Transfer, vol.47, (2004) pp. 5181-5188.

99. Farajollahi B, Etemad SG, Hojjat M. “Heat transfer of nanofluids in a shell and

tube heat exchanger” International Journal Heat Mass Transfer, vol.53. (2010),

pp.12-17.

100. Pak, B.C. and Cho, Y.I., “Hydrodynamic and heat transfer study of dispersed

fluids with submicron metallic oxide particles”, Experimental Heat Transfer, vol.

11, (1998), pp. 151-170.

101. Tsai, C.Y., Chien, H.T., Ding, P.P., Chan, B., Luh, T.Y., Chen, P.H., “Effects of

structural character of gold nanoparticles in nanofluid on heat pipe thermal

performance”, Material Letters, vol.58, (2004), pp.1461-1465.

102. Xuan, Y., and Li, Q., “Investigation of convective heat transfer and flow features

of nanofluids”, Transactions of ASME Journal of Heat and Mass transfer, vol.

125, (2003) pp.151-155.

Page 11: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

102

103. Chen, X., Li, J.M., Wen, T., Xuan, W., “Enhancing convection heat transfer in

mini tubes with nanoparticles suspension”, Journal of Engineering

Thermophysics, vol.25, (2004), pp.643-645.

104. Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., “Heat transfer behaviours of

nanofluids in a uniformly heat tube”, Superlattices and Microstructures, vol.35,

(2004) pp.543-557.

105. Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., Galanis, N., “Heat transfer

enhancement by using nanofluids in forced convective flows, International”,

Journal of Heat and fluid flow, vol.26, (2005), pp.530-546.

106. Maiga, S.E.B., CongTam, N., Galanis, N., Roy, G., Mare, T., Coqueux, M., “Heat

transfer enhancement in turbulent tube flow using Al2O3 nanoparticle

suspensions”, International Journal of Numerical methods for heat and fluid flow,

vol.16, (2006) pp.275-292.

107. Roy, G., Nguyen, C.T., Lajoie, P.R., “Numerical investigation of laminar flow

and heat transfer in a radial flow cooling system with the use of nanofluids”,

Super lattices and Microstructures, vol.35, (2004) pp.497-511.

108. S.P. Jang, S.U.S. Choi, “Cooling performance of a microchannel heat sink with

nanofluids,” Applied Thermal Engineering, vol.26, (2006), pp. 103-108.

109. C.T. Nguyen, G. Roy, N. Galanis, S. Suiro, “Heat transfer enhancement by using

Al2O3-water nanofluid in a liquid cooling system for microprocessors,”

Proceedings of the 4th WSEAS Int. Conf. on heat transfer, Thermal engineering

and environment, Elounda, Greece, August 21-23, (2006), pp. 103-108.

110. Y. T. Chen, W. C. Wei, S. W. Kang, and C. S. Yu, “Effect of nanofluid on flat

heat pipe thermal performance,” Proceedings of the 24th IEEE Semiconductor

Thermal Measurement and Management Symposium (SEMI-THERM '08), March

2006.

111. S. W. Kang, W. C. Wei, S. H. Tsai, and C. C. Huang, “Experimental investigation

of nanofluids on sintered heat pipe thermal performance,” Applied Thermal

Engineering, vol. 29, (2009) pp. 973–979.

Page 12: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

103

112. S. C. Tzeng, C. W. Lin, and K. D. Huang, “Heat transfer enhancement of

nanofluids in rotary blade coupling of four-wheel-drive vehicles,” Acta

Mechanica, vol. 179, (2005) pp.11–23.

113. Saripella, S.K., Yu, W., Routbort, J.L., “Effects of Nanofluid coolant in a class 8

truck Engine”, SAE International Journal, paper series 2007-01-2141 (2007).

114. Vasu, V., Rama Krishna, K., and Kumar, A.C.S., “Application of Nanofluids in

Thermal Design of Compact Heat Exchanger” International Journal of

Nanotechnology and Applications, Vol 2, (2008), pp. 75–87.

115. Leong, K.Y., Saidur, R., Kazi, S.N., Mamun, A.H., “Performance investigation of

an automotive car radiator operated with nanofluid-based coolants (nanofluid as a

coolant in a radiator)” Applied Thermal Engineering (2010) pp.2685-2692.

116. Kulkarni Devdatta, P., Vajjha Ravikanth, S., Das Debendra, K., and Oliva Daniel,

“Application of aluminum oxide nanofluids in diesel electric generator as jacket

water coolant”, Applied Thermal Engineering, vol.28, (2008), pp. 1774-1781.

117. Shah, R.K., Sekulic, D.P., Fundamentals of Heat Exchanger Design, 1st Edition,

2003, John Wiley & Sons.Inc.

118. Kays W.M., London A.L., “compact heat exchangers”, 3rd edition, McGraw-Hill,

New York (1984).

119. Wang C., Webb R., Chi K., “Data reduction for air-side performance of fin-and-

tube heat exchangers”, Experimental Thermal and Fluid science ,Vol. 21, (2000),

pp.218-226.

120. ESDU 86018, Effectiveness — NTU relationship for the design and performance

evaluation of two-stream heat exchangers (1991), Engineering data unit 86018

with amendment A, July 1991, ESDU International publication. London.

121. Shah R., “Experimental techniques for obtaining design data of compact heat

exchanger surfaces”, Proceedings of the international conference on compact heat

exchangers for the process industries (1997).

122. Wilson, E.E., “A basis of rational design of heat transfer apparatus” ASME

Journal of Heat Transfer, vol.37, (1915), pp.47–70.

Page 13: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

104

123. Briggs, D.E., Young, E.H., “Modified Wilson plot technique for obtaining heat

transfer correlations for shell and tube heat exchangers”, Chemical engineering

symposium, Vol 65, (1969), pp.35-45.

124. Shah, R.K., “Assessment of modified Wilson plot techniques for obtaining heat

exchanger design data” Proceedings of Ninth International Heat Transfer

Conference, vol. 5, (1990), pp. 51–56.

125. Chang, Y.J., Hsu, C.T., “Single-tube performance of condensation of R-134a on

horizontal enhanced tubes” ASHRAE Transactions, vol.102, (1996) pp.821–829.

126. McNeil, D.A., Burnside, B.M., Cuthbertson, G., “Dropwise condensation of

steam on a small tube bundle at turbine condenser conditions” Experimental Heat

Transfer, vol.13, (2000), pp.89–105.

127. Chang,Y.P., Tsai,R., Hwang, J.W., “Condensing heat transfer characteristics of

an aluminum flat tube” Applied Thermal Engineering, vol.17, (1997) pp.1055–

1065.

128. Kuo, C.S., Wang, C.C., “In-tube evaporation of HCFC-22 in a 9.52 mm micro-

fin/smooth tube” International Journal of Heat and Mass Transfer, vol.39, (1996)

pp.2559–2569.

129. Webb, R.L., Zhang, M., “Heat transfer and friction in small diameter channels”

Microscale Thermophysical Engineering, vol.2, (1998) pp.189–202.

130. Kim, N.H., Cho, J.P., Kim, J.O., Youn, B., “Condensation heat transfer of R-22

and R-410A in flat aluminum multi-channel tubes with or without micro-fins”

International Journal of Refrigeration, vol.26, (2003) pp.830–839.

131. Rennie, T.J., Raghavan, V.G.S., “Experimental studies of a double pipe helical

heat exchanger” Experimental Thermal and Fluid Sciences, vol.29, (2005)

pp.919–924.

132. Yang, R., Chiang, F.P., “An experimental heat transfer study for periodically

varying-curvature curved-pipe” International Journal of Heat and Mass Transfer,

vol.45, (2002) pp.3199–3204.

133. Yang, R., Chiang, F.P., “An experimental study of heat transfer in curved pipe

with periodically varying curvature for application in solar collectors and heat

Page 14: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

105

exchangers” Proceedings of the Intersociety Energy Conversion Engineering

Conference 1 (2001) pp.154–160.

134. Kedzierski, M.A., Kim, M.S., “Single-phase heat transfer and pressure drop

characteristics of an integral-spine fin within an annulus” Journal of Enhanced

Heat Transfer, vol.3, (1996) pp.201–210.

135. Butrymowicz, D., Trela, M., Karwacki, J., “Enhancement of condensation heat

transfer by means of EHD condensate drainage” International Journal of Thermal

Sciences, vol.41, (2002) pp.646–657.

136. Butrymowicz, D., Trela, M., Karwacki, J., “Enhancement of condensation heat

transfer by means of passive and active condensate drainage techniques”

International Journal of Refrigeration, vol.26, (2003) pp.473–484.

137. Del Col, D., Webb, R.L., Narayanamurthy, R., “Heat transfer mechanisms for

condensation and vaporization inside a microfin tube” Journal of Enhanced Heat

Transfer, vol.9, (2002) pp.25–37.

138. Brognaux, L.J., Webb, R.L., Chamra, L.M., Chung, B.Y., “Single phase heat

transfer in micro-fin tubes” International Journal of Heat and Mass Transfer,

vol.40, (1997) pp.4345–4357.

139. Yun, J.Y., Lee, K.S., “Investigation of heat transfer characteristics on various

kinds of fin-and-tube heat exchangers with interrupted surfaces” International

Journal of Heat and Mass Transfer, vol.42, (1999) pp.2375–2385.

140. Cheng, L., Van der Geld, C.W.M., “Experimental study of heat transfer and

pressure drop characteristics of air/water and air-steam/ water heat exchange in a

polymer compact heat exchanger” Heat Transfer Engineering, vol.26, (2005)

pp.18–27.

141. Vlasogiannis, P., Karagiannis, G., Argyropoulos, P., Bontozoglou, V., “Air–

water two-phase flow and heat transfer in a plate heat exchanger” International

Journal of Multiphase Flow, vol.28, (2002) pp.757–772.

142. Mingzheng Zhou, Guodong Xia , Jian Li, Lei Chai, Lijun Zhou, “Analysis of

factors influencing thermal conductivity and viscosity in different kinds of

surfactant solutions” Experimental Thermal and Fluid Science, vol.36, (2012)

pp.22–29.

Page 15: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

106

143. Roge H. French, Harald Mullejans, and David J. Jones “Optical properties of

Aluminum Oxide: Determined form vacuum Ultraviolet and Electron and energy

loss spectroscopies” Journal of American Ceramic Society, vol.81, (1998), pp.

2549-57.

144. Liu Yang , Kai Du , Xiaofeng Niu , Yanjun Li , Yuan Zhang, “An experimental

and theoretical study of the influence of surfactant on the preparation and stability

of ammonia-water nanofluids” International Journal of Refrigeration, vol.34,

(2011) pp.1741-1748.

145. W.G.Cochran, G.M.Cox, “Experimental designs” 2nd Edition John Wiley & sons,

New York (1957).

PUBLICATIONS FROM THE THESIS WORK

1. Bhuvanagiri Ravi Sankar, Damera Nageswara Rao,Chalamalasetti Srinivasa Rao

“Experimental investigation on stability of Al2O3- Water Nanofluid using

response surface methodology”, International Journal of NanoScience and

Nanotechnology, Volume 3, Number 3 (2012), pp. 149-160.

2. Ravi Sankar.B, Nageswara Rao .D ,Srinivasa Rao.Ch, “ Nanofluid Thermal

conductivity-A Review” International Journal of Advances in Science and

Technology, Volume 3, Number 3 (2012).

3. B. Ravi Sankar, D. Nageswara Rao , Ch. Srinivasa Rao, “Influence of

Nanoparticle Volume Fraction, Particle size and Temperature on Thermal

Conductivity and Viscosity of Nanofluids - A Review” International Review of

Applied Engineering Research. [accepted for publication]

4. B. Ravi Sankar, D. Nageswara Rao , Ch. Srinivasa Rao, “Investigation on the

Influence of Surfactant and pH Value on Dispersion Stability of Al2O3-Water

Nanofluid,” International Journal of Engineering Science and Technology

(MULTICRSAFT) . [under review]

Page 16: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

107

APPENDIX

A1. XRD of Al2O3 nanoparticles

X-ray diffraction analyses of nano Alumina particles shown in Fig.A1. The X-ray

diffractogram obtained from the test shows the relationship between diffraction angle

(2Ө) and relative intensity. The average particle size was found to be between 50 to

100nm using XRD pattern of nanoparticles.

Fig-A1.Convoluted graph of intensity profile for Al2O3 nanoparticles

A2. Calibration of the guarded method apparatus

Thermal conductivity and specific heat of nanofluids are measured using guarded hot

plate method apparatus. The apparatus is calibrated by comparing the values with that of

water.

Page 17: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

108

A2.1. Calibration for thermal conductivity measurement

Thermal conductivity of water is measured using guarded hot plate method at

various temperatures. The measured values are compared with theoretical values of

water as shown in fig. A2. The maximum error obtained is 5% as shown in fig. A3.

Hence, the measurements are considered to be within reasonable limit.

Fig. A2. Calibration with thermal conductivity of water

Fig. A3. Error in measurement of thermal conductivity of water

Page 18: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

109

A2.2. Calibration for specific heat measurement

The measured values of Specific heat of water using Guarded hot plate method at

various temperatures are compared with theoretical values as shown in fig. A4. Error in

measurement is shown in fig. A5 and the maximum error obtained is 6%. Hence, the

measurements are considered to be within reasonable limit.

Fig. A4. Calibration with specific heat of water

Fig. A5. Error in measurement of specific heat of water

Page 19: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

110

A3. Calibration of the Redwood viscometer-I

The viscosity of nanofluids id found by Redwood viscometer-I. calibration is

done with water. The measured values are compared with theoretical values of water as

shown in fig. A6. The maximum error obtained is 6.5% as shown in fig. A7. Hence, the

measurements are considered to be within reasonable limit.

Fig. A6. Calibration with viscosity of water

Fig. A7. Error in measurement of viscosity of water

Page 20: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

111

A3. Calibration of the specific gravity bottle method

Density of nanofluids is measured using specific gravity bottle method. The

method is calibrated by comparing the values with that of water. Density of water is

measured and the measured values are compared with theoretical values of water as

shown in fig. A8. Error in measurement is shown in fig. A9 and the maximum error

obtained is 3%. Hence, the measurements are considered to be within reasonable limit.

Fig. A8. Calibration with density of water

Fig. A9. Error in measurement of density of water

Page 21: REFERENCES 1. 2.shodhganga.inflibnet.ac.in/bitstream/10603/28753/14/14_references.pdf · 96 40. Singh,D., Toutbort, J., Chen,G., “Heavy vehicle systems optimization merit review

112

A5. Blower used

A forward vane type centrifugal blower is used to force the air over the radiator tubes at

different velocities and is shown in fig.A10. The air velocity of air is controlled by

regulating valve and measured using venture meter.

A10. Blower test rig

(Make: ALTECH, India)