25
Refraction and light transport in turbid colloids: Is the Poynting vector ill defined? Rubén G. Barrera Instituto de Física, UNAM Mexico ETOPIM 8

Refraction and light transport in turbid colloids: Is the Poynting … · SEBtrans ε ωε µ ⎡ ⎤ =×−⎢ ⎥ ⎣ ⎦ G GG Poynting vector in LTPoynting vector in LT The correct

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Refraction and light transportin turbid colloids:

    Is the Poynting vector ill defined?

    Refraction and light transportin turbid colloids:

    Is the Poynting vector ill defined?

    Rubén G. BarreraInstituto de Física, UNAM

    Mexico

    Rubén G. BarreraInstituto de Física, UNAM

    Mexico

    ETOPIM 8

  • In collaboration with:In collaboration with:

    Felipe PérezLuis Mochán

    EdahíGutierrez

    Augusto García

  • Motivation 1Motivation 1

    milk11.71n

    2n

    critical angle

    2

    1

    sin cnn

    θ =

    refractive index of milk

    …but is white…and turbid…

  • Absorption

    k′

    k′′

    Inhomogeneous wave

    1θ2Θ

    0

    BS Eµ

    = × 0indE J⋅ >

    0k k′ ′′⋅ >

    Motivation 2Motivation 2

    k k ik′ ′′= +

    V.A. Markel, Optics Express 16 (2008) 19152

    Q

    S E H= ×

    negative refractionimposible

    BHµ

    =

  • ColloidColloid

    Inhomogeneous phasedispersed within ahomogeneous one

    colloidal particleshomogeneous phase

  • continuousphase

    dispersephase name examples

    liquid solid sol Milk, paints, blood, tissues

    liquid liquid emulsion oil in water

    liquid gas foam foam, whipped cream

    solid solid solid sol composites, policrystals, rubys

    solid liquid solid emulsion milky quatz, opals

    solid gas solid foam porous media

    gas solid solid aereosol smoke, powder

    gas liquid liquid aereosol fog

    Colloidal systemsColloidal systems

  • “Ordered” colloids“Ordered” colloids

    Photonic crystals Metamaterials

  • coherent

    diffuse

    Light scatteringLight scatteringcoherent

    turbidity

  • Effective mediumEffective medium

    colloid

    fluctuations

    effective medium ?

    εµ

    eff

    eff

    effn

    average

    Continuum Electrodynamics

  • Our resultOur result

    IN TURBID COLLOIDAL SYSTEMSTHE EFFECTIVE MEDIUM EXISTSBUT IT IS NONLOCAL

    3( ; ) (| |; ) ( , )i nd effJ r r r E r d rω σ ω ω= ′ ′ ′−∫the probability density Is homogeneous

    ω σ ω ω= ⋅( , ) ( , ) ( , )ind

    effJ k k E k

    Spatial dispersion

    . Phys. Rev. 75 (2007) 184202 [1-19].

    total

  • LT schemeLT scheme

    Probability density is homogeneous and isotropic

    σ ω σ ω σ ω= + −ˆ ˆ ˆ ˆ( ; ) ( , ) ( , )(1 )L Teff eff effk k kk k kk

    ε ω ε σ ωω

    = +0( ; ) 1 ( ; )eff effik k

    generalized effective nonlocal dielectric function

    ε ω( , )Leff k ε ω( , )Teff k

    2[0] [2]

    20

    ( , ) ( ) ( ) ...L L kkk

    ε ω ε ω ε ω= + +

    Long wavelength2

    [0] [2]20

    ( , ) ( ) ( ) ...T T kkk

    ε ω ε ω ε ω= + +

    ( )0ka →

    2 2/ cω

    “local limit”

    ˆ kkk

    ε µ

  • 4

    5

    0

    -15

    -5

    -10

    0 1 2 3 4 5 6pa

    0.83 µm

    0.62 µm

    0.45 µm

    0.30 µm

    0.22 µm

    λ0

    Ag (radius=0.1µm)

    ε ω −Re[ ( ; )] 1T pf

    Phys. Rev. 75 (2007) 184202 [1-19].

  • 0

    -5

    -10

    Ag (radius=0.1µm)

    3.5

    0 1 2 3 4 5 6pa

    32.5

    21.5

    10.5

    0.83 µm

    0.62 µm

    0.45 µm

    0.30 µm

    0.22 µm

    λ0

    ε ω −Im[ ( ; )] 1T pf

    Phys. Rev. 75 (2007) 184202 [1-19].( )effn ω

  • Poynting TheoremPoynting Theorem

    ( )* *

    *

    0 0 0

    1 1Re Re2 2

    B B BE E Eµ µ µ

    ⎛ ⎞⎛ ⎞ ⎛ ⎞∇ ⋅ × = ⋅ ∇× − ⋅ ∇×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

    ( )* *

    * *0

    0

    1Re2

    ext indB B EE J J Et t

    εµ

    ⎛ ⎞∂ ∂= − ⋅ − ⋅ + − ⋅⎜ ⎟

    ∂ ∂⎝ ⎠

    ( ) ( )εµ µ⎛ ⎞⎛ ⎞ ∂ ⎜ ⎟∇ ⋅ × + + = − ⋅ − ⋅⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

    2*2 * *0

    0 0

    1 1 1Re Re Re Re2 2 2 2 2

    ext indBBE E J E J Et

    extW QPlane waveextW Q→

    Math

    Maxwell

  • WORKWORK

    ( ) ( )* 2 *01 1Re Re 12 2ind

    indW J E i n E Eωε⎡ ⎤= ⋅ = − ⋅⎣ ⎦

    220 Im2

    n Eω ε= 2Im 0n >Q

    k ′

    k ′′

    ( )22 2 20k k k k ik k n′ ′′= ⋅ = + =

    Inhomogeneous wave

    2 2 2 20 Rek k k n′ ′′− =

    ′ ′′⋅ = 2 202 Imk k k n 0>

    Negative refraction is impossible

    ( )20 1indJ i n Eωε= − free-propagating mode

    dispersion relation

  • Negative Refraction at Visible FrequenciesHenri J. Lezec,1,2*† Jennifer A. Dionne,1* Harry A. Atwater1

    Nanofabricated photonic materials offer opportunities for crafting the propagation anddispersion of light in matter. We demonstrate an experimental realization of a two-dimensional negative-index material in the blue-green region of the visible spectrum, substantiated by direct geometric visualization of negative refraction. Negative indices were achieved with the use of an ultrathin Au-Si3N4-Ag waveguide sustaining a surface plasmon polariton mode with antiparallel group and phase velocities. All-angle negative refraction was observed at the interface between this bimetal waveguide and a conventional Ag-Si3N4-Ag slot waveguide. The results may enable the development of practical negative index optical designs in the visible regime.

    Science 316, 430 (2007)

  • Nonlocal calculationNonlocal calculation

    *

    2 20

    0 0

    1 1Re2 2 2 ext ind

    BE E B W W

    µ µ

    ⎛ ⎞ ⎛ ⎞∂⎜ ⎟∇ ⋅ × + + = − −⎜ ⎟⎜ ⎟ ∂⎜ ⎟ ⎝ ⎠⎝ ⎠

    ( )*1 Re2indJ E⋅

    3( ; ) ( ; ) ( ; )indJ r t dt d r r r t t E r tσ′ ′ ′ ′ ′ ′= − − ⋅∫ ∫quasi-monochromatic wave

    ( ) ( ) 00 0 0( , ) ( , ) ...∂′ ′ ′ ′= + − ⋅∇ + − +⎡ ⎤⎣ ⎦ ∂EE r t E r t r r E t tt

    0( , ) Re ( , ) exp[ ]E r t E r t ik r tω= ⋅ − 0 0E kEα∇0

    0E Etα ω∂

  • ε ω ε σ ωω

    = +0( ; ) 1 ( ; )eff effik k

    ( ){ 0 0( , ) exp[ ( )] ( , ) ( , )indJ r t i k r t i k E r tα αβ αβ βω ω ε ω ε δ= ⋅ − − −

    0 00

    ( , ) ( , ) ( , ) ( , )( )

    k E r t k E r tk x t

    αβ β αβ βαβ αβ

    ε ω ε ωω ε ε δ ω

    γ γ ω

    ⎫⎡ ⎤∂ ∂ ∂ ∂ ⎪− + − +⎢ ⎥ ⎬∂ ∂ ∂ ∂⎢ ⎥ ⎪⎣ ⎦ ⎭

    Induced currentInduced current

    ( )*1 Re2indJ E⋅

    2[0] [2]

    20

    ( , ) ( ) ( ) ...L L kkk

    ε ω ε ω ε ω= + +2

    [0] [2]20

    ( , ) ( ) ( ) ...T T kkk

    ε ω ε ω ε ω= + +

    Im ReL Lε ε Im ReT Tε ε

    long wavelength 0ka → “local”

  • 2 2

    0 0Im ( , ) Im ( , )2L L T T

    indW k E k Eω ε ω ε ω⎡ ⎤= +⎢ ⎥⎣ ⎦

    ( ) ( )[2] 2* [2]* *

    0 0 0 0 00 0 0 0

    1 1 ( )Re ( )2

    LT L L TE B k E kE Eε ωε ω

    ε µ ωε µ⎡ ⎤

    −∇⋅ × + +⎢ ⎥⎣ ⎦

    [0] 2 [2] [2]2 22 20 0 0 0 0

    0 0

    1 ( ) ( ) ( )Re2

    L TL TkE E E E

    tωε ω ε ω ε ω ε

    ω ε µ ω ω ω ω⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂

    + + + −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

    Work on the induced currentsWork on the induced currents

    E

    *

    2 20

    0 0

    1 1Re2 2 2 ext ind

    BE E B W W

    µ µ

    ⎛ ⎞ ⎛ ⎞∂⎜ ⎟∇ ⋅ × + + = − −⎜ ⎟⎜ ⎟ ∂⎜ ⎟ ⎝ ⎠⎝ ⎠

  • Energy theoremEnergy theorem

    Transverse waves

    ( )( )[0]

    2 2* [2]*0 0 0 0 0

    0 0

    1 1 1 1 ( )Re 1 ( ) / Re2 2

    TE B B Et

    ωε ωε ω εµ µ ω⎡ ⎤ ⎡∂ ∂

    ∇ ⋅ × − + +⎢ ⎥ ⎢∂ ∂⎣ ⎦ ⎣

    2 [2] 2 [2]2 2[0]

    0 020 0 0 0

    ( ) ( )Im ( )2

    T T

    extk kE W Eε ω ω ε ωε ωε µ ω ω ω ε µ

    ⎤ ⎡ ⎤∂+ = − − +⎥ ⎢ ⎥∂ ⎦ ⎣ ⎦

    ( )( )* [2]*0 0 00

    1 1Re 1 ( ) /2

    TtransS E B ε ω εµ

    ⎡ ⎤= × −⎢ ⎥

    ⎣ ⎦

  • e m schemee m scheme

    ( , )( , ) ( , )ind P r tJ r t M r tt

    ∂= +∇×

    ( )0( , ) ( , ) expP r t P r t i k r tω⎡ ⎤= ⋅ −⎣ ⎦

    ( )0( , ) ( , ) expM r t M r t i k r tω⎡ ⎤= ⋅ −⎣ ⎦

    ( )0( , ) ( , ) expind indJ r t J r t i k r tω⎡ ⎤= ⋅ −⎣ ⎦

    quasi-monochromatic

    NOT UNIQUE

  • ( ) ( )0 0 0 0( , ) ( , ) ( , ) ( , )l L t TP r t k P k P E r tε ω ε ε ω ε⎡ ⎤= − + − ⋅⎣ ⎦

    0 00

    1 1( , ) ( , )( , )

    M r t B r tkµ µ ω

    ⎡ ⎤= −⎢ ⎥⎣ ⎦

    ResponseResponse

    CHOICE I

    ( , ) (0, )t tkε ω ε ω=

    CHOICE II

    ( , ) ( , )t lk kε ω ε ω=

    ( , )( , ) ( , )ind P r tJ r t M r tt

    ∂= +∇×

    ( , )I kµ ω ( , )II kµ ω

  • * * [2]**0 0

    0 0 00 0 0

    1 ( )Re2

    t

    transB BS E M E ε ωµ µ ε

    ⎡ ⎤⎛ ⎞= × − − ×⎢ ⎥⎜ ⎟

    ⎢ ⎥⎝ ⎠⎣ ⎦

    Poynting vector in emPoynting vector in em

    0HCHOICE I

    [2]*( ) 0tε ω = [2]* [2]* [2]( ) ( ) ( )t l Lε ω ε ω ε ω= =

    CHOICE II

    long wavelength limit 0 00 0

    1 1 1 1 1(0, ) (0, )

    B k Eµ µ ω µ µ ω ω⎡ ⎤ ⎡ ⎤

    − = − ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    (0, )Iµ ω (0, )IIµ ω

  • ( )( )* [2]*0 0 00

    1 1Re 1 ( ) /2

    TtransS E B ε ω εµ

    ⎡ ⎤= × −⎢ ⎥

    ⎣ ⎦

    Poynting vector in LTPoynting vector in LT

    The correct expression of the Poynting vector

    [2]*( )Tε ω is NOT a non-local correction

    This is the LOCAL limit

  • ConclusionsConclusions

    (i) We used the formalism developed for the treatment of the non-local effective medium associated to turbid colloids to find a general expression for the energy theorem, in the long wavelength limit, in terms of parameters associated to the non-local response of the system.

    (ii) We found an explicit expression for the Poynting vector in terms of these non-local parameters and show that there are many ways of writing itin terms of the electric permittivity e and the magnetic permeability m, depending on the choice taken to define them.

    (iii) This approach can be extended to finite wave vectors and non negligible dissipation as well as energy transport for free-propagating modes