52
40 CLIMATE CHANGE RESEARCH REPORT CCRR-40 Responding to Climate Change Through Partnership Ministry of Natural Resources Regional Projections of Climate Change Effects on Ice Cover and Open-Water Duration for Ontario Lakes Using Updated Ice-Date Models

Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

40CLIMATECHANGE RESEARCHREPORTCCRR-40

Responding to

Climate Change

Through Partnership

Ministry of Natural Resources Regional Projections of Climate Change Effects on Ice Cover and Open-Water Duration for Ontario LakesUsing Updated Ice-Date Models

Page 2: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

Climate change will affect all MNR programs and the natural resources for which it has responsibility. This strategy confirms MNR’s commitment to the Ontario government’s climate change initiatives such as the Go Green Action Plan on Climate Change and out-lines research and management program priorities for the 2011-2014 period.

Theme 1: Understand Climate ChangeMNR will gather, manage, and share information and knowledge about how ecosystem composition, structure and function – and the people who live and work in them – will be affected by a changing climate. Strategies: • Communicate internally and externally to build

awareness of the known and potential impacts of climate change and mitigation and adaptation op-tions available to Ontarians.

• Monitor and assess ecosystem and resource condi-tions to manage for climate change in collaboration with other agencies and organizations.

• Undertake and support research designed to improve understanding of climate change, including improved temperature and precipitation projections, ecosystem vulnerability assessments, and im-proved models of the carbon budget and ecosys-tem processes in the managed forest, the settled landscapes of southern Ontario, and the forests and wetlands of the Far North.

• Transfer science and understanding to decision-makers to enhance comprehensive planning and management in a rapidly changing climate.

Theme 2: Mitigate Climate ChangeMNR will reduce greenhouse gas emissions in sup-port of Ontario’s greenhouse gas emission reduction goals. Strategies:• Continue to reduce emissions from MNR opera-

tions though vehicle fleet renewal, converting to other high fuel efficiency/low-emissions equipment, demonstrating leadership in energy-efficient facility development, promoting green building materials and fostering a green organizational culture.

Sustainability in a Changing Climate: An Overview of MNR’s Climate Change Strategy (2011-2014)

• Facilitate the development of renewable energy by collaborating with other Ministries to promote the val-ue of Ontario’s resources as potential green energy sources, making Crown land available for renewable energy development, and working with proponents to ensure that renewable energy developments are consistent with approval requirements and that other Ministry priorities are considered.

• Provide leadership and support to resource users and industries to reduce carbon emissions and in-crease carbon storage by undertaking afforestation, protecting natural heritage areas, exploring oppor-tunities for forest carbon management to increase carbon uptake, and promoting the increased use of wood products over energy-intensive, non-renewable alternatives.

• Help resource users and partners participate in a carbon offset market, by working with our partners to ensure that a robust trading system is in place based on rules established in Ontario (and potentially in other jurisdictions), continuing to examine the mitigation potential of forest carbon management in Ontario, and participating in the development of pro-tocols and policies for forest and land-based carbon offset credits.

Theme 3: Help Ontarians AdaptMNR will provide advice and tools and techniques to help Ontarians adapt to climate change. Strategies include: • Maintain and enhance emergency management

capability to protect life and property during extreme events such as flooding, drought, blowdown and wildfire.

• Use scenarios and vulnerability analyses to develop and employ adaptive solutions to known and emerg-ing issues.

• Encourage and support industries, resource users and communities to adapt, by helping to develop un-derstanding and capabilities of partners to adapt their practices and resource use in a changing climate.

• Evaluate and adjust policies and legislation to re-spond to climate change challenges.

Page 3: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

2014

Science and Research Branch • Ontario Ministry of Natural Resources

Charles K. Minns1,2, Brian J. Shuter2,3, and Simon R. Fung3

1 Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada Bayfield Institute, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6

2 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street Toronto, ON M5S 3B2

3 Harkness Lab Fisheries Research, Aquatic Research and Monitoring Section, Science and Research Branch, Ontario Ministry of Natural Resources, Peterborough, ON K9J 8M5

Regional Projections of Climate Change Effects on Ice Cover and Open-Water Duration for Ontario Lakes Using Updated Ice-Date Models

Page 4: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

This paper contains recycled materials.

© 2014, Queen’s Printer for OntarioPrinted in Ontario, Canada

Single copies of this publicationare available from:

Science and Research Branch Ontario Forest Research InstituteMinistry of Natural Resources1235 Queen Street EastSault Ste. Marie, ONCanada P6A 2E5

Telephone: (705) 946-2981Fax: (705) 946-2030E-mail: [email protected]

Cette publication hautement spécialisée, Regional Projections of Climate Change Effects on Ice Cover and Open-Water Duration for Ontario Lakes Using Updated Ice-Date Models n’est disponible qu’en anglais en vertu du Règlement 671/92 qui en exempte l’application de la Loi sur les services en français. Pour obtenir de l’aide en français, veuillez communiquer avec le ministère des Richesses naturelles au [email protected].

Page 5: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

i

Résumé

SummaryUpdated models for predicting ice break-up and freeze-up dates and ice thickness, developed using

measurements from a series of Canadian lakes, were applied to project ice conditions for the remainder of this century across four sets of spatial units in Ontario: inland fishery management zones, secondary watersheds, municipalities, and ecodistricts. The duration of the open-water period was estimated as the days between freeze-up and break-up dates. Projections were based on simulations produced with four global climate models (GCMs) under two alternate greenhouse gas emissions scenarios (A2 and B1) for three future time periods (2011-2040, 2041-2070, and 2071-2100).

The results for fishery management zones were representative of the spatial units evaluated and indicate the likely magnitude of changes in break-up and freeze-up dates and the duration of open water during the 21st century across Ontario’s inland lakes. Projected changes in the timing of ice break-up are typically smaller than those projected for freeze-up. Break-up is mostly a function of lake area as the water is sealed from the atmosphere by a layer of ice. Once the air temperature (31-day running average) exceeds 0 °C in spring, warmer air temperatures will advance the break-up date but this is offset by the lower solar elevation at that time, which reduces the contribution of solar radiation to melting. In contrast, freeze-up is related to the volume of water in the lake and occurs as lower air temperatures draw the summer’s heat from the water. The later arrival of the date when the 31-day running mean air temperature goes below 0 °C in the fall delays the onset of freezing, with mean lake depth exerting an additional, and fixed, delaying effect. The ice cover dates and period of open water duration follow the climate gradients from south to north. Variations in results from the four GCM projections of future climatic conditions for the two emissions scenarios demonstrate the uncertainty inherent in the use of output from GCMs to project secondary environmental effects. Similar patterns of change were projected for the other three types of spatial unit.

Preliminary results indicate that modelling can be used to project changes in ice thickness and is warranted given that ice safety issues will need to be addressed in relation to ice formation and melting dates.

Nouvelles extrapolations régionales relatives aux effets du changement climatique sur la couverture de glace et la durée des eaux libres dans les lacs de l’Ontario, réalisées à l’aide de modèles mis à jour

Des modèles mis à jour de prédiction des dates de la débâcle et de la prise des glaces, et de l’épaisseur de la glace, mis au point à partir de mesures prises dans un certain nombre de lacs canadiens, ont été appliqués pour extrapoler l’état de la glace pour le reste du présent siècle dans quatre ensembles d’unités spatiales de l’Ontario : zones de gestion des pêches de l’intérieur, bassins hydrographiques secondaires, municipalités et écodistricts. La durée de la période d’eaux libres a été estimée comme étant le nombre de jours entre la prise des glaces et la débâcle. Les extrapolations ont été établies à partir de simulations produites à l’aide de quatre modèles climatiques mondiaux (MCM), selon deux scénarios d’émissions de gaz à effet de serre (A2 et B1) pour trois périodes futures (2011-2040, 2041-2070 et 2071-2100).

Les résultats pour les zones de gestion des pêches étaient représentatifs des unités spatiales évaluées. Ils indiquent l’ampleur probable de l’évolution des dates de prise des glaces et de débâcle, ainsi que la durée des eaux libres, au cours du XXIe siècle dans l’ensemble des lacs intérieurs de l’Ontario. Les changements prévus du moment de la débâcle sont normalement moins prononcés que dans le cas de la prise des glaces. La débâcle est surtout fonction de la superficie du lac, car l’eau est isolée de l’atmosphère par une couche de glace. Dès que la température de l’air (moyenne mobile de 31 jours) dépasse 0 oC au printemps, la tiédeur de l’air avancera la date de la débâcle, mais cela est contrebalancé par la hauteur moindre du soleil à ce

Page 6: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

ii

Acknowledgements

We thank Karen Ing, Liset Cruz Font, and Justin Trumpickas for their earlier contributions to the development of databases and analyses used in this study. We thank Dr. Paul Gray for reviewing an earlier version of the manuscript and Trudy Vaittinen for report layout. Support for this project was provided by the Ontario Ministry of Natural Resources (OMNR) and the University of Toronto. Special thanks to Paul Gray, OMNR, for his continuing support and advice. Direct funding was provided by OMNR’s Climate Change Program.

moment, ce qui réduit la contribution du rayonnement solaire à la fonte. À l’opposé, la prise des glaces est liée au volume d’eau dans le lac et se produit lorsque l’abaissement de la température de l’air refroidit l’eau du lac. La date où la moyenne mobile sur 31 jours de la température de l’air passe sous 0 oC l’automne, si elle arrive plus tard, retarde le début de la prise des glaces, la profondeur moyenne du lac exerçant une influence retardatrice supplémentaire fixe. Les dates où le lac est couvert de glace et la durée des eaux libres suivent les gradients climatiques du sud au nord. La variation des résultats des quatre extrapolations par les MCM des futures conditions climatiques pour les deux scénarios d’émission illustrent l’incertitude inhérente à l’utilisation de résultats des MCM pour prévoir des effets environnementaux secondaires. Des modèles de changement semblables ont fait l’objet d’extrapolations pour les trois autres types d’unités spatiales.

Les résultats préliminaires indiquent que la modélisation peut être utilisée pour prévoir des changements de l’épaisseur de la glace, et que cela est justifié par le fait qu’il faudra se pencher sur les questions de sécurité sur la glace compte tenu de l’évolution des dates de formation et de fonte de la glace.

Page 7: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 viii

Contents

Summary ....................................................................................................................................... i

Résumé ......................................................................................................................................... i

Acknowledgements ...................................................................................................................... ii

Introduction ...................................................................................................................................1

Methods ........................................................................................................................................2

Overview of ice date models ................................................................................................2Projecting ice dates for Ontario’s inland lakes .....................................................................3Climate scenarios for ice projections ...................................................................................3Preliminary ice thickness modelling .....................................................................................5

Results and Discussion ................................................................................................................5

Caveats ................................................................................................................................5Ice dates and open water duration in Ontario’s inland fishery management zones ...........5Preliminary ice thickness models .......................................................................................11Ice thickness projections for Ontario’s fishery management zones ..................................13Comparison of projections amond spatial units .................................................................16

Conclusions ................................................................................................................................17

References .................................................................................................................................17

Appendices ................................................................................................................................19

Page 8: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

vi CLIMATE CHANGE RESEARCH REPORT CCRR-40

Page 9: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 1

IntroductionThe models and projections presented in this report provide updates on the results presented in CCRR-27

Regional Projections of Climate Change Effects on Ice Cover and Open-Water Duration for Ontario Lakes (Minns et al. 2012). In subsequent work (Shuter et al. 2013), the ice break-up model was modified to include an additional variable to account for the length of the previous winter. The ice freeze-up model remained unchanged except for minor adjustments to model coefficients. In addition to projections for Ontario’s inland fishery management zones, projections were prepared for three other types of spatial units used by practitioners to develop adaptive policies in response to the effects of climate warming: secondary watersheds, municipalities, and ecodistricts.

The timing of break-up (ice-off) in spring and freeze-up (formation) in fall, and the duration of ice cover in the winter are indicators of the annual temperature regime in north temperate lakes such as those present throughout Ontario. Magnuson et al. (2000) have documented trends towards earlier ice-off and later freeze-up dates across the northern hemisphere over the last century. Duguay et al. (2006) documented trends in Canadian lakes in the second half of the 20th century, noting the close correlations between ice dates and spring and fall 0 °C isotherm dates at locations across the country. Futter (2003) showed similar long-term changes in ice dates in several southern Ontario lakes, including those important for fisheries such as Lake Simcoe and Lake Scugog. Projected changes in climate over the 21st century (Colombo et al. 2007) are expected to continue to affect the ice regimes of Ontario’s lakes.

The physical phenomena determining lake ice regimes are well understood (see recent summary by Brown and Duguay 2010). The timing of ice break-up in the spring is largely linked to lake area and is determined by the rate of heat gain from the atmosphere and solar radiation. The timing of fall freeze up is largely a function of lake volume and is determined by the continued cooling of the whole lake once any summer stratification is overturned, and the degree to which wind-driven mixing delays the formation of an ice surface. Ice thickness is strongly affected by the amount of snow cover and the insulation it provides.

Lake ice regime metrics are indicators of important ecological and socio-economic phenomena. Ice break-up and freeze-up dates mark the boundaries of the open water season in temperate and arctic lakes, which is the period when most fish growth occurs. Ice cover, combined with lower temperatures in the near surface layers in lakes, ensures that the deeper areas, particularly in deep lakes, do not continue to cool as air temperatures continue to drop in winter. Thus ice cover protects fish habitat by maintaining the water at temperatures that may be closer to 4 °C than 0 °C. Giacomini and Shuter (2013) showed how growth rates in lake trout (Salvelinus namaycush) and walleye (Sander vitreum) are positively related to the duration of the growing season, which is approximated by the duration of open water in north temperature lakes. Many freshwater fish species that thrive in cold water (e.g., lake trout) have evolved to deposit their eggs in the fall so that they can incubate slowly through the winter and hatch in spring. Some spring spawning fish species (e.g., northern pike, Esox lucius) are cued to hydrological and thermal events that are signalled by ice break-up.

Economically significant winter fisheries, mostly recreational and some commercial, throughout Ontario depend on the presence of ice to provide access to and a platform for fishing activities. In central and northern Ontario, winter fishing is an important source of food for many First Nations communities. In the north, winter ice roads are constructed to transport goods and services to remote communities. Ice is also important to trappers.

The transitional periods in lake and river ice regimes can also present serious risks to life and property. When ice thins and breaks up in spring and forms in fall, movement can be hazardous. The break-up and formation of ice can also pose flood risks. Therefore, it is advantageous to understand the relationship between the ice-in period and a rapidly changing climate

Here we describe the models used to assess potential changes to Ontario lake ice regimes arising from climates projected for the period 2000 to 2100. In addition, we present preliminary analyses related to ice thickness. While projections were made for all four sets of spatial units, only the results for inland fishery management zones are presented in detail in this report. The overall response patterns for the remaining three spatial units are very similar and mapped results for all four types of spatial units will be made available via Ontario.ca.

Page 10: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

2 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Methods

Overview of ice date modelsUsing historical records of ice dates (break-up and freeze-up) from 44 lake sites across Canada, statistical models

were developed to project break-up and freeze-up dates (Table 1). The models were validated using ice dates obtained via remote sensing of 150 of Canada’s large lakes (≥100 km2) in 2001 to 2003 using methods described by Latifovic and Pouliot (2007). Based on the difference between break-up and freeze-up dates, we estimated the duration of the open-water period. For more complete details see Shuter et al. (2013).

The break-up model has five input variables: spring 0 °C date, the previous fall 0 °C date, solar elevation at local noon on the spring zero date, longitude, elevation above sea level, and lake surface area. The spring 0 °C date, the day of year (Julian day) when the 31-day running average air temperature rises above the 0 °C threshold, denotes the transition from cooling to heating in the spring. The fall 0 °C date is similar to the spring date except that it is the day of year when the 31-day running average drops below the 0 °C threshold. The solar elevation at noon on the spring 0 °C date is indicative of the role of solar radiation in melting ice in spring. Colder winters likely lead to thicker ice that requires more heat to melt it in the spring. As the climate warms and the spring 0°C date arrives earlier, the unchanged solar cycle will mean reduced solar elevation and relatively lower radiation inputs at that time, likely lessening the response of break-up dates to overall warming. Longitude is likely an indirect indicator of continentality, a climate phenomenon where the annual range of monthly mean air temperatures is greater in the interior of continents compared to the coastal areas where climates are moderated by ocean systems. In Ontario, the longitude factor has a negligible effect. Lake area has a small positive effect, delaying break-up slightly in larger lakes.

The freeze-up model has only three input variables: fall 0 °C date, the square-root of the lake’s mean depth, and mean air temperature for three months centred on the month in which the fall 0 °C date occurs. Mean depth is indicative of the inertia of the accumulated heating of the lake’s volume over the summer that must be overcome by surface cooling. Deeper lakes take longer to cool to the point at which ice can form over the surface. The mean quarterly temperature is indicative of the prevailing climate at the location during the period when the lake cools to the point of surface freezing.

Table 1. Variables and coefficients for regression models used to predict break-up and freeze-up dates in Canada’s inland lakes.

Break-Up ModelVariable Description CoefficientIntercept 481.0ZERO_FL Fall day when the 31-day running average air temperature reaches 0 °C -0.73048ZERO_SP Spring day when the 31-day running average air temperature reaches 0 °C 0.73048ANG_SP Solar elevation (degrees) on ZERO_SP -3.008SA Lake surface area (km2) 0.0009417LONG Longitude (-ve degrees) 0.73145ELEV Elevation of the lake above sea level (m) 0.01477

R2 = 0.913Freeze-Up Model Variable Description CoefficientIntercept 58.0924ZERO_FL Fall day when the 31-day running average air temperature reaches 0 °C 0.8303(MN_DP)0.5 Square root of lake mean depth (m) 7.2925

AT_FL Mean quarterly air temperature (°C) centred on the month in which the 31-day running average air temperature drops below 0 °C (ZERO_FL) 0.9435

R2 = 0.681

Page 11: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 3

Projecting ice dates for Ontario’s inland lakesThe centroids of Ontario’s inland fishery management zones (FMZ, see Hogg et al. 2010) were used as a set of

representative targets for projections using the ice date models (Figure 1A; Table 2). We did not make projections for the Laurentian Great Lakes as they typically only have partial ice cover. However, Wang et al. (2012) demonstrated that partial ice coverage across the Great Lakes has declined significantly over the last 40 years and may disappear completely later this century. Since mean lake depth (ZMEAN) is an important predictor of temperature, we examined two depth values (20 and 50 m) that span the range representative of the many fishery lakes across Ontario. To obtain estimates of lake areas corresponding to those mean depths, we regressed ln area (A) versus ln ZMEAN for a sample of large Canadian lakes located in the Boreal-Taiga eco-zones of Canada (ln A (km2) = 1.975 + 0.583 ln ZMEAN (m), r2 = 0.20, significant at P <0.001, rmse = 0.238, N=141) (Minns 2010). The estimated corresponding lake areas were 702 and 1215 km2, respectively.

Ice dates were predicted for 14 FMZ centroids using the two pairs of ZMEAN and A values in each case in four global climate models (GCMs) with two emissions scenarios (see below for details). The duration of open water was computed as the difference between the freeze-up and break-up dates. Dates derived from the 1971 to 2000 climate averages (norms) were used as a baseline. Projected changes from the baseline scenarios (in days) are reported for future time periods.

Centroids of the three other sets of spatial units (Figure 1B-D) were prepared in a similar manner. The same representative lakes were used for all sets of spatial units. The four types of spatial units are defined as:

• Fisheries management zone: The primary spatial unit for the management of recreational fisheries in Ontario, including planning, regulations, and monitoring.

• Secondary watersheds: In Ontario, the term ‘watershed’ refers to surface water resources within an area of land that drains downwards to lower elevations. These drainage pathways converge at rivers or lakes and become progressively larger as the water moves further downstream. Watersheds are categorized by size with primary watersheds being the largest, and secondary watersheds nested within each primary watershed. Tertiary watersheds are smaller still, nested within secondary watersheds (MOE 2004).

• Ecodistricts: A subdivision of ecozones and ecoregions primarily identified by patterns of relief, geology, geomorphology, and substrate parent material (Crins et al. 2009).

• Municipalities: Boundaries based on the combined distribution of municipalities across Ontario.

Climate scenarios for ice projectionsThe Canadian Forest Service (CFS) has applied spatial extrapolation methods to estimate climate values

by geographic location with allowance for elevation above sea level. These methods have been applied to both observations of climate and the output from climate simulations for a range of GCMs (McKenney et al. 2011). Their results are comparable with the climate scenarios being used by the Ontario Ministry of Natural Resources (MNR) to assess the potential effects of climate change on selected natural assets (Colombo et al. 2007). The MNR used the 1971 to 2000 observed climate averages (norms) to represent the baseline condition. We extracted the 1971 to 2000 climate data from the CFS website (http://cfs.nrcan.gc.ca/projects/3) for the centroids of all four sets of Ontario spatial units (Figures 1, 2). For future climates, we extracted the 30-year averages for three future time periods (2011-2040, 2041-2070, and 2071-2100) for each of two greenhouse gas emissions scenarios (A2 and B1) from each of four GCMs described by McKenney et al. (2011):

1) Canadian General Circulation Model (CGCM3.1) 2) Commonwealth Scientific and Industrial and research Organization (CSIRO3.5) 3) National Centre for Atmospheric Research (NCARCCSM3.0)4) Japanese Center for Climate System Research (MIROC3.2)

The A2 scenario anticipates that global atmospheric CO2 will reach 970 ppm by 2100 while the B1 scenario is more conservative and anticipates a level of 650 ppm (Caldiera and Wickett 2005). The A2 scenario may be

Page 12: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

4 CLIMATE CHANGE RESEARCH REPORT CCRR-40

characterized as “business as usual” and assumes higher population growth, continued emphasis on material growth, an increased political regionalization and, hence, greater climate warming. Whereas the B1 scenario assumes lower population growth, a shift to sustainability and lower energy use, an increased reliance on global solutions and, hence, a stabilization of climate warming at lower levels. The monthly mean minimum and maximum temperatures at 2 m aboveground were averaged to estimate the monthly daily mean temperatures. The data, separately for each GCM-scenario combination by time period, were then used to estimate the spring and fall 31-day running mean 0 °C dates based on linear interpolation between the mean monthly mid-points. This method leads to small underestimates of the values obtained using daily temperatures; comparison with the observations assembled by Bonsal and Prowse (2003; original data provided by Barrie Bonsal, NWRI, Environment Canada, Saskatchewan) showed the correlations for both spring and fall 0 °C isotherm dates were 0.973, with the spring dates underestimated by about 0.4 days on day 100 (April 10) and the fall dates underestimated by about 1.7 days on day 300 (October 27). The solar elevations were computed using a standard algorithm (Michalsky 1988) recoded in R (R Development Core Team 2008) and verified using a NASA website tool (www.esrl.noaa.gov/gmd/grad/solcalc).

For each set of spatial unit centroids, the climate metrics obtained for the 1971 to 2000 baseline period and for each GCM-scenario-time period combination were used with the ice date models (Table 1) to project future break-up and freeze-up dates. The duration of open water was computed as the difference between those dates. The results of projections for the base climate data were subtracted from those of the GCM-scenario-time period projections to estimate expected changes. Those changes were summarized across the GCMs by taking the minimum, maximum, and midpoint of changes for each set of spatial unit centroids by scenario-time period combination.

Figure 1. Maps of Ontario showing the spatial unit boundaries and their geographic centroids (dots) used to illustrate projected changing seasonal ice conditions for the 21st century: (A) fisheries management zones, (B) secondary watersheds, (C) municipalities, and (D) ecodistricts.

Page 13: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 5

Preliminary ice thickness modellingAs part of their Original Ice Thickness Program, which ran from 1947 to 2002, Environment Canada gathered ice

thickness data from several lakes across Canada between 1958 and 1999 (see www.ec.gc.ca/glaces-ice/). Observers measured ice thickness throughout the period of ice cover. Coupled with the freeze-up and break-up dates, we assessed this data set to determine the potential for developing projections of changes in ice thickness under climate change to inform preparation of guiding communications for people who use lake ice in the winter for fishing, hunting, trapping, travel, and other activities.

We analyzed (1) the maximum ice thickness observed during the winter and (2) the overall pattern of ice thickening and thinning over the period of ice cover. Simple regression models were developed to describe the relationship of maximum ice thickness to the duration of ice cover (freeze-up to break-up) and latitude, and of relative ice thickness to relative ice duration. For the latter analysis, ice thickness observations were divided by the maximum thickness observed in a particular winter and the observation date was rescaled as the proportion of duration starting from the freeze-up date.

Results and Discussion

CaveatsIn all ice break-up projections, the general shift towards earlier dates is suppressed somewhat in the southern

parts of the province. This occurs because, in our ice break-up model, the influence of shorter winters and earlier spring warming is offset by the decrease in solar elevation (ANG_SP) that must accompany any advance in the date when freezing air temperatures end in spring (ZERO_SP). In the northern part of the province, large changes in ZERO_SP from current values are accompanied by small changes in ANG_SP so an advance in ice out date is projected for all of the climate change scenarios that we examined. In the southern parts of the province, a very large change in ZERO_SP from current values will produce a change in ANG_SP large enough to more than offset the effect associated with earlier warming of air temperatures. This interaction between the atmospheric warming and solar heating terms in our model explains why we see projections of later ice break-up dates in southern Ontario for the most extreme scenario-GCM combinations (notably with the Japanese MIROC3.2 GCM under both B1 and A2 emissions scenarios in the 2071-2100 time period). These particular projections involve joint values for ZERO_SP and ANG_SP that extend beyond the range of values used to construct our empirical model for ice break-up and therefore should be viewed with caution.

In some future scenarios, projected mean monthly air temperatures fail to drop below 0°C with the result that ZERO_SP and ZERO_FL cannot be calculated, indicating an absence of ice cover. These instances were ignored when computing the range of change in break-up and freeze-up dates by future time period and emissions scenario across GCMs. In these instances, the duration of open water was set to 365 days and the duration of ice cover was set to 0.

While figures and tables showing future ice date projections are ordered by projected future emissions scenarios from low to high (B1 then A2), commentary in the text generally focuses on the A2 results since they showed greater responses with the smaller B1 responses being considered secondarily.

Ice dates and open water duration in Ontario’s inland fishery management zonesThe 1971 to 2000 baseline climate data provided reference values to compare with those projected under different

climate scenarios (Table 2; results for the other spatial units are provided in Appendix Tables A1-A3). Modelled spring break-up dates for the 1971 to 2000 period varied from day 106 (April 16) in the Guelph FMZ (#16) to 145 (May 24) in the Far North – Hudson Bay Lowlands FMZ (#1). The result for zone 16 fell in the middle of the break-up dates reported for Lake Simcoe, which is close to the centre of that zone, during the same period (Futter 2003). In lakes with a mean depth of 20 m, fall freeze-up dates varied from Julian day 367 (January 2) in zone 16 to Julian day 332 (November 28) in zone 1 with 50 m lakes freezing 19 days later. Again, the zone 16 value was close to that reported

Page 14: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

6 CLIMATE CHANGE RESEARCH REPORT CCRR-40

by Futter (2003). The open-water period ranged from 261 days in zone 16 to 188 days in zone 1 for 20-m-deep lakes, with longer periods in deeper lakes due to later freeze-up. The projections were approximately linearly correlated with latitude across the range of FMZ centroids (Figure 2), as was expected given the alignment of Ontario’s climate gradients and the solar cycle with latitude (Figure 3).

Under the A2 emissions scenario, ice break-up dates were projected to advance by a minimum of 1.2 to 4.4 days and a maximum of 5.8 to 13.2 days in the 2011 to 2040 period, by a minimum of 1.4 to 6 days and a maximum of 8 to 12.4 days in the 2041 to 2070 period, and by a minimum of -4.2 to 9.4 days and a maximum of 10.8 to 17.4 days in the 2071 to 2100 period (Table 4). The negative change in minimum break-up date in the 2071 to 2100 time period reflected higher warming that greatly reduces the length of winter, advances the spring 0 °C date, and thereby lowers solar elevation in southern areas. Freeze-up was projected to be delayed by a minimum of -2.0 to 8.0 days and a maximum of 5.4 to 15.9 days in the 2011 to 2040 period. The negative minimum freeze-up delay in the 2011 to 2040 period reflected transient localized cooling of the fall climate in some GCM predictions. Later freeze-up projections were more consistent, with a minimum of 3.6 to 12.6 days and a maximum of 10.9 to 21.9 days in the 2041 to 2070 period, and a minimum of 7.6 to 17.8 days and a maximum of 18.4 to 27.8 days in the 2071 to 2100 period. Projected changes in break-up dates were somewhat smaller than those for freeze-up dates. The advances and delays projected under the B1 scenario were generally about two thirds of those projected under the A2 scenario (Table 3).

As a result of projected changes in break-up and freeze-up dates, open water and ice cover periods increased and decreased, respectively (Table 4). Under the A2 scenario, open water duration was projected to increase (and ice cover duration to decrease) by a minimum of 1.4 to 13.6 days and a maximum of 11.9 to 27 days in the 2011 to 2040 period, by a minimum of 5.9 to 18.7 days and a maximum of 19.4 to 33.8 days in the 2041 to 2070 period, and by a minimum of 10.5 to 24.1 and a maximum of 29.6 to 45.2 days in the 2071 to 2100 period (Figure 4d-f). Again, the changes projected under the B1 scenario were smaller (Table 3, Figure 4a-c).

The magnitudes of the changes increased during successive future periods with greater shifts in freeze-up date mainly in the south and in break-up dates in the north (Table 4, Figure 5). Larger changes in break-up dates were more likely in the centre to northern areas of the province while changes in freeze-up dates were variable, possibly due to localized variations in snow cover downwind of large lakes. Under the A2 emissions scenario, which resembles current emissions trajectories, the median duration of open water for Ontario lakes will increase by 8 to 20, 12 to 27, and 17 to 37 days in the periods 2011 to 2040, 2041 to 2070, and 2071 to 2100, respectively, with much of the increase due to later freeze-up dates (Figure 6d-f). Under the B1 scenario, changes were projected to be about two-thirds as many days (Figure 6a-c).

The projected range of changes in ice dates were comparable to those found by Dibike et al. (2011) using a detailed physics-based model. Thus, our approach using empirical algorithms is likely sufficiently robust to allow the results to be used in guiding adaptation efforts in Ontario. However, lake-specific projections likely require physics-based models such as those developed by Dibike et al. (2011) or Oveisy et al. (2012) that used a 3-D model to successfully model temperature changes in two mid-latitude Canadian lakes.

Page 15: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 7

Figure 2. Projected freeze-up (blue) and break-up (red) dates and open-water durations (days) (green) for two depths of lake (20 m, 50 m) based on the average climate for the 1971 to 2000 period across the range of latitudes at the centroids of Ontario’s inland fishery management zones.

Table 2. Projected break-up and freeze dates and open water duration (days) at the centroids of Ontario’s inland fishery management zones (FMZ) based on the 1971 to 2000 observed climate averages (norms).

FMZ (#) Description

Latitude Longitude Elevation MAAT1 Break-up Freeze-up Open water°N °W (m, asl) (°C) S2 L3 S L S L

1 Far North - Hudson Bay Lowlands 55.43 -86.97 92 -4.79 144.6 145.1 332.7 351.7 188.1 206.6

2 Far North - West 52.60 -90.50 310 -1.17 138.7 139.2 336.3 355.3 197.6 216.13 Far North - East 51.81 -83.52 72 -1.09 134.7 135.2 341.0 360.0 206.3 224.8

4 Red Lake/Sioux Lookout 50.48 -92.15 400 1.26 132.1 132.6 342.4 361.4 210.3 228.8

5 Fort Frances / Lake of the Woods 49.20 -93.00 399 2.40 126.6 127.1 346.3 365.3 219.7 238.2

6 Thunder Bay 49.16 -89.26 483 0.71 129.8 130.3 342.2 361.2 212.4 230.97 Wawa and Nipigon 49.00 -85.62 330 0.92 128.7 129.2 344.3 363.3 215.6 234.18 Kirkland Lake 49.47 -81.82 212 0.76 130.7 131.2 345.1 364.0 214.4 232.8

10 Sudbury/Sault Ste. Marie/Manitoulin 46.93 -82.61 448 3.08 123.9 124.4 346.0 365.0 222.1 240.6

11 North Bay 46.81 -79.57 305 3.41 122.2 122.7 348.5 367.4 226.3 244.715 Bancroft/Algonquin 45.40 -78.55 499 3.69 120.6 121.0 350.5 369.5 229.9 248.5

16 Guelph (incl. L. Simcoe) 43.59 -81.01 361 6.76 106.3 106.7 367.2 386.1 260.9 279.4

17 Kawartha Lakes 44.29 -78.39 247 6.43 109.6 110.1 363.7 382.7 254.1 272.618 Eastern Ontario 44.85 -76.15 129 6.25 111.2 111.7 362.0 380.9 250.8 269.2

1MAAT – Mean annual air temperature 1971-20002S - small area = 702 km2, mean depth = 20 m

Page 16: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

8 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Figure 3. Illustration of projected (A) break-up dates, (B) open-water durations (days) and (C) freeze-up dates for a 20 m lake across Ontario’s inland fishery management zones based on the average climate for the 1971 to 2000 period at their centroids.

Table 3. The minimum and maximum changes in break-up and freeze-up dates and open-water duration (days) projected using the B1 emissions scenario at the centroids of Ontario’s inland fishery management zones (FMZ) for three simulated periods (2011-2040, 2041-2070 and 2071-2100) across four global climate models, relative to projections for the observed 1971 to 2000 period. (Note: relative to the 1971 to 2000 period, negative ∆break-up values mean later break-ups while positive ∆freeze-up values mean earlier freeze-up).

FMZ(#)

Description ∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, daysB1 for 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100

Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

1 Far North - Hudson Bay Lowlands -5.7 -3.1 -7.4 -4.2 -8.6 -6.3 4.6 8.3 6.4 11.1 10.0 13.9 7.7 14.0 10.6 18.5 16.6 21.6

2 Far North - West -5.9 -3.9 -8.8 -4.0 -10.2 -6.2 5.4 9.8 5.1 11.1 5.7 11.0 9.3 15.7 12.0 15.1 12.3 18.0

3 Far North - East -6.3 -3.4 -10.0 -3.3 -11.9 -5.2 -0.9 6.2 0.1 7.1 2.8 10.3 3.2 10.5 4.9 17.1 8.7 22.2

4 Red Lake/Sioux Lookout -6.9 -3.9 -9.4 -3.9 -13.0 -4.2 -1.7 3.6 0.5 7.9 2.3 11.3 2.2 10.5 5.0 17.3 6.5 24.3

5 Fort Frances / Lake of the Woods -6.1 -2.6 -9.6 -2.3 -10.9 -1.4 -2.0 4.1 0.5 8.4 1.5 10.4 0.6 10.2 3.6 18.0 2.9 21.3

6 Thunder Bay -7.9 -3.7 -11.4 -4.1 -13.8 -4.6 -0.8 5.4 1.5 10.7 3.3 12.8 2.9 13.3 7.0 22.1 7.9 26.6

7 Wawa and Nipigon -9.0 -3.0 -12.0 -3.0 -13.7 -3.3 0.0 7.7 3.0 12.2 4.1 14.0 3.0 16.7 6.6 24.2 7.4 27.7

8 Kirkland Lake -8.1 -2.6 -11.5 -3.2 -13.2 -3.5 -1.6 6.1 1.7 11.0 3.2 12.5 1.3 14.2 5.7 22.5 6.7 25.7

10 Sudbury/Sault Ste. Marie/Manitoulin -8.7 -2.5 -11.6 -2.0 -12.0 -2.4 5.5 14.2 9.0 18.4 10.6 19.0 8.0 22.9 11.6 30.0 13.0 31.0

11 North Bay -8.8 -3.7 -10.7 -3.7 -11.5 -3.9 6.2 13.7 10.1 17.8 11.9 17.8 9.9 22.5 14.5 28.5 15.8 29.3

15 Bancroft/Algonquin -6.1 -1.5 -9.5 -1.2 -10.0 -1.7 4.3 11.2 8.4 15.5 10.2 15.1 5.8 17.3 10.4 25.0 11.9 25.1

16 Guelph (incl. L. Simcoe) -4.6 -2.9 -6.4 -0.1 -8.2 -0.1 -0.9 4.8 3.0 8.7 5.0 10.7 2.0 9.4 4.8 15.1 6.3 16.2

17 Kawartha Lakes -4.9 -2.1 -7.0 -0.7 -7.3 -0.2 5.0 7.7 3.1 9.1 4.9 9.9 7.4 11.8 5.7 16.1 6.9 15.3

18 Eastern Ontario -4.7 -1.8 -6.7 -0.8 -6.9 -0.5 4.3 7.2 7.8 9.9 5.7 10.0 6.6 10.7 10.1 15.0 6.2 14.1

Minimum -9.0 -3.9 -12.0 -4.2 -13.8 -6.3 -2.0 3.6 0.1 7.1 1.5 9.9 0.6 9.4 3.6 15.0 2.9 14.1Maximum -4.6 -1.5 -6.4 -0.1 -6.9 -0.1 6.2 14.2 10.1 18.4 11.9 19.0 9.9 22.9 14.5 30.0 16.6 31.0

Page 17: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 9

Tabl

e 4.

The

min

imum

and

max

imum

cha

nges

in b

reak

-up

and

freez

e-up

dat

es a

nd o

pen-

wate

r dur

atio

n (d

ays)

pro

ject

ed u

sing

the

A2 e

miss

ions

sce

nario

at t

he c

entro

ids

of

Ont

ario

’s in

land

fish

ery

man

agem

ent z

ones

(FM

Z) fo

r thr

ee s

imul

ated

per

iods

(201

1-20

40, 2

041-

2070

and

207

1-21

00) a

cros

s fo

ur g

loba

l clim

ate

mod

els,

rela

tive

to p

roje

ctio

ns fo

r th

e ob

serv

ed 1

971

to 2

000

perio

d. (N

ote:

rela

tive

to th

e 19

71-2

000

norm

s, n

egat

ive ∆

brea

k-up

val

ues

mea

n la

ter b

reak

-ups

whi

le p

ositiv

e ∆f

reez

e-up

val

ues

mea

n ea

rlier

free

ze-

up). FM

Z(#

)

Des

crip

tion

∆ B

reak

-up

date

, day

s∆

Free

ze-u

p da

te, d

ays

∆ O

pen

wat

er d

urat

ion,

day

sA

2 fo

r20

11-2

040

2041

-207

020

71-2

100

2011

-204

020

41-2

070

2071

-210

020

11-2

040

2041

-207

020

71-2

100

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

1Fa

r Nor

th -

Huds

on B

ay

Lowl

ands

-5.8

-3.8

-9.7

-6.0

-15.

9-9

.45.

28.

99.

012

.37.

918

.69.

014

.715

.919

.417

.334

.5

2Fa

r Nor

th -

Wes

t-8

.1-3

.1-1

0.6

-4.6

-15.

7-8

.05.

710

.83.

810

.98.

519

.99.

818

.98.

421

.217

.335

.6

3Fa

r Nor

th -

East

-9.0

-2.7

-11.

8-3

.7-1

6.0

-5.9

-0.9

6.2

3.6

12.9

9.6

21.0

1.8

13.8

7.7

24.7

16.7

37.0

4Re

d La

ke/S

ioux

Loo

kout

-9.6

-3.2

-11.

1-3

.9-1

3.5

-5.1

-2.0

5.4

4.0

12.5

8.5

19.3

1.7

15.0

8.3

23.6

13.6

32.8

5Fo

rt Fr

ance

s / L

ake

of th

e W

oods

-9.1

-2.3

-8.6

-1.7

-10.

8-1

.0-1

.96.

44.

011

.67.

618

.41.

415

.55.

920

.210

.529

.2

6Th

unde

r Bay

-11.

2-3

.1-1

2.3

-4.4

-15.

2-5

.2-0

.98.

04.

714

.59.

922

.03.

719

.210

.326

.816

.037

.2

7W

awa

and

Nipi

gon

-13.

2-3

.1-1

2.4

-4.3

-16.

3-5

.50.

710

.76.

215

.811

.524

.14.

823

.911

.128

.217

.540

.4

8Ki

rkla

nd L

ake

-12.

6-2

.0-1

0.6

-3.3

-14.

4-4

.4-0

.49.

45.

114

.110

.522

.12.

122

.08.

724

.716

.036

.5

10Su

dbur

y/Sa

ult S

te. M

arie

/M

anito

ulin

-11.

1-2

.3-1

1.9

-4.3

-15.

7-3

.06.

915

.912

.221

.917

.526

.210

.927

.017

.333

.824

.141

.9

11No

rth B

ay-1

1.2

-4.4

-11.

3-4

.7-1

5.1

-2.3

8.0

15.2

12.6

21.1

17.8

24.5

13.6

26.4

18.7

32.4

23.0

39.6

15Ba

ncro

ft/Al

gonq

uin

-9.8

-1.7

-9.8

-2.8

-12.

0-0

.16.

012

.910

.518

.815

.822

.79.

422

.714

.328

.619

.434

.7

16G

uelp

h (in

cl. L

. Sim

coe)

-8.0

-1.2

-9.1

-1.4

-17.

44.

20.

85.

75.

514

.011

.427

.84.

113

.710

.123

.110

.545

.2

17Ka

warth

a La

kes

-7.6

-1.7

-8.3

-1.8

-15.

61.

23.

77.

45.

213

.610

.727

.85.

413

.79.

421

.913

.343

.4

18Ea

ster

n O

ntar

io-6

.5-1

.6-8

.0-2

.5-1

1.0

-0.1

5.4

9.0

4.6

12.2

10.2

22.6

8.6

11.9

8.3

20.2

13.8

33.6

Min

imum

-13.

2-4

.4-1

2.4

-6.0

-17.

4-9

.4-2

.05.

43.

610

.97.

618

.41.

411

.95.

919

.410

.529

.2

Max

imum

-5.8

-1.2

-8.0

-1.4

-10.

84.

28.

015

.912

.621

.917

.827

.813

.627

.018

.733

.824

.145

.2

Page 18: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

10 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Figure 5. Maps depicting the spatial pattern of the mid-points of changes in freeze-up (blue) and break-up (red) dates projected for three future time periods in this century relative to the 1971 to 2000 averages (norms) using climate projections from four global climate models based on the A2 emissions scenario.

Figure 4. The ranges and mid-points of changes in freeze-up (blue) and break-up (red) dates projected for three future time periods (2011-2040, 2041-2070, 2071-2100) relative to the 1971 to 2000 averages (norms) using climate projections from four global climate models based on the B1 (a-c) and A2 (d-f) emissions scenarios; dotted lines show mid-point means.

Page 19: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 11

Figure 6. The ranges and mid-points of changes in the period of open-water duration (days) across Ontario’s latitude range projected for three future time periods in this century (2011-2040, 2041-2070, and 2071-2100) relative to the 1971 to 2000 averages (norms) using climate projections from four global climate models based on the B1 (a-c) and the A2 (d-f) emissions scenarios; dotted lines shown the mean of the mid-point changes.

Preliminary ice thickness modelsMaximum ice thickness was modelled as a function of the duration of ice cover and latitude (sample size was

374 lake/winter observations; Figure 7A). Log- transformations of all variables were used in the linear regression modelling. The algorithm explained 66% of variation (Table 5). Although this model provided a basis for a preliminary assessment of the ability to forecast safe ice, the very wide scatter for ice cover (>200 days; Figure 7A) and the within-season variability (Figure 7B) highlight the need for further model development. Additional climate variables (particularly the intensity and persistence of negative temperatures and snow fall during winter) and lake dimensions (area and mean depth) may well increase the model’s predictive power.

Relative ice thickness was modelled with a two-part Michelis-Menten-type equation of relative ice duration (sample size was 8,667; Figure 7B). The model assumption was that ice thickness increased from zero on the freeze-up day towards a plateau in late winter. Ice thinning then followed a similar curve to the day of break-up. The algorithm explained 81% of the variation (Table 5). While this simple model explained a large portion of the variation, it is again possible that additional climate and lake specific data may increase its predictive power; note the range of observed proportions around the fitted preliminary model.

Page 20: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

12 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Table 5. Results for preliminary models fitted to study data: (A) maximum winter ice thickness, and (B) proportion of ice thickness versus proportion of ice duration.

Variable Description Coefficient

Model A Ln(maximum ice thickness, cm)

Intercept -3.968

Ln(Dur)1 Ln(duration of ice cover, days) +0.801

Ln(Lat) Ln(latitude, °) +1.103

R2adj Proportion of Ln(variance) explained by model 0.66

rmse Residual mean square error (used for bias corrections in predictions) 0.224

Model B Relative ice thickness (Y values run from 0 to 1)If X ≤ a, Y = ((a+b)/a)*X/(X + b)

Else, Y = ((1-a+c)/(1-a))*(1-X)/(1-X+c)

Where X is the relative ice duration (values run from 0 to 1).a Proportion of ice duration when shift from thickening to thinning occurs +0.793

b Proportion of duration when half of maximum thickness is attained +0.467

c Proportion of duration remaining when half of maximum thickness has been lost +0.0804

R2adj Proportion of variance explained 0.81

rmse Residual mean square error 0.1071Ln () refers to natural logarithms.

Figure 7. (A) Maximum ice thickness versus duration of ice cover (N=374; green lines show model predictions at latitudes 40°, 50°, and 60°N) and (B) relative ice thickness versus relative ice duration from frequent winter observations (N=8667; red line shows fit of overall model), at 21 monitoring stations across Canada during the period 1958 to 1999.

Page 21: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 13

Ice thickness projections for Ontario’s fishery management zonesUnder the 1971 to 2000 baseline climate conditions, maximum ice thickness varied from 56.2 cm at Guelph (FMZ

#16) to 112.0 cm at Far North – Hudson Bay Lowlands (FMZ #1) for lakes with a mean depth of 20 m. For lakes with 50 m mean depth, the maximum ice thickness was reduced as the later freeze-up dates reduced the length of winter ice cover, varying between 48.0 cm in zone 16 to 102.5 cm in zone 1 (Figure 8).

Under the A2 emissions scenario, maximum ice thickness was projected to decrease by a minimum of -0.6 to -6.1 cm and by a maximum of -5.3 to -12.1 cm in the 2011 to 2040 period, by a minimum of -2.7 to -8.4 cm and by a maximum of -9.0 to -15.3 cm in the 2041 to 2070 period, by a minimum of -4.6 to -10.8 cm and by a maximum of -13.8 to -20.6 cm in the 2071 to 2100 period, with the changes spread fairly evenly across Ontario (Figure 10). The decrease in ice thickness under the B1 scenario was about one-half to two-thirds of those projected under the A2 scenario (Figure 9).

To further illustrate the consequences of changing ice thickness, values were estimated for a mid-latitude generic Ontario lake in the Kirkland Lake FMZ, drawing from the range of ice dates projected in the previous analyses. Using the 1971 to 2000 climate averages (norms), such a lake had ice cover for about 151 days (Table 6). By the 2041 to 2070 period, the mid-range of forecasts based on the four GCMs projected a decline in ice cover duration to 137 and 134 days under the B1 and A2 emissions scenarios, respectively (Table 6). The resultant changes in ice thickness (Figure 11) show how the pattern of ice thickness growth, and then decay, remained the same while duration and maximum thickness decreased with climate warming.

The projected changes in the time required from freeze-up and break-up to threshold ice thicknesses were negligible because decreasing ice thickness was offset by the shorter duration of ice cover (Table 6). These results give only a preliminary indication of likely outcomes with respect to ice thickness.

Figure 8. Projected maximum ice thickness (cm) (A) for two depths of lake (20 m and 50 m) based on the average climate for the 1971 to 2000 period across the range of latitudes at the centroids of Ontario’s inland fishery management zones and (B) spatially across Ontario for a 20-m deep lake.

Page 22: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

14 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Figure 9. The ranges and mid-points of changes in the period of maximum ice thickness (cm) in inland fishery management zones across Ontario’s latitude range projected for three future time periods in this century relative to the 1971 to 2000 averages (norms) using climate projections from four global circulation models based on the B1 (a-c) and A2 (d-f) emissions scenarios; dotted lines show the mean of the mid-point changes in each panel.

Figure 10. The spatial distribution of the mid-point of changes in maximum ice thickness (cm) in inland fishery management zones for three future time periods (2011-2040, 2041-2070, and 2071-2100) in this century relative to the 1971 to 2000 averages (norms) using climate projections from four global circulation models based on the A2 emissions scenario.

Page 23: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 15

Figure 11. Projected patterns of ice thickness for a small Ontario lake located in the Kirkland Lake fishery management zone (FMZ #8) under the observed 1971 to 2000 average values (black), and the mid-range of GCM predictions for B1: 2041 to 2070 (blue) and A2: 2041 to 2070 (green), with ice thickness thresholds of 10, 20, and 30 cm shown in red.

Variable Observed B1 Scenario A2 Scenario1971-2000 2041-2070 2041-2070

Assumptions:Freeze-up date (day of year) 345 351 355Duration of ice cover, days 151 137 134Break-up date (day of year) 131 124 123Predictions:Maximum ice thickness, cm 86.8 80.3 79.0Time after freeze-up (days) when thickness reaches:

10 cm 6 6 620 cm 12 12 1230 cm 20 20 20

Time before break-up (days) when thickness falls to:10 cm 1 1 120 cm 2 2 230 cm 4 4 4

Table 6. Projected time (days) after freeze-up and before break-up when selected ice thickness thresholds occur in a small lake in the Kirkland Lake fishery management zone (FMZ #8) under various observed and simulated climate averages (see Figure 9 legend for details).

Page 24: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

16 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Comparison of projections among spatial unitsOnly the projections of ice date changes for Ontario’s inland FMZs were presented in this report. Results for the

other spatial units for which projections were prepared (secondary watersheds, municipalities, and ecodistricts) were comparable. For example, inland FMZ and eco-district maps of projected mid-point change in the duration of open water for the 2041 to 2070 period under the A2 emissions scenario were similar (Figure 12). Differences in detail depended on the degree to which the landscape is subdivided into spatial units relative to the spatial gradients in the climate observations and projections as represented in the interpolation methods used by McKenney et al. (2011). The degree of subdivision affects the placement of the centroids and the projections obtained at each centroid are considered to represent the entire spatial unit. Thus, in Figure 12, the southwest Ontario FMZ is assigned to the +15 to 19 day class, but the same area is subdivided into several eco-district units that are assigned to a range of response intervals. The FMZ map excludes the Canadian portions of the Great Lakes but those areas are included in ecodistricts, municipalities, and secondary watersheds.

The full suite of projection maps (variables by GCM by emissions scenario by time period) can be accessed via a CDROM which will be available upon request.

Figure 12. Maps depicting the midpoint of the range of projected changes in the duration of open water (days) among four global circulation models under the A2 emissions scenario in the 2041 to 2070 period relative to the 1971 to 2000 climate norms: (A) inland fishery management zones, (B) secondary watersheds, (C) municipalities, and (D) ecodistricts

Page 25: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 17

Conclusions• Ice break-up and freeze-up dates will respond to climate warming thereby increasing the duration of the

summer open water period in Ontario’s inland lakes. Maximum ice thickness is expected to decrease as the duration of ice cover declines.

• Current empirical models for projecting regional patterns of response in these lake characteristics are likely sufficient to guide the adaptation of current management practices in the near future although more labour-intensive physics-based models can be applied as needed.

• Further work will be required to predict ice thickness in lakes, although the preliminary models provide some indication that the times when certain absolute ice thicknesses occur after freeze-up and before break-up will change relatively little given the range of climate likely to occur during the 21st century. The preliminary relative thickness-duration model (Figure 7B) still has too much unexplained variability to be used for guidelines for when it is safe for people to venture onto ice in winter.

• The projections presented here are based on the centroids of whichever set of Ontario spatial units is selected and do not provide continuous gradient maps. Hence the detailed response patterns will depend in part of the interplay of the spatial resolutions of the maps used for climate observations and projections and the maps used to represent areas of interest (e.g., watershed, ecodistricts, etc.).

ReferencesBonsal, B.R. and T.D. Prowse. 2003. Trends and variability in spring and autumn 0 C-isotherm dates over Canada. Climatic

Change 57:341-358.

Brown, L.C. and C.R. Duguay. 2010. The role and response of ice cover in lake-climate interactions. Prog. Physical Geog. 34: 671-704.

Caldiera, K. and M.E. Wickett. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 110:C09S04.

Colombo, S.J., D.W. McKenney, K.M. Lawrence and P.A. Gray. 2007. Climate change projections for Ontario: Practical information for policymakers and planners. Ont. Min. Nat. Resour., Appl. Res. Devel. Br., Sault Ste. Marie, ON. Climate Change Res. Rep. CCRR-05. 37p + CD-ROM.

Crins, W.J., P.A. Gray, P.W.C. Uhlig, and M.C. Wester. 2009. The ecozones of Ontario, Part 1: Ecozones and ecoregions. Ont. Min. Nat. Resour., Sci. Info. Br., Peterborough, ON. Tech. Rep. SIB TER IMA TR-01. 76p.

Dibike, Y., T. Prowse, T Solaranta and R. Ahmed. 2011. Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrol. Process. 25: 2942-2953.

Duguay, C.R., T.D. Prowse, B.R. Bonsai, R.D. Brown, M.P. Lacroix and P. Ménard. 2006. Recent trends in Canadian lake ice cover. Hydrol. Process. 20: 781-801.

Futter, M.N. 2003. Patterns and trends in southern Ontario lake ice phenology. Environ. Monit. Assess. 88: 431-444.

Giacomini, H.C. and B.J. Shuter. 2013. Adaptive responses of energy storage and fish life histories to climatic gradients. J. Theoret. Biol. 339: 100-111, http://dx.doi.org/10.1016/j.jtbi.2013.08.020i

Hogg, S.E, N.P. Lester and H. Ball. 2010. 2005 survey of recreational fishing in Canada: Results for fisheries management zones of Ontario. Ont. Min. Nat. Resour., Appl. Res. Devel. Br., Peterborough, ON. 32 p + append.

Latifovic, R. and D. Pouliot. 2007. Analysis of climate change impacts on lake ice phenology using the historical satellite data record. Remote Sens. Environ. 106: 492-507.

Magnuson, J., D. Robertson, B. Benson, R. Wynne, D. Livingstone, T. Arai, R. Assel, R. Barry, V. Card, E. Kuusisto, N. Granin, T. Prowse, K. Steward and V. Vuglinski. 2000. Historical trends in lake and river ice cover in the northern hemisphere. Science 289: 1743-1746.

McKenney, D.W., M.F. Hutchinson, P. Papadopol, K. Lawrence, J. Pedlar, K. Campbell, E. Milewska, R.F. Hopkinson, D. Price and T. Owen. 2011. Customized spatial climate models for North America. Bull. Am. Meteorol. Soc. Dec: 1613-1622.

Michalsky, J.J. 1988. The astronomical almanac’s algorithm for approximate solar position (1950–2050). Solar Energy 40(3): 227-235.

Page 26: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

18 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Minns, C.K. 2010. Limnological characteristics of Canada’s poorly- known large lakes. Aquat. Ecosyst. Health Manage. 13:107-117.

Minns, C.K., B.J. Shuter and S. Fung. 2012. Regional projections of climate change effects on ice cover and open-water duration for Ontario lakes. Ont. Min. Nat. Resour., Appl. Res. Devel. Br., Sault Ste. Marie, ON. Climate Change Res. Rep. CCRR-27.

[OMOE] Ontario Ministry of the Environment. 2004. White paper on watershed-based source protection planning. Ont. Min. Environ., Strategic Policy Br., Toronto, ON. 46p.

Oveisy, A., L. Boegman, and J. Imberger. 2012. Three-dimensional simulation of lake and ice dynamics during winter. Limnol. Oceanogr. 57:43-57.

R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Shuter, B.J., C.K. Minns and S.R. Fung. 2013. Empirical models for forecasting changes in the phenology of ice cover for Canadian lakes. Can. J. Fish. Aquat. Sci. 70(7): 982-991.

Wang, J., X. Bai, H. Hu, A. Clites, M. Colton and B. Lofgren. 2012. Temporal and spatial variability of Great Lakes ice cover, 1973-2010. J. Climate 25: 1318-1329.

Page 27: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 19

Appendices

These appendices contain:

1) Projected break-up and freeze-up dates along with computed open water durations (days) for the 1971 to 2000 climate norms period at the centroids of Ontario secondary watersheds, municipalities, and ecodistricts (Tables A1-A3).

2) Projected minimum and maximum changes in break-up and freeze-up dates and open-water duration (days) projected using the B1 scenario (Tables A4-A6) and A2 scenario (Tables A7-A9) at the centroids of Ontario’s inland fishery management zones (FMZ) for three simulated periods (2011-2040, 2041-2070 and 2071-2100) across four global climate models (GCMs), relative to projections for the observed 1971 to 2000 period. (Note: relative to the 1971 to 2000 period, negative ∆break-up values mean later break-ups while positive ∆freeze-up values mean earlier freeze-up) .

3) The complete set of projected break-up and freeze-up dates along with computed open water and ice cover durations (days) and maximum ice thicknesses for all combinations of the four GCMs (CGCM31, NCARCCSM3, CSIROMK35, MIROC32MR) (described by McKenney et al. 2011), two emissions scenarios (A2 and B1), and two lake sizes/depths for each Ontario inland fishery management zone (Tables A10-A17). Similar detailed projection data for the centroids of secondary watersheds, municipalities, and ecodistricts will be made available via ontario.ca.

Page 28: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

20 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Table A1. Projected break-up and freeze dates and open water duration (days) at the centroids of Ontario’s secondary watershed (SWS) based on the 1971 to 2000 observed climate averages (norms).

SWSLatitude Longitude Elevation MAAT1 Break-up Freeze-up Open water

°N °W (m, asl) (°C) S2 L3 S L S L

02A 49.251 -88.807 294 1.23 125.8 126.2 345.2 364.1 219.4 237.902B 48.138 -85.519 376 1.50 123.5 124.0 343.3 362.2 219.8 238.2

02C 46.442 -82.406 361 4.13 119.9 120.4 351.9 370.8 232.0 250.4

02D 46.539 -80.271 244 3.95 118.9 119.4 351.2 370.1 232.3 250.7

02E 45.034 -79.749 215 5.87 109.3 109.8 362.3 381.3 253.0 271.5

02F 44.328 -81.479 232 6.88 103.0 103.4 367.0 386.0 264.0 282.6

02G 42.734 -81.204 210 8.27 99.3 99.8 370.8 389.7 271.5 289.9

02H 44.105 -78.283 213 6.71 106.6 107.1 366.4 385.3 259.8 278.2

02J 47.361 -79.945 310 2.72 124.0 124.5 345.2 364.1 221.2 239.6

02K 45.505 -77.496 391 4.07 119.9 120.4 351.9 370.8 232.0 250.4

02L 45.128 -75.529 88 6.09 112.2 112.7 360.8 379.7 248.6 267.0

02M 44.712 -75.657 99 6.54 109.7 110.2 363.9 382.8 254.2 272.604A 54.434 -92.165 271 -2.51 142.7 143.2 333.2 352.2 190.5 209.0

04B 56.217 -89.061 87 -5.00 147.0 147.5 329.9 348.9 182.9 201.4

04C 53.912 -90.908 227 -2.23 139.9 140.4 334.4 353.4 194.5 213.0

04D 53.826 -87.783 143 -2.82 139.9 140.4 335.6 354.5 195.7 214.1

04E 54.082 -84.118 192 -4.11 143.4 143.9 335.0 354.0 191.6 210.1

04F 52.376 -86.710 204 -1.68 136.9 137.4 337.7 356.7 200.8 219.3

04G 51.114 -88.698 335 -0.71 135.0 135.5 337.8 356.7 202.8 221.2

04H 51.728 -83.082 59 -0.99 134.2 134.7 341.5 360.4 207.3 225.7

04J 50.074 -85.432 197 0.29 130.1 130.6 342.2 361.2 212.1 230.6

04K 50.774 -81.338 33 -0.16 131.0 131.5 344.2 363.1 213.2 231.6

04L 48.986 -82.603 274 1.03 130.3 130.7 345.4 364.3 215.1 233.6

04M 49.142 -80.778 293 0.53 132.1 132.6 344.1 363.0 212.0 230.4

04N 50.278 -79.959 270 -0.68 135.7 136.2 341.0 360.0 205.3 223.8

05P 49.058 -92.795 397 2.50 126.8 127.3 346.8 365.7 220.0 238.4

05Q 50.298 -92.639 379 1.64 130.4 130.9 343.6 362.5 213.2 231.605R 51.711 -94.093 362 0.42 134.1 134.6 340.5 359.4 206.4 224.8

Page 29: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 21

Table A2. Projected break-up and freeze dates and open water duration (days) at the centroids of Ontario’s municipalities based on the 1971 to 2000 observed climate averages (norms).

ID (#) Description Latitude Longitude Elevation MAAT1 Break-up Freeze-up Open water

°N °W (m, asl) (°C) S2 L3 S L S L1 Temiskaming 47.709 -80.308 326 2.25 126.6 127.1 342.7 361.7 216.1 234.62 Wellington 43.746 -80.467 441 5.96 109.2 109.7 362.6 381.5 253.4 271.83 York 43.983 -79.436 301 6.76 107.5 108.0 366.2 385.2 258.7 277.24 Simcoe 44.386 -79.799 274 6.39 107.3 107.8 364.8 383.8 257.5 276.05 Peel 43.785 -79.824 271 7.03 105.4 105.9 367.8 386.8 262.4 280.96 Halton 43.578 -79.986 342 6.81 106.0 106.5 366.9 385.9 260.9 279.47 Dufferin 44.045 -80.203 490 5.48 112.2 112.7 359.9 378.8 247.7 266.18 Lanark 45.033 -76.293 145 5.89 112.1 112.6 359.9 378.9 247.8 266.39 Algoma 47.400 -84.359 485 2.05 124.2 124.7 344.2 363.2 220.0 238.5

10 Perth 43.493 -81.048 360 6.88 105.1 105.6 367.6 386.5 262.5 280.911 Elgin 42.660 -81.226 175 8.49 97.6 98.0 372.4 391.3 274.8 293.313 Sudbury 47.192 -81.782 425 2.67 126.4 126.9 343.9 362.9 217.5 236.014 Peterborough 44.535 -78.212 269 6.29 111.7 112.2 361.7 380.7 250.0 268.515 Cochrane 50.274 -82.472 102 0.38 131.1 131.6 344.3 363.3 213.2 231.716 Essex 42.140 -82.679 195 9.54 95.0 95.5 375.5 394.4 280.5 298.917 Durham 44.005 -78.989 232 6.94 106.4 106.8 367.4 386.4 261.0 279.619 Huron 43.625 -81.571 268 7.29 102.3 102.8 371.4 390.3 269.1 287.520 Hastings 44.802 -77.614 308 5.35 114.7 115.2 357.8 376.8 243.1 261.621 Lambton 42.997 -82.108 208 8.27 100.3 100.7 369.9 388.8 269.6 288.122 Grey 44.395 -80.685 424 5.74 109.6 110.0 362.7 381.7 253.1 271.7

23 Thunder Bay 49.879 -88.425 268 0.35 128.5 129.0 342.1 361.1 213.6 232.1

24 Niagara 43.143 -79.396 180 8.58 98.7 99.1 374.3 393.3 275.6 294.2

25 Leeds and Grenville 44.621 -75.940 99 6.68 109.3 109.8 364.9 383.9 255.6 274.1

27 Bruce 44.651 -81.423 177 6.81 101.8 102.3 367.7 386.6 265.9 284.328 Muskoka 45.109 -79.283 295 5.12 113.2 113.7 358.1 377.0 244.9 263.329 Haliburton 45.143 -78.515 365 4.47 116.3 116.8 354.5 373.5 238.2 256.730 Waterloo 43.463 -80.539 343 6.81 105.8 106.2 366.6 385.6 260.8 279.431 Rainy River 48.798 -92.800 358 2.87 124.7 125.2 340.3 359.3 215.6 234.1

32 Prescott and Russell 45.461 -74.961 53 5.75 113.9 114.4 359.2 378.1 245.3 263.7

33 Renfrew 45.615 -77.270 186 4.89 116.0 116.5 355.4 374.4 239.4 257.9

34 Lennox and Addington 44.642 -77.143 223 5.83 111.3 111.8 360.3 379.2 249.0 267.4

35Stormont, Dundas and Glengarry

45.116 -74.968 91 6.16 112.1 112.6 361.3 380.3 249.2 267.7

36 Northumberland 44.083 -78.044 246 6.72 107.2 107.7 366.4 385.3 259.2 277.6

37 Frontenac 44.737 -76.737 213 5.79 111.8 112.3 360.3 379.2 248.5 266.938 Middlesex 43.036 -81.367 271 7.76 102.3 102.8 367.4 386.4 265.1 283.6

Page 30: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

22 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Table A3. Projected break-up and freeze dates and open water duration (days) at the centroids of Ontario’s ecodistricts based on the 1971 to 2000 observed climate averages (norms).

ID(#)

Latitude Longitude Elevation MAAT1 Break-up Freeze-up Open water

°N °W (m, asl) (°C) S2 L3 S L S L

67490668 46.173 -79.795 224 4.47 116.6 117.1 353.8 372.7 237.2 255.667490658 48.267 -89.523 415 2.05 124.9 125.4 347.4 366.4 222.5 241.067490660 47.564 -85.132 183 3.08 114.6 115.1 353.2 372.2 238.6 257.167490695 43.259 -79.496 75 9.04 97.1 97.6 376.6 395.6 279.5 298.067490655 48.096 -82.680 389 1.55 129.0 129.5 346.7 365.7 217.7 236.267490699 42.141 -82.405 180 9.35 96.8 97.2 375.8 394.8 279.0 297.667490629 52.188 -94.317 354 -0.03 135.0 135.5 339.4 358.4 204.4 222.967490667 46.364 -83.471 264 4.49 113.4 113.9 355.4 374.4 242.0 260.567490675 45.566 -76.608 90 5.44 113.5 114.0 357.5 376.4 244.0 262.467490679 44.904 -76.004 120 6.25 111.6 112.0 361.6 380.6 250.0 268.667490686 44.188 -81.817 177 7.22 101.1 101.5 369.0 388.0 267.9 286.567490622 55.574 -86.391 42 -4.90 144.6 145.1 333.4 352.4 188.8 207.367490693 43.484 -80.823 361 6.80 105.9 106.4 366.9 385.8 261.0 279.4

1MAAT – Mean annual air temperature 1971-20002S - small area = 702 km2, mean depth = 20 m3L – large area = 1215 km2, mean depth = 50 m

Table A2. Cont.

39 Manitoulin 45.745 -81.977 237 4.99 108.7 109.2 362.1 381.0 253.4 271.840 Oxford 43.109 -80.769 336 7.37 103.9 104.4 369.3 388.3 265.4 283.941 Toronto 43.734 -79.350 135 8.11 101.7 102.2 369.8 388.7 268.1 286.543 Ottawa 45.246 -75.782 95 5.90 112.7 113.2 359.6 378.6 246.9 265.446 Haldimand 42.947 -79.914 199 8.29 98.1 98.6 372.6 391.5 274.5 292.9

49 Chatham-Kent 42.335 -82.114 185 8.96 96.5 97.0 374.5 393.5 278.0 296.5

50 Hamilton 43.293 -80.082 242 7.61 102.4 102.9 371.4 390.3 269.0 287.454 Quinte West 44.167 -77.583 124 7.09 106.3 106.8 367.7 386.7 261.4 279.956 Norfolk 42.808 -80.420 232 8.11 100.0 100.5 370.4 389.3 270.4 288.8

58Prince Edward County

43.999 -77.292 91 7.58 102.9 103.4 367.6 386.6 264.7 283.2

59 Brant 43.133 -80.298 213 7.88 101.6 102.1 368.1 387.1 266.5 285.0

60 Kawartha Lakes 44.518 -78.816 267 6.22 109.8 110.3 362.7 381.6 252.9 271.3

61 Kingston 44.299 -76.416 96 7.06 105.9 106.4 368.2 387.1 262.3 280.764 Belleville 44.237 -77.361 102 7.10 105.2 105.7 367.8 386.8 262.6 281.1

4560 Kenora 52.911 -88.915 239 -1.75 138.5 139.0 336.2 355.1 197.7 216.14598 Nipissing 46.258 -79.057 250 4.19 118.5 119.0 352.0 371.0 233.5 252.04599 Parry Sound 45.626 -80.003 263 4.79 115.0 115.5 356.3 375.2 241.3 259.7

Page 31: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 23

ID(#)

Latitude Longitude Elevation MAAT1 Break-up Freeze-up Open water

°N °W (m, asl) (°C) S2 L3 S L S L

67490627 52.787 -87.143 200 -1.97 138.1 138.5 337.1 356.0 199.0 217.567490698 42.923 -79.631 179 8.53 97.4 97.9 375.0 393.9 277.6 296.067490635 50.550 -93.210 350 1.64 130.1 130.6 343.7 362.6 213.6 232.067490680 44.887 -80.794 177 6.52 104.1 104.6 369.0 388.0 264.9 283.467490663 46.968 -84.442 281 3.52 116.2 116.7 351.8 370.8 235.6 254.167490692 43.830 -78.368 75 7.75 101.6 102.1 369.0 388.0 267.4 285.967490697 42.719 -81.247 212 8.26 99.3 99.8 370.8 389.7 271.5 289.967490644 49.373 -90.253 460 1.13 130.4 130.9 342.7 361.6 212.3 230.767490676 45.341 -79.383 331 4.69 115.9 116.4 355.7 374.7 239.8 258.367490651 48.597 -91.291 414 2.48 125.7 126.2 347.1 366.0 221.4 239.867490636 50.754 -81.883 65 -0.15 131.4 131.8 343.7 362.6 212.3 230.867490664 46.562 -79.565 321 3.65 121.4 121.9 349.5 368.4 228.1 246.567490661 47.121 -80.295 301 3.14 123.2 123.7 346.7 365.7 223.5 242.067490642 49.471 -82.132 244 0.68 131.5 132.0 344.5 363.4 213.0 231.4

Table A3. Cont.

67490678 44.945 -77.361 361 4.79 115.5 116.0 355.6 374.5 240.1 258.567490650 48.825 -94.164 339 3.06 123.7 124.2 341.0 359.9 217.3 235.767490657 48.186 -85.964 360 1.65 122.8 123.3 344.5 363.5 221.7 240.267490628 52.246 -83.827 81 -1.56 136.0 136.5 340.0 359.0 204.0 222.567490624 54.304 -85.355 110 -3.93 141.2 141.7 335.8 354.7 194.6 213.067490669 45.882 -77.883 330 4.00 119.3 119.8 351.3 370.3 232.0 250.567490690 44.285 -78.414 246 6.43 109.5 110.0 363.8 382.8 254.3 272.867490689 43.963 -77.081 109 7.60 101.1 101.6 369.1 388.0 268.0 286.467490662 46.974 -82.509 463 2.92 125.2 125.7 345.2 364.2 220.0 238.567490653 48.753 -87.017 184 1.91 120.6 121.1 346.3 365.2 225.7 244.167490648 49.141 -84.638 304 0.62 129.8 130.3 343.2 362.2 213.4 231.967490665 46.343 -81.424 257 4.35 117.0 117.5 353.0 372.0 236.0 254.567490646 49.742 -92.897 377 2.13 128.5 129.0 345.2 364.2 216.7 235.267490623 55.397 -89.764 120 -3.97 143.7 144.1 331.8 350.7 188.1 206.667490696 43.024 -80.907 275 7.77 101.9 102.4 371.6 390.6 269.7 288.267490626 53.535 -93.250 277 -1.17 138.8 139.3 336.6 355.5 197.8 216.267490626 53.535 -93.250 277 -1.17 138.8 139.3 336.6 355.5 197.8 216.267490672 45.547 -80.419 177 5.48 111.3 111.8 360.7 379.7 249.4 267.967490647 49.241 -94.015 370 2.56 126.0 126.4 347.0 366.0 221.0 239.667490688 44.106 -80.899 330 6.33 106.4 106.8 366.0 385.0 259.6 278.267490670 45.744 -82.340 220 5.08 108.5 109.0 363.2 382.1 254.7 273.167490633 50.651 -94.634 376 1.49 130.4 130.9 343.5 362.5 213.1 231.667490641 49.252 -88.474 332 1.00 126.6 127.1 344.7 363.6 218.1 236.567490640 50.033 -92.628 399 1.79 130.3 130.8 344.1 363.1 213.8 232.367490631 51.617 -92.726 393 0.21 135.2 135.7 339.5 358.4 204.3 222.767490685 44.491 -76.207 103 6.83 107.6 108.1 366.3 385.2 258.7 277.1

Page 32: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

24 CLIMATE CHANGE RESEARCH REPORT CCRR-40

ID(#)

Latitude Longitude Elevation MAAT1 Break-up Freeze-up Open water

°N °W (m, asl) (°C) S2 L3 S L S L

Table A3. Cont.

67490687 44.474 -77.782 193 6.47 110.1 110.5 363.1 382.0 253.0 271.567490632 51.492 -90.631 378 -0.20 136.2 136.7 337.8 356.8 201.6 220.167490654 48.434 -80.291 276 1.47 128.6 129.1 347.2 366.1 218.6 237.067490639 50.172 -80.345 271 -0.57 134.6 135.1 341.3 360.2 206.7 225.167490674 46.095 -81.785 177 4.83 113.0 113.5 357.5 376.4 244.5 262.967490645 49.693 -86.832 334 0.11 130.9 131.4 341.1 360.0 210.2 228.667490634 50.842 -84.848 123 -0.23 132.2 132.6 341.7 360.7 209.5 228.167490683 44.509 -79.790 250 6.39 107.3 107.8 365.1 384.0 257.8 276.267490681 45.094 -81.811 177 6.20 102.8 103.3 371.0 390.0 268.2 286.767490638 50.511 -89.159 396 -0.49 134.5 135.0 338.2 357.2 203.7 222.267490649 49.422 -95.087 322 2.44 124.7 125.1 346.8 365.7 222.1 240.667490643 49.367 -92.685 394 2.30 127.9 128.3 345.9 364.8 218.0 236.567490625 52.817 -89.866 269 -1.47 138.5 139.0 336.1 355.0 197.6 216.067490630 52.203 -91.513 394 -0.75 138.0 138.5 336.8 355.8 198.8 217.367490677 45.234 -75.143 62 6.00 112.7 113.2 360.4 379.4 247.7 266.267490673 45.547 -78.554 431 3.83 120.3 120.8 351.1 370.1 230.8 249.367490637 50.790 -91.774 400 0.83 133.1 133.6 341.1 360.0 208.0 226.467490694 43.609 -79.397 75 8.65 98.5 99.0 373.8 392.8 275.3 293.867490691 44.002 -79.234 289 6.79 107.3 107.7 366.4 385.4 259.1 277.767490659 47.710 -79.801 244 2.47 125.2 125.7 344.1 363.0 218.9 237.3

Table A4. The minimum and maximum changes in break-up and freeze-up dates and open-water duration (days) projected using the B1 scenario at the centroids of Ontario’s secondary watersheds for three simulated periods (2011-2040, 2041-2070 and 2071-2100) across four GCMs, relative to projections for the observed 1971 to 2000 period. (Note: relative to the 1971 to 2000 period, negative ∆break-up values mean later break-ups while positive ∆freeze-up values mean earlier freeze-up) .

ID∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days

2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

02A -7.9 -3.6 -11.9 -3.3 -12.6 -3.7 -0.6 6.9 2.1 11.4 3.4 13.0 3.0 14.8 6.2 23.3 7.1 25.6

02B -8.6 -1.5 -11.2 -1.5 -12.4 -1.5 5.7 14.7 9.0 18.6 10.1 20.1 7.2 23.3 10.8 29.8 11.6 32.5

02C -7.9 -1.9 -10.9 -1.6 -10.7 -1.2 4.3 12.9 8.1 17.1 10.3 17.4 6.2 20.8 11.0 28.0 12.0 28.1

02D -7.8 -2.8 -9.5 -2.9 -10.2 -2.4 6.0 13.3 9.7 17.2 11.7 17.2 8.8 21.1 13.6 26.7 14.4 27.4

02E -5.6 -2.5 -7.5 -2.4 -8.3 -1.8 6.2 8.8 5.8 10.7 5.2 10.9 8.7 12.6 8.2 18.2 9.7 18.0

02F -5.1 -2.9 -7.2 0.4 -8.1 -0.8 5.4 11.3 8.5 15.3 10.4 21.8 8.6 16.4 11.1 22.5 14.8 27.5

02G -3.0 -0.8 -4.4 2.0 -13.0 0.0 3.9 9.0 8.7 16.0 10.8 25.6 4.7 11.7 7.7 19.7 11.4 38.6

02H -3.1 -1.2 -5.4 1.5 -5.4 1.1 1.2 5.1 3.2 8.9 5.0 10.2 3.3 8.0 3.8 14.3 6.3 13.0

02J -8.4 -2.0 -11.4 -2.6 -11.5 -3.2 6.1 14.2 10.3 18.1 11.1 18.4 8.1 22.6 13.0 29.5 14.3 29.9

02K -6.3 -2.2 -8.5 -1.5 -8.7 -1.2 3.9 10.2 7.8 14.4 9.6 13.9 6.1 16.5 10.2 22.9 10.9 22.6

02L -4.7 -0.9 -6.6 -0.9 -6.9 -0.9 4.1 9.0 6.5 8.9 6.1 10.4 5.0 13.7 9.3 13.8 8.4 13.0

02M -3.9 -1.3 -5.9 0.1 -5.8 -0.6 4.3 7.2 3.0 8.0 4.8 8.4 6.5 10.8 4.3 13.9 6.6 12.7

04A -4.7 -3.5 -6.7 -3.5 -8.8 -5.2 4.1 8.1 5.8 11.2 9.4 13.5 7.6 12.8 9.3 17.9 14.6 22.3

04B -5.3 -3.2 -6.9 -4.1 -8.9 -6.5 4.6 8.4 6.3 11.1 10.0 14.0 7.8 13.7 10.4 18.0 16.7 22.2

Page 33: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 25

Table A5. The minimum and maximum changes in break-up and freeze-up dates and open-water duration (days) projected using the B1 scenario at the centroids of Ontario’s municipalities for three simulated periods (2011-2040, 2041-2070 and 2071-2100) across four GCMs, relative to projections for the observed 1971 to 2000 period. (Note: relative to the 1971 to 2000 period, negative ∆break-up values mean later break-ups while positive ∆freeze-up values mean earlier freeze-up; ni indicates no ice occurs) .

ID(#)

∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

1 -9.6 -3.3 -12.5 -3.4 -13.0 -3.8 6.6 14.8 10.4 18.7 11.4 19.3 9.9 24.4 14.1 31.2 15.2 32.3

2 -4.9 -1.8 -8.0 -1.5 -7.8 -1.1 5.1 8.2 4.9 9.5 5.2 10.9 6.9 12.8 6.4 17.5 7.5 16.7

3 -4.4 -2.6 -6.6 -0.2 -6.8 -0.7 1.1 4.9 3.0 8.9 4.9 10.4 4.9 9.3 5.3 15.5 7.6 14.7

4 -4.5 -1.5 -6.4 -0.1 -7.0 0.0 1.8 6.1 3.7 10.1 5.4 11.1 4.1 10.6 6.0 16.5 7.8 16.1

5 -4.6 -1.6 -5.7 0.9 -7.0 -0.3 -0.3 5.0 3.4 9.0 5.2 10.7 1.3 9.6 4.5 14.7 7.7 14.9

6 -4.3 -1.5 -6.5 1.5 -6.7 0.3 1.4 4.9 3.1 8.7 5.1 10.6 4.4 9.1 3.5 15.2 6.5 14.5

7 -6.2 -2.9 -8.1 -2.8 -9.3 -1.5 5.7 11.4 9.2 11.0 7.2 11.7 8.6 17.6 13.4 18.8 8.7 19.4

8 -4.1 -1.4 -6.2 -0.4 -6.7 -0.2 4.4 9.6 7.3 9.3 7.0 10.9 5.8 13.7 8.8 14.3 9.1 13.7

9 -9.7 -3.1 -12.5 -2.8 -13.3 -2.0 6.0 15.1 9.5 19.2 11.0 20.2 9.1 24.8 12.9 31.7 13.0 33.5

10 -4.6 -1.6 -5.4 0.9 -6.9 0.9 -0.8 4.8 3.1 8.6 5.0 10.6 0.8 9.4 3.7 14.0 5.5 14.8

11 -2.1 0.2 -6.4 1.2 -16.9 -0.8 3.9 8.9 9.0 20.0 12.0 30.9 3.7 10.6 8.8 26.4 12.8 47.8

13 -9.5 -3.7 -12.4 -3.6 -12.8 -2.2 6.4 14.9 10.2 18.9 11.3 19.5 10.1 24.4 14.1 31.3 13.5 32.3

14 -4.9 -2.1 -6.9 -1.4 -7.5 -0.9 4.5 9.7 7.6 9.4 5.4 9.5 6.6 14.6 9.6 15.2 6.3 14.9

15 -7.4 -2.3 -11.1 -2.4 -12.3 -3.6 -1.9 4.7 0.9 10.2 2.6 12.0 1.0 12.1 4.1 21.3 6.8 24.3

04C -4.4 -2.2 -6.4 -3.1 -8.8 -4.9 4.8 9.0 6.6 12.3 5.3 10.2 7.0 13.4 9.7 18.7 10.7 15.7

04D -5.8 -3.5 -8.1 -4.2 -10.1 -6.2 5.0 9.1 4.5 10.5 5.4 10.8 8.5 14.9 11.2 15.5 11.6 17.5

04E -5.7 -3.5 -7.3 -4.1 -9.0 -7.0 5.1 8.6 7.3 11.5 6.1 11.3 8.6 14.3 11.4 18.8 13.7 18.3

04F -6.5 -3.5 -8.5 -3.6 -10.0 -5.6 2.0 7.5 2.7 9.7 2.9 8.3 8.5 11.7 6.3 14.2 8.7 18.3

04G -6.0 -3.7 -8.0 -3.8 -11.2 -5.6 2.6 7.9 2.2 8.5 3.2 9.1 8.6 12.0 6.0 14.3 8.8 20.3

04H -6.5 -3.2 -9.2 -3.4 -12.3 -4.9 -2.0 6.1 0.2 7.4 2.8 10.7 1.5 9.5 4.1 16.6 7.7 23.0

04J -5.8 -2.9 -9.8 -2.4 -11.8 -3.3 -1.0 4.5 1.4 8.8 3.1 12.0 2.0 10.3 4.6 18.6 6.4 23.8

04K -7.9 -2.3 -11.5 -2.9 -13.0 -3.8 -1.5 5.0 1.2 10.4 3.1 12.2 1.1 12.9 4.8 21.9 6.9 25.2

04L -9.7 -3.8 -12.7 -4.1 -14.3 -4.2 -1.0 7.1 2.3 11.5 3.7 13.0 3.0 16.8 6.9 24.2 7.9 27.3

04M -8.8 -2.7 -12.5 -3.2 -13.9 -4.7 -0.8 6.9 2.5 11.9 4.1 13.1 1.9 15.7 6.7 24.4 8.8 27.0

04N -8.2 -3.5 -12.7 -4.1 -14.3 -4.9 -0.9 5.4 2.0 11.5 4.2 13.4 2.8 13.6 6.5 24.2 9.1 27.7

05P -7.4 -3.5 -9.5 -3.4 -12.0 -2.6 -2.0 4.3 0.3 8.4 1.4 10.4 1.6 11.7 4.5 17.9 4.0 22.4

05Q -6.4 -3.1 -10.2 -3.1 -12.3 -3.5 -1.6 3.8 0.5 8.3 2.2 11.2 1.6 10.2 4.3 18.5 5.7 23.5

05R -4.8 -2.1 -8.0 -3.4 -9.7 -4.0 1.5 7.0 1.1 6.7 1.5 8.9 6.3 10.0 4.7 13.4 5.7 18.6

Min -9.7 -3.8 -12.7 -4.2 -14.3 -7.0 -2.0 3.8 0.2 6.7 1.4 8.3 1.1 8.0 3.8 13.4 4.0 12.7

Max -3.0 -0.8 -4.4 2.0 -5.4 1.1 6.2 14.7 10.3 18.6 11.7 25.6 8.8 23.3 13.6 29.8 16.7 38.6

ID∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days

2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

Table A4. Cont.

Page 34: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

26 CLIMATE CHANGE RESEARCH REPORT CCRR-40

16 -2.4 0.3 -10.1 2.2 ni ni 2.1 7.0 7.3 21.4 ni ni 1.8 8.4 5.1 31.5 9.5 84.5

17 -4.4 -2.2 -5.5 1.0 -6.7 -0.4 -0.4 5.1 3.4 9.1 5.2 10.5 1.8 9.5 4.6 14.6 8.1 14.5

19 -3.5 -1.1 -5.1 2.1 -5.5 0.1 0.1 5.6 3.9 9.2 5.8 11.5 1.2 8.8 3.7 14.3 7.5 13.8

20 -5.5 -1.5 -7.7 -1.8 -8.5 -0.2 4.4 9.9 7.9 12.6 9.6 13.8 5.9 15.4 11.1 16.3 10.8 21.6

21 -2.7 0.0 -4.4 1.6 -14.2 0.8 4.8 9.9 9.4 16.2 11.5 28.2 4.8 12.6 8.6 19.0 10.9 42.4

22 -5.0 -1.8 -6.9 -1.1 -7.9 -0.6 5.7 8.6 6.1 10.9 5.7 11.7 7.5 11.9 7.2 17.8 8.4 18.0

23 -6.5 -2.9 -11.2 -3.4 -12.5 -3.5 -0.7 5.1 1.8 10.4 3.5 12.7 2.2 11.6 6.0 21.6 7.0 25.2

24 -1.9 -0.5 -9.6 2.0 ni ni 3.4 8.3 7.9 21.4 ni ni 3.9 10.1 9.2 31.0 13.8 89.4

25 -4.2 -2.5 -6.1 -0.5 -7.1 -1.3 2.2 6.2 3.1 8.2 5.0 8.8 5.9 8.7 5.2 14.3 7.8 14.1

27 -4.7 -1.8 -7.2 1.7 -6.6 -0.1 5.1 11.0 7.9 15.4 9.6 22.4 6.9 15.7 9.6 22.6 13.2 28.6

28 -6.3 -1.8 -8.4 -2.0 -8.3 -1.8 5.0 11.3 8.5 13.5 9.3 12.0 6.8 17.6 12.1 18.6 13.2 17.6

29 -6.2 -1.8 -8.4 -1.8 -8.5 -0.8 4.6 11.0 8.5 15.1 10.2 14.6 6.4 17.2 11.4 23.5 11.8 23.0

30 -4.9 -1.9 -5.8 0.3 -7.2 0.5 1.7 5.2 3.4 8.9 5.4 10.9 5.3 10.0 4.8 14.7 6.3 15.4

31 -6.6 -2.3 -9.5 -2.4 -10.8 -1.7 5.6 12.6 8.3 16.1 9.1 18.1 7.9 19.2 11.3 25.6 10.8 28.9

32 -4.7 -2.0 -6.4 -2.1 -7.0 -0.9 3.8 8.9 6.9 11.4 9.2 12.1 5.8 13.6 10.3 14.6 11.0 18.7

33 -5.0 -2.1 -7.2 -1.3 -8.1 -0.5 4.1 10.0 7.8 14.0 9.6 13.3 6.2 15.0 10.2 21.2 10.7 21.4

34 -4.3 -0.4 -5.2 0.8 -5.7 0.1 4.4 9.6 7.6 9.3 7.3 10.8 4.8 13.9 8.5 13.4 9.4 13.2

35 -3.3 -0.7 -5.1 -0.6 -6.6 0.5 3.7 8.6 6.2 8.5 5.7 10.0 4.4 11.9 8.6 11.8 7.4 12.3

36 -3.3 -1.4 -5.6 1.5 -5.5 1.1 0.4 4.2 2.4 8.1 4.2 9.3 2.9 7.4 3.0 13.7 5.3 12.4

37 -4.4 -0.4 -6.4 -0.1 -6.9 0.3 4.2 9.5 7.4 9.2 7.1 10.7 4.6 13.9 9.3 14.4 9.9 14.0

38 -3.0 -0.6 -4.4 1.9 -5.2 0.9 3.7 8.9 8.0 12.7 9.9 14.9 4.3 11.3 7.3 16.8 9.7 16.9

39 -5.0 0.0 -7.7 0.2 -8.2 -0.1 4.6 7.6 4.5 10.7 6.5 10.4 4.6 11.4 4.3 18.4 6.6 18.4

40 -3.3 -0.7 -4.8 1.9 -5.4 0.4 -0.8 4.5 3.4 8.4 5.3 10.5 -0.1 7.3 2.9 12.9 5.9 12.8

41 -3.1 -1.7 -4.2 1.7 -7.2 -0.3 4.2 9.1 8.0 13.8 9.6 22.6 5.9 11.8 9.0 17.4 12.8 29.8

43 -4.6 -0.9 -6.5 -1.3 -7.0 -0.2 4.1 9.2 7.3 11.8 9.4 12.6 5.0 13.8 10.2 14.4 10.6 19.0

46 -0.7 1.2 -2.7 4.4 -14.6 2.0 2.7 7.3 7.0 15.7 8.8 28.4 1.5 8.0 4.4 18.2 9.2 43.0

49 -1.2 1.6 -5.3 3.5 -16.3 1.9 2.4 7.1 7.5 19.0 9.2 31.7 0.8 7.1 4.0 24.3 7.3 48.0

50 -2.7 -1.6 -4.7 2.4 -4.0 0.9 -0.5 4.6 3.5 8.5 5.4 10.4 1.1 7.2 3.1 12.9 6.3 11.2

54 -3.8 -1.7 -4.8 1.0 -4.8 0.7 -1.2 4.0 2.3 7.8 4.0 9.0 0.5 7.8 3.5 12.6 5.8 11.3

56 -2.6 -0.6 -3.5 3.0 -10.2 1.2 3.5 8.4 8.0 12.4 9.9 25.5 4.1 11.0 6.4 15.3 9.7 35.7

Table A5. Cont.

ID(#)

∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

58 -2.9 -0.9 -3.6 2.5 -3.6 1.3 3.5 8.4 6.9 12.5 8.7 13.3 4.4 11.3 7.1 15.5 10.5 14.0

59 -3.0 -0.9 -3.9 1.9 -4.4 0.8 4.2 9.2 8.4 13.1 10.2 15.8 5.1 12.1 8.2 16.6 10.9 17.2

60 -5.1 -2.3 -7.1 -0.4 -6.6 -0.2 4.4 7.2 4.0 8.6 3.9 9.2 6.9 10.5 4.4 15.7 5.8 14.2

61 -3.1 -1.4 -5.1 1.3 -4.9 -0.2 -0.8 4.1 2.7 7.9 4.5 8.8 0.6 7.2 3.4 12.9 7.0 11.3

64 -2.7 -0.6 -4.6 2.5 -4.7 1.0 -1.0 4.1 2.4 7.8 4.2 9.0 -0.4 6.8 2.1 12.4 5.6 11.3

4560 -6.0 -3.5 -8.0 -3.8 -10.5 -5.7 5.4 9.7 5.0 10.9 5.7 11.0 9.4 15.7 11.3 14.7 11.4 18.3

4598 -7.2 -2.4 -9.0 -2.6 -10.6 -2.3 5.8 12.7 9.6 16.7 11.5 16.3 8.2 19.9 13.2 25.7 14.2 26.9

4599 -6.9 -2.2 -9.9 -2.0 -10.1 -2.5 5.6 12.2 9.0 13.7 10.3 15.4 7.8 19.1 12.6 20.8 14.8 20.4

Min -9.7 -3.7 -12.5 -3.8 -16.9 -5.7 -1.9 4.0 0.9 7.8 2.6 8.8 -0.4 6.8 2.1 11.8 5.3 11.2

Max -0.7 1.6 -2.7 4.4 -3.6 2.0 6.6 15.1 10.4 21.4 12.0 31.7 10.1 24.8 14.1 31.7 15.2 89.4

Page 35: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 27

Table A6. The minimum and maximum changes in break-up and freeze-up dates and open-water duration (days) projected using the B1 scenario at the centroids of Ontario’s ecodistricts for three simulated periods (2011-2040, 2041-2070 and 2071-2100) across four GCMs, relative to projections for the observed 1971 to 2000 period. (Note: relative to the 1971 to 2000 period, negative ∆break-up values mean later break-ups while positive ∆freeze-up values mean earlier freeze-up) .

ID(#)

∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

67490622 -6.0 -3.3 -7.6 -4.5 -8.9 -6.8 4.5 8.3 6.5 11.0 10.0 13.8 7.8 14.3 11.0 18.6 16.8 21.8

67490623 -5.3 -2.8 -6.7 -3.4 -8.2 -5.6 4.6 8.4 6.3 11.3 9.8 13.8 7.4 13.7 9.7 18.0 15.6 21.6

67490624 -5.7 -3.4 -7.3 -3.8 -8.9 -6.0 4.7 8.4 4.2 10.2 5.5 10.7 8.1 14.1 10.6 15.5 12.3 17.0

67490625 -5.8 -3.5 -7.8 -4.3 -10.4 -5.3 5.4 9.7 5.1 10.9 5.7 11.0 9.2 15.5 12.1 15.2 11.7 18.2

67490626 -4.5 -2.2 -7.5 -2.8 -8.9 -4.5 4.2 8.7 3.8 10.0 4.6 9.5 6.4 13.2 8.7 13.0 10.5 15.4

67490627 -6.1 -4.0 -8.4 -4.5 -10.6 -5.5 5.5 9.6 5.2 10.7 3.0 10.5 9.6 15.7 11.9 15.2 9.0 18.5

67490628 -6.8 -3.8 -9.3 -4.2 -12.1 -5.3 2.5 7.5 0.1 6.5 3.0 9.6 9.3 11.3 4.6 15.8 8.7 21.7

67490629 -4.4 -1.7 -6.3 -3.2 -9.0 -3.7 0.9 6.8 0.7 6.2 0.9 8.0 5.3 9.6 4.1 11.0 5.2 17.0

67490630 -5.8 -2.7 -7.7 -3.5 -10.1 -4.7 5.3 9.8 5.0 11.0 5.8 10.9 8.0 15.6 11.6 14.5 11.7 18.0

67490631 -5.6 -3.1 -7.7 -3.5 -10.3 -3.9 1.8 7.4 1.5 7.3 2.3 9.1 7.4 11.5 5.1 13.5 6.2 19.4

67490632 -6.0 -3.0 -8.2 -3.7 -10.3 -4.8 2.2 8.0 2.1 8.2 3.0 8.8 8.2 12.1 7.0 14.1 7.8 19.1

67490633 -6.0 -2.8 -9.4 -3.4 -11.1 -3.0 -2.2 3.2 -0.3 7.5 2.0 10.9 0.6 9.2 4.0 16.9 5.0 22.0

67490634 -6.1 -2.9 -9.7 -3.3 -12.2 -4.1 -1.7 3.2 0.5 7.4 2.6 10.6 1.3 9.3 4.6 17.1 6.7 22.8

67490635 -6.3 -3.2 -8.9 -3.1 -11.2 -2.4 -1.6 3.8 0.5 8.3 2.3 11.2 1.6 10.1 4.3 17.2 4.7 22.4

67490636 -6.3 -2.0 -11.3 -2.5 -12.8 -3.5 -1.7 4.6 0.9 10.3 2.9 12.1 0.6 10.9 5.1 21.6 6.4 24.9

67490637 -6.2 -3.5 -8.6 -3.5 -12.1 -3.9 -0.4 6.5 0.3 7.2 2.6 10.4 3.8 10.4 4.5 15.8 6.5 22.5

67490638 -6.7 -4.1 -8.9 -4.5 -12.0 -6.2 2.8 7.7 2.1 8.3 3.1 9.4 9.5 12.3 7.4 15.4 9.3 21.4

67490639 -7.1 -2.4 -11.8 -2.8 -13.1 -4.2 -0.9 5.4 2.0 11.7 4.1 13.4 1.5 12.5 6.3 23.5 8.9 26.5

67490640 -6.6 -3.4 -10.3 -3.8 -12.2 -3.5 -1.7 3.8 0.4 8.3 1.9 10.9 1.8 10.4 5.3 18.6 5.4 23.1

67490641 -8.4 -4.0 -11.4 -3.8 -13.1 -3.0 -0.3 7.4 2.5 11.9 3.8 13.5 3.7 15.8 7.0 23.3 6.8 26.6

67490642 -7.6 -2.7 -12.3 -2.8 -13.1 -4.4 -1.7 5.7 1.5 10.8 3.0 12.4 1.0 13.3 5.5 23.1 7.4 25.5

67490643 -7.2 -3.7 -9.7 -3.4 -11.0 -2.6 -2.0 4.0 0.4 8.5 1.5 10.6 1.9 11.2 4.5 18.2 4.1 21.6

67490644 -7.6 -4.3 -10.2 -4.1 -13.3 -4.5 -1.5 4.0 0.6 8.4 2.4 11.3 2.9 11.6 5.5 18.6 6.9 24.6

67490645 -7.5 -4.0 -10.7 -3.5 -13.5 -4.6 0.0 5.8 2.5 10.6 4.2 13.5 4.1 13.3 6.8 21.3 8.8 27.0

67490646 -7.1 -3.0 -9.7 -3.4 -11.2 -2.6 -1.8 3.9 0.5 8.5 1.8 10.7 1.2 11.0 4.7 18.2 4.4 21.9

67490647 -6.9 -3.2 -10.1 -3.1 -10.4 -2.1 -2.1 3.8 0.2 7.8 1.3 10.1 1.4 10.7 4.1 17.9 3.4 20.5

67490648 -9.8 -4.0 -13.0 -3.9 -14.7 -4.1 0.6 8.4 3.7 13.0 5.1 14.8 4.6 18.2 8.1 26.0 9.2 29.5

67490649 -5.6 -2.5 -8.7 -3.0 -10.4 -1.9 -2.0 3.4 0.3 7.5 1.4 10.0 0.5 9.0 4.2 16.2 3.3 20.4

67490650 -5.7 -2.8 -8.4 -2.7 -9.8 -0.7 5.1 11.6 8.0 15.1 8.6 17.3 8.1 17.3 11.2 23.5 9.3 27.1

67490651 -7.7 -4.0 -10.7 -3.3 -11.6 -2.4 -0.9 6.5 1.8 10.1 2.5 11.9 3.1 14.2 5.5 20.8 4.9 23.5

67490653 -9.2 -2.6 -11.6 -2.2 -12.9 -1.1 5.9 14.7 9.3 18.6 9.8 19.9 8.5 23.9 11.5 30.2 10.9 32.8

67490654 -9.1 -2.4 -11.9 -3.2 -12.7 -3.7 -0.6 7.9 3.1 11.7 4.2 12.6 1.8 17.0 7.1 23.6 7.9 25.3

67490655 -10.6 -4.6 -13.2 -5.2 -14.4 -4.6 0.6 9.3 4.1 13.2 5.3 14.4 5.2 19.9 9.8 26.4 9.9 28.8

67490657 -8.5 -1.2 -11.1 -1.3 -12.4 -0.3 5.0 14.2 8.4 18.1 9.4 19.5 6.2 22.7 10.1 29.2 9.7 31.9

67490658 -9.5 -3.6 -11.2 -2.7 -13.1 -1.7 -1.3 7.4 1.2 11.0 2.4 12.5 2.3 16.9 4.7 22.2 4.1 25.6

67490659 -8.4 -3.3 -11.4 -3.5 -12.7 -2.9 6.0 14.0 10.0 18.0 11.0 18.4 9.3 22.4 13.7 29.4 13.9 31.1

67490660 -6.2 0.1 -8.8 0.8 -10.4 1.2 4.1 12.6 7.6 16.6 9.9 17.4 4.0 18.8 7.9 25.4 8.8 27.8

Page 36: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

28 CLIMATE CHANGE RESEARCH REPORT CCRR-40

ID(#)

∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

Table A6. Cont.

67490661 -8.7 -3.4 -11.5 -3.0 -11.5 -2.9 6.3 14.2 10.3 18.1 11.5 18.3 9.7 22.9 13.6 29.6 14.4 29.8

67490662 -9.8 -2.6 -12.7 -3.1 -13.2 -2.1 5.7 14.4 9.4 18.6 10.7 19.2 8.3 24.2 13.0 31.3 12.8 32.4

67490663 -8.2 -2.1 -10.8 -0.8 -12.3 -1.4 5.8 14.5 9.3 18.5 11.5 19.1 7.9 22.7 11.4 29.3 13.5 31.4

67490664 -8.7 -2.6 -10.6 -3.8 -11.3 -3.0 5.9 13.3 9.9 17.4 11.9 17.3 8.5 22.0 14.5 28.0 14.9 28.6

67490665 -6.1 -0.5 -9.0 -1.2 -9.8 -1.0 4.4 12.2 8.0 16.2 10.1 16.3 4.9 18.3 10.5 25.2 11.7 26.1

67490667 -6.6 -0.9 -9.3 -0.3 -10.3 0.0 4.6 12.7 7.9 13.6 10.0 15.8 5.5 19.3 9.9 21.4 11.3 22.4

67490668 -6.9 -2.3 -8.8 -1.4 -9.2 -1.4 5.5 12.3 9.0 16.2 10.9 16.0 7.8 19.2 11.6 25.0 13.2 25.2

67490669 -5.5 -1.0 -7.7 -1.4 -9.2 -1.1 4.1 10.8 8.1 15.0 10.0 14.5 5.1 16.3 10.4 22.7 11.1 23.7

67490670 -6.5 -1.6 -7.9 -1.5 -8.4 -1.1 4.8 7.8 4.7 10.8 3.7 10.6 6.4 13.1 6.2 18.7 6.7 18.7

67490672 -6.9 -2.4 -8.6 -2.6 -9.8 -2.0 5.7 8.5 8.6 10.8 6.9 10.4 8.1 13.4 11.7 19.2 8.9 19.7

67490673 -7.4 -1.6 -9.5 -2.4 -10.0 -1.9 4.5 11.3 8.4 15.4 10.3 15.1 6.1 18.7 11.8 24.9 12.2 25.1

67490674 -6.3 -1.2 -9.1 -1.0 -9.7 -0.5 4.7 12.0 8.0 13.1 9.8 11.6 5.9 18.3 10.8 20.0 12.1 20.3

67490675 -4.8 -0.7 -6.8 -1.0 -7.3 -0.7 4.7 10.2 8.3 14.1 10.1 13.5 5.4 15.0 10.5 20.9 11.7 20.5

67490676 -7.7 -3.2 -9.8 -3.2 -9.9 -2.3 5.4 11.9 8.9 13.8 10.7 15.4 8.6 19.6 13.7 20.6 14.4 25.3

67490677 -4.5 -2.0 -6.4 -1.4 -6.8 -0.4 4.0 9.0 7.0 11.6 6.0 10.3 6.0 13.5 10.2 14.0 8.8 13.0

67490678 -4.1 -0.1 -6.3 -0.1 -7.4 0.8 4.0 9.7 7.6 13.7 9.4 13.4 4.1 13.8 8.9 20.0 9.1 20.5

67490679 -4.8 -2.0 -6.8 -0.8 -6.9 -0.5 5.0 10.1 8.1 10.1 5.9 10.3 7.0 14.9 10.4 15.3 6.4 14.2

67490680 -4.5 -1.6 -6.3 -0.2 -6.7 0.2 0.2 6.2 3.0 10.1 4.6 11.0 1.8 10.7 6.3 16.4 7.9 15.6

67490681 -5.0 -1.9 -7.9 -0.1 -7.3 -0.4 -0.1 6.4 2.5 10.5 4.3 11.5 1.8 11.4 5.8 18.4 7.9 16.5

67490683 -4.8 -1.9 -6.7 -0.5 -7.2 -0.6 1.8 6.3 3.8 10.3 5.5 11.1 4.4 11.1 6.7 17.0 8.7 16.4

67490685 -4.3 -1.5 -5.0 0.1 -6.0 -0.5 0.4 5.1 2.8 7.9 4.6 8.6 2.7 8.6 4.5 12.9 6.9 12.6

67490686 -4.9 -2.6 -8.2 0.9 -11.7 -0.9 5.4 11.2 8.8 17.3 10.5 27.9 8.0 16.1 10.8 24.8 15.1 39.6

67490687 -4.6 -1.8 -6.4 -0.7 -6.8 0.0 4.3 7.1 4.1 8.2 4.1 8.8 6.5 10.7 4.8 14.6 5.7 14.0

67490688 -5.1 -2.1 -6.8 0.5 -7.6 -0.5 1.2 5.6 3.0 9.5 4.9 10.8 4.2 10.7 4.7 16.3 7.4 16.3

67490689 -1.3 0.6 -2.0 3.9 -1.9 1.9 2.9 7.8 6.4 11.9 8.1 12.7 2.3 9.1 5.2 13.2 8.9 11.6

67490690 -5.0 -2.1 -7.0 -0.8 -7.3 -0.2 5.0 7.7 3.1 9.1 4.8 9.9 7.3 11.8 5.8 16.1 6.9 15.2

67490691 -4.6 -1.6 -6.9 0.4 -7.0 0.0 1.1 4.9 3.0 8.9 4.8 10.4 4.0 9.5 4.7 15.8 7.1 14.8

67490692 -3.0 -0.6 -4.0 3.1 -4.9 -0.1 4.6 9.4 8.2 13.5 9.9 20.1 5.2 12.4 7.9 17.0 12.1 25.0

67490693 -4.5 -1.6 -6.5 1.0 -6.8 0.0 1.3 4.9 3.1 8.6 5.0 10.6 4.6 9.3 3.7 15.1 6.2 14.7

67490694 -1.9 -0.3 -7.8 2.3 ni ni 3.8 8.5 7.5 22.1 ni ni 4.1 10.0 9.0 29.9 13.1 89.7

67490695 -3.9 -1.2 -15.9 0.1 ni ni 4.0 10.3 9.8 28.0 ni ni 5.2 14.2 12.7 43.9 16.8 85.5

67490696 -3.0 0.1 -3.8 2.3 -4.6 1.2 -1.0 4.0 3.2 8.0 5.1 10.0 -1.1 7.0 2.3 11.4 4.8 11.5

67490697 -2.8 -0.9 -4.5 2.0 -13.5 -0.1 4.0 9.1 8.9 16.5 10.9 26.1 4.9 11.9 7.8 20.7 11.6 39.6

67490698 -1.0 1.0 -5.9 3.5 ni ni 1.9 6.3 6.1 19.3 ni ni 0.9 7.3 5.3 25.2 10.8 87.4

67490699 -2.3 0.5 -10.0 1.8 ni ni 2.3 7.6 7.9 19.7 ni ni 1.8 9.1 6.1 29.7 9.4 86.0

Min -10.6 -4.6 -15.9 -5.2 -14.7 -6.8 -2.2 3.2 -0.3 6.2 0.9 8.0 -1.1 7.0 2.3 11.0 3.3 11.5

Max -1.0 1.0 -2.0 3.9 -1.9 1.9 6.3 14.7 10.3 28.0 11.9 27.9 9.7 24.2 14.5 43.9 16.8 89.7

Page 37: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 29

Table A7. The minimum and maximum changes in break-up and freeze-up dates and open-water duration (days) projected using the A2 scenario at the centroids of Ontario’s secondary watersheds for three simulated periods (2011-2040, 2041-2070 and 2071-2100) across four GCMs, relative to projections for the observed 1971 to 2000 period. (Note: relative to the 1971-2000 norms, negative ∆break-up values mean later break-ups while positive ∆freeze-up values mean earlier freeze-up).

ID∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days

2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

02A -12.3 -2.8 -11.3 -4.0 -13.9 -4.8 -0.4 9.7 5.5 14.7 10.4 22.5 3.6 22.0 10.0 26.0 15.2 36.4

02B -11.9 -1.8 -10.6 -3.2 -14.3 -4.1 6.5 16.7 12.4 22.3 17.7 26.6 9.8 28.6 17.1 32.9 23.8 40.9

02C -10.2 -2.0 -11.0 -3.5 -14.2 -1.7 5.7 14.3 11.0 16.1 15.9 26.5 9.1 24.5 15.8 27.1 17.6 40.7

02D -10.0 -2.5 -10.3 -3.7 -13.3 -0.5 7.4 14.6 12.1 15.0 17.3 24.4 11.8 24.6 16.7 25.3 21.0 37.7

02E -8.1 -3.0 -8.9 -1.8 -15.2 1.0 4.3 8.5 5.6 15.4 11.2 29.7 7.3 15.6 9.9 24.3 14.7 44.9

02F -7.3 -2.1 -13.1 -1.1 ni ni 6.1 11.5 11.0 25.8 ni ni 9.8 18.8 15.9 38.9 26.6 101.0

02G -4.2 0.1 -11.6 -1.0 ni ni 6.3 9.2 11.6 23.4 ni ni 7.9 13.4 15.2 35.0 27.4 93.5

02H -6.4 0.2 -7.2 -0.4 -16.7 4.9 1.1 5.8 5.3 13.8 11.2 27.9 3.7 12.2 7.8 21.0 9.6 44.6

02J -11.0 -3.1 -10.8 -3.5 -14.8 -2.4 7.9 15.8 12.8 21.2 17.8 24.0 11.9 26.8 17.9 32.0 22.8 38.8

02K -8.8 -1.1 -8.5 -2.8 -11.6 -0.3 5.5 11.6 9.8 17.5 14.9 20.7 8.4 20.4 14.1 26.0 18.6 32.3

02L -6.6 -0.9 -7.1 -2.0 -8.7 0.6 5.3 9.8 6.9 10.6 9.0 19.3 8.3 16.4 8.9 17.7 11.7 28.0

02M -5.6 -0.6 -7.2 -1.7 -11.5 0.4 3.3 7.2 4.8 12.0 10.4 23.5 3.9 10.8 7.0 19.2 13.1 35.0

04A -5.5 -3.0 -8.5 -4.7 -16.3 -8.0 4.4 8.4 8.5 11.9 8.1 19.1 7.4 13.9 14.5 18.2 16.9 35.4

04B -5.2 -3.7 -10.1 -5.4 -16.2 -9.2 5.1 8.7 9.7 16.4 11.2 18.8 8.8 13.9 15.1 26.5 21.1 35.0

04C -6.4 -2.5 -8.4 -4.6 -15.1 -7.3 5.1 9.7 9.7 12.8 7.4 20.1 7.8 16.1 14.9 19.0 14.8 35.2

04D -7.2 -3.6 -10.9 -5.5 -16.5 -8.2 5.4 10.0 5.4 11.8 8.2 19.8 9.0 17.2 12.4 20.9 16.5 36.3

04E -6.5 -3.4 -10.0 -6.0 -16.7 -9.1 5.6 9.6 5.8 12.1 9.2 19.8 9.0 16.1 13.5 20.0 18.3 36.5

04F -7.9 -3.0 -9.7 -4.4 -15.8 -7.0 3.1 8.7 3.3 11.1 9.2 20.1 10.1 13.4 8.3 20.8 17.9 35.9

04G -7.9 -3.1 -10.5 -4.7 -15.3 -7.1 4.0 9.0 4.0 11.8 9.7 20.3 10.6 13.2 9.3 22.3 17.6 35.6

04H -9.2 -2.8 -11.1 -3.9 -15.3 -5.2 -1.7 5.1 3.6 13.2 9.7 21.2 1.8 14.3 8.0 24.3 16.0 36.5

04J -9.3 -1.9 -10.4 -3.6 -14.3 -4.3 -0.7 6.7 4.6 13.5 10.0 21.5 1.9 16.0 8.6 23.9 15.2 35.8

04K -11.9 -2.8 -10.7 -3.3 -14.8 -3.8 -0.8 8.5 4.6 14.0 10.4 22.2 2.5 20.4 8.2 24.7 15.3 37.0

04L -12.7 -3.4 -11.8 -4.8 -16.2 -5.2 0.2 9.9 5.7 14.7 11.0 22.8 4.3 22.6 10.9 26.5 17.5 39.0

04M -13.5 -2.9 -12.3 -4.3 -16.0 -4.6 0.5 10.1 5.8 14.9 10.9 22.7 4.0 23.6 10.7 27.2 17.1 38.7

04N -12.2 -3.9 -12.7 -4.3 -16.3 -5.1 0.1 8.5 5.0 15.2 11.0 23.2 4.5 20.7 10.3 27.9 17.9 39.5

05P -10.4 -2.3 -9.7 -2.9 -11.0 -1.0 -1.9 6.7 4.0 11.6 7.5 18.4 1.4 17.1 7.1 21.3 10.5 29.4

05Q -9.3 -2.4 -10.3 -3.3 -11.8 -4.6 -1.9 5.8 4.1 12.4 8.4 19.2 2.0 15.1 7.8 22.7 13.1 31.0

05R -8.0 -1.8 -9.7 -3.5 -13.0 -4.4 0.2 6.6 1.9 11.2 6.8 18.5 3.1 10.8 6.4 20.9 12.2 31.5

Min -13.5 -3.9 -13.1 -6.0 -16.7 -9.2 -1.9 5.1 1.9 10.6 6.8 18.4 1.4 10.8 6.4 17.7 9.6 28.0

Max -4.2 0.2 -7.1 -0.4 -8.7 4.9 7.9 16.7 12.8 25.8 17.8 29.7 11.9 28.6 17.9 38.9 27.4 101.0

Page 38: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

30 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Table A8. The minimum and maximum changes in break-up and freeze-up dates and open-water duration (days) projected using the A2 scenario at the centroids of Ontario’s municipalities for three simulated periods (2011-2040, 2041-2070 and 2071-2100) across four GCMs, relative to projections for the observed 1971 to 2000 period. (Note: relative to the 1971-2000 norms, negative ∆break-up values mean later break-ups while positive ∆freeze-up values mean earlier freeze-up).

ID(#)

∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

1 -12.4 -4.2 -11.9 -4.3 -15.3 -3.6 8.3 16.5 13.5 21.6 18.2 24.0 13.1 28.9 18.9 33.5 24.2 39.3

2 -7.6 -1.1 -9.1 -1.7 -15.6 1.8 6.4 8.7 5.8 14.4 11.5 28.3 9.8 14.1 10.5 23.5 13.5 43.9

3 -6.7 -1.7 -8.7 -1.1 -17.7 4.3 0.8 5.9 5.3 14.1 11.2 31.1 3.7 12.6 10.2 22.8 10.4 48.8

4 -6.9 -0.9 -8.5 -1.0 -17.0 1.9 3.0 7.0 5.9 15.2 11.7 29.3 5.4 13.9 9.3 23.7 13.7 46.3

5 -6.6 -1.2 -8.4 -1.1 -17.0 3.7 1.2 5.9 5.7 14.6 11.6 28.8 4.4 12.5 10.0 23.0 11.2 45.8

6 -6.5 -0.5 -7.7 -0.3 -16.8 4.4 1.1 5.6 5.6 14.0 11.5 27.3 3.8 12.1 9.9 21.7 10.3 44.1

7 -9.0 -1.9 -10.4 -2.9 -16.3 1.5 6.9 9.3 9.8 15.4 12.2 29.1 10.4 16.8 12.7 25.8 14.8 45.4

8 -6.1 -0.3 -7.1 -1.7 -10.0 0.8 5.7 10.5 7.7 11.7 9.6 20.7 7.9 16.6 9.4 18.8 12.4 30.7

9 -12.0 -2.7 -12.0 -4.8 -16.2 -3.6 7.1 17.0 12.9 22.8 18.1 27.5 11.2 29.0 19.4 34.8 25.0 43.7

10 -6.6 -0.2 -6.8 0.6 -16.5 4.6 0.9 5.6 5.6 13.9 11.4 28.0 3.0 12.2 8.1 20.7 10.0 44.5

11 -3.3 0.8 -11.5 -0.8 ni ni 6.5 9.0 12.7 24.3 ni ni 7.4 12.3 15.9 35.8 28.7 90.2

13 -12.1 -3.8 -12.2 -4.6 -14.7 -3.1 7.9 16.6 13.1 22.2 18.2 25.5 12.8 28.7 19.5 34.4 24.2 40.2

14 -7.9 -1.8 -8.7 -2.3 -12.1 1.0 5.5 8.4 8.2 12.5 9.6 22.9 9.3 13.4 10.5 21.2 12.5 35.0

15 -11.6 -2.0 -11.0 -3.2 -15.0 -3.9 -1.1 8.2 4.3 13.7 10.0 21.8 1.4 19.8 7.7 24.7 14.7 36.8

16 -2.8 0.9 -12.2 -1.2 ni ni 5.1 7.0 12.0 20.9 ni ni 4.2 9.5 13.2 33.0 25.4 84.5

17 -7.4 -1.1 -7.8 -1.4 -18.0 3.4 1.2 6.0 5.5 14.3 11.5 29.1 4.9 13.4 9.3 22.1 11.5 47.1

19 -6.2 -0.4 -10.2 0.1 ni ni 1.6 6.0 6.4 18.5 ni ni 4.1 12.2 9.9 28.7 20.3 95.9

20 -7.6 -1.6 -7.7 -2.5 -10.6 0.5 5.7 11.1 9.8 13.5 9.5 21.3 8.9 18.7 14.0 20.0 13.1 31.9

21 -4.2 0.2 -11.9 -0.5 ni ni 7.0 10.2 12.1 25.4 ni ni 8.2 14.4 15.2 37.3 27.1 95.4

22 -7.6 -2.2 -9.6 -1.9 -19.3 3.1 4.2 8.1 6.2 16.0 12.0 32.0 6.4 15.4 10.2 25.6 13.4 51.3

36 -5.6 0.0 -7.1 -0.6 -16.1 4.7 1.4 5.3 4.5 12.8 10.2 30.0 3.2 10.7 7.3 19.9 9.0 46.1

37 -6.3 -0.9 -7.5 -1.2 -9.3 1.0 5.4 10.3 7.9 11.8 9.4 20.8 7.6 16.6 9.1 19.3 12.3 30.1

38 -4.9 0.8 -9.3 0.9 ni ni 5.7 9.4 10.5 20.9 ni ni 6.6 14.3 12.1 30.2 23.7 99.9

39 -7.4 -0.1 -8.8 -1.6 -15.9 2.2 5.1 8.7 4.3 15.5 9.9 31.2 7.0 14.7 7.4 24.3 13.8 47.1

40 -6.2 0.2 -7.6 0.7 ni ni 1.2 5.1 5.8 14.2 ni ni 2.7 11.3 8.0 21.8 16.4 99.6

41 -5.8 -1.0 -10.4 -2.3 ni ni 5.8 9.6 10.1 22.8 ni ni 8.5 15.2 13.1 33.2 27.6 96.9

43 -6.6 -1.5 -7.1 -1.7 -9.6 0.9 5.4 10.1 7.1 12.5 8.9 19.3 8.3 16.7 9.8 17.7 11.5 28.9

23 -10.8 -3.0 -10.9 -3.8 -14.6 -5.2 -0.7 7.8 5.2 14.3 10.2 21.7 3.4 18.6 9.4 25.2 16.1 36.3

24 -3.5 0.2 -11.7 -2.2 ni ni 5.4 9.2 11.6 21.6 ni ni 8.1 11.5 15.5 32.8 31.3 89.4

25 -6.8 -1.2 -7.7 -2.1 -13.1 0.0 2.0 6.4 5.0 12.4 10.7 25.4 4.9 12.1 8.4 20.1 13.8 38.5

27 -7.1 -0.9 -12.2 -0.5 ni ni 5.4 11.1 10.3 26.0 ni ni 8.5 18.2 14.1 38.2 23.7 99.1

28 -8.2 -1.7 -9.3 -2.2 -12.5 0.5 6.2 12.3 8.9 14.4 10.4 25.0 9.5 20.5 11.3 23.7 14.5 37.5

29 -8.5 -1.4 -8.9 -2.0 -11.7 0.5 6.1 12.4 10.5 14.1 14.5 22.8 9.7 20.9 14.1 22.4 14.0 34.5

30 -7.0 -0.6 -8.0 0.1 -16.9 4.2 1.3 5.9 5.9 14.1 11.7 30.8 3.9 12.9 9.2 22.1 10.7 47.7

31 -10.5 -2.3 -8.5 -2.0 -10.0 -0.8 5.9 14.4 12.0 19.3 15.3 26.2 9.3 24.9 14.1 27.8 17.5 36.2

32 -6.4 -2.4 -6.8 -2.5 -9.2 0.3 5.2 9.6 9.1 12.7 8.7 18.7 8.2 16.0 12.1 16.9 11.8 27.9

33 -8.3 -1.3 -8.3 -2.2 -10.3 0.4 5.5 11.2 9.7 12.8 12.9 20.4 8.3 19.5 12.4 19.9 12.5 30.7

34 -6.3 0.2 -6.3 -1.1 -9.5 1.6 5.5 10.5 8.0 12.0 9.5 21.0 7.6 16.8 9.1 18.3 11.8 30.5

35 -6.2 -0.5 -6.7 -1.5 -8.4 1.0 5.0 9.3 6.6 10.1 8.8 18.7 6.6 15.5 8.1 16.8 11.0 27.1

Page 39: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 31

ID(#)

∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

Table A8. Cont.

Table A9. The minimum and maximum changes in break-up and freeze-up dates and open-water duration (days) projected using the A2 scenario at the centroids of Ontario’s ecodistricts for three simulated periods (2011-2040, 2041-2070 and 2071-2100) across four GCMs, relative to projections for the observed 1971 to 2000 period. (Note: relative to the 1971-2000 norms, negative ∆break-up values mean later break-ups while positive ∆freeze-up values mean earlier freeze-up).

ID(#)

∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

67490622 -6.1 -4.2 -10.8 -5.6 -17.0 -9.4 5.2 8.9 9.1 12.3 7.9 18.5 9.4 15.0 15.5 20.6 17.3 35.5

67490623 -5.7 -2.9 -9.2 -5.0 -16.2 -8.0 5.0 8.8 9.0 12.2 9.0 19.2 7.9 14.5 14.6 19.3 18.4 35.4

67490624 -6.4 -3.2 -9.7 -5.4 -16.0 -8.4 5.3 9.3 5.2 11.6 8.3 19.0 8.5 15.7 12.4 19.2 17.3 35.0

67490625 -7.0 -3.2 -9.7 -4.8 -15.9 -7.4 5.6 10.7 3.7 10.9 8.5 20.1 9.7 17.7 8.5 20.3 17.5 36.0

67490626 -6.3 -2.0 -8.1 -3.6 -14.7 -6.7 4.4 9.4 4.1 11.2 6.2 19.0 6.8 15.7 10.5 17.3 13.0 33.7

67490627 -7.6 -3.8 -10.4 -5.2 -16.7 -8.0 2.7 8.5 2.9 10.7 8.9 20.0 9.6 14.0 8.3 21.1 18.2 36.7

67490628 -9.3 -3.4 -11.0 -4.6 -16.5 -6.0 1.1 7.2 3.5 12.4 9.7 20.8 6.6 13.5 8.6 23.4 17.1 37.3

67490629 -7.1 -1.5 -8.0 -3.2 -12.8 -5.1 1.9 7.8 1.2 10.4 6.4 18.4 6.5 10.5 5.3 18.4 12.5 31.2

67490630 -7.2 -2.7 -9.2 -4.3 -15.5 -6.3 5.4 10.8 3.8 10.8 8.3 19.7 9.3 18.0 8.1 19.8 16.6 35.2

67490631 -7.5 -2.9 -9.3 -3.3 -13.9 -5.4 0.6 7.0 2.6 11.4 8.1 19.1 4.4 10.6 7.2 20.7 14.7 33.0

67490632 -8.0 -2.9 -10.6 -4.5 -14.2 -6.5 3.4 9.0 3.7 11.4 9.4 19.8 10.4 13.6 9.0 22.0 16.4 34.0

67490633 -8.8 -2.0 -9.9 -2.8 -11.9 -3.2 -2.5 5.0 3.2 12.0 7.9 18.4 1.3 13.8 6.8 21.9 12.3 30.3

67490634 -9.9 -2.9 -11.3 -3.7 -15.2 -4.9 -1.6 5.2 3.8 12.7 9.4 20.7 1.8 15.1 7.8 24.0 15.1 35.9

67490635 -9.3 -2.4 -9.1 -3.2 -11.9 -3.4 -1.9 5.9 4.1 12.4 8.5 19.2 1.2 15.2 7.7 21.5 12.2 31.1

67490636 -11.3 -2.5 -10.6 -2.9 -14.5 -3.2 -1.1 7.8 4.3 13.9 10.2 22.0 2.0 19.1 7.5 24.5 14.3 36.5

67490637 -8.7 -3.0 -11.0 -3.6 -13.0 -5.7 -0.6 6.1 3.7 12.7 8.6 19.5 2.4 13.4 7.9 23.7 14.3 32.5

67490638 -9.0 -3.8 -11.2 -4.3 -16.0 -6.7 4.2 8.8 4.0 11.9 9.6 20.4 10.9 14.6 9.0 23.1 17.7 36.4

46 -3.0 1.3 -9.2 0.0 ni ni 4.8 7.6 9.4 22.1 ni ni 5.2 10.6 11.5 31.3 27.1 90.5

49 -1.5 2.9 -9.9 1.3 ni ni 5.3 7.3 12.3 21.7 ni ni 2.7 8.3 11.0 30.1 24.3 87.0

50 -5.6 0.4 -8.3 0.5 ni ni 1.4 5.1 5.9 16.3 ni ni 3.4 10.7 9.6 24.6 18.9 96.0

54 -5.7 -0.5 -7.2 -0.5 -17.8 3.4 0.2 4.9 4.3 12.5 10.0 28.1 3.2 10.6 7.4 19.7 9.9 45.9

56 -3.8 0.5 -10.1 -0.4 ni ni 5.8 8.6 10.4 22.4 ni ni 7.3 12.4 13.4 32.5 27.8 94.6

58 -4.3 0.4 -7.5 -0.7 ni ni 4.8 9.0 8.9 19.5 ni ni 6.5 13.3 11.0 27.0 20.0 100.3

59 -5.0 0.1 -9.4 -0.2 ni ni 6.2 9.6 10.7 21.9 ni ni 8.5 14.6 14.7 31.3 26.2 98.5

60 -6.8 -0.7 -7.9 -1.5 -13.4 1.9 5.6 8.6 4.2 12.9 9.7 25.2 8.1 12.5 7.4 20.8 11.8 38.6

61 -5.3 -1.0 -5.9 -0.9 -16.2 1.0 0.6 4.9 4.6 12.2 10.2 29.2 3.5 10.2 6.5 18.1 12.3 45.4

64 -4.7 0.7 -5.8 0.3 -17.5 4.3 0.3 5.0 4.3 12.5 10.0 28.2 2.2 9.7 6.2 18.3 9.1 45.7

4560 -7.3 -3.4 -10.0 -4.4 -16.3 -7.4 5.7 10.7 3.7 11.0 8.6 20.0 9.1 18.0 8.1 20.6 17.3 36.3

4598 -9.3 -2.4 -9.5 -3.6 -12.6 -0.5 7.3 13.9 11.7 14.5 14.7 23.8 11.5 23.2 15.9 24.0 18.9 36.4

4599 -9.9 -2.9 -9.6 -3.1 -13.1 0.6 6.7 13.3 11.1 14.8 10.4 24.6 10.3 23.2 15.5 24.4 14.6 37.7

Min -12.4 -4.2 -12.2 -4.8 -19.3 -7.4 -1.1 4.9 3.7 10.1 8.6 18.7 1.4 8.3 6.2 16.8 9.0 27.1

Max -1.5 2.9 -5.8 1.3 -8.4 4.7 8.3 17.0 13.5 26.0 18.2 32.0 13.1 29.0 19.5 38.2 31.3 100.3

Page 40: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

32 CLIMATE CHANGE RESEARCH REPORT CCRR-40

67490639 -11.4 -2.7 -11.5 -3.1 -15.1 -4.8 0.0 8.6 5.1 15.1 10.9 23.1 3.5 20.0 9.0 26.6 17.4 38.2

67490640 -9.5 -2.3 -10.1 -3.4 -11.8 -3.8 -2.0 5.9 4.0 12.1 8.1 18.9 1.5 15.4 7.7 22.2 12.9 30.7

67490641 -12.8 -3.2 -11.8 -3.5 -14.5 -4.6 -0.1 10.2 5.9 15.3 10.8 23.2 4.3 23.0 9.9 27.1 16.2 37.7

Table A9. Cont.

ID(#)

∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

67490622 -6.1 -4.2 -10.8 -5.6 -17.0 -9.4 5.2 8.9 9.1 12.3 7.9 18.5 9.4 15.0 15.5 20.6 17.3 35.5

67490623 -5.7 -2.9 -9.2 -5.0 -16.2 -8.0 5.0 8.8 9.0 12.2 9.0 19.2 7.9 14.5 14.6 19.3 18.4 35.4

67490624 -6.4 -3.2 -9.7 -5.4 -16.0 -8.4 5.3 9.3 5.2 11.6 8.3 19.0 8.5 15.7 12.4 19.2 17.3 35.0

67490625 -7.0 -3.2 -9.7 -4.8 -15.9 -7.4 5.6 10.7 3.7 10.9 8.5 20.1 9.7 17.7 8.5 20.3 17.5 36.0

67490626 -6.3 -2.0 -8.1 -3.6 -14.7 -6.7 4.4 9.4 4.1 11.2 6.2 19.0 6.8 15.7 10.5 17.3 13.0 33.7

67490627 -7.6 -3.8 -10.4 -5.2 -16.7 -8.0 2.7 8.5 2.9 10.7 8.9 20.0 9.6 14.0 8.3 21.1 18.2 36.7

67490628 -9.3 -3.4 -11.0 -4.6 -16.5 -6.0 1.1 7.2 3.5 12.4 9.7 20.8 6.6 13.5 8.6 23.4 17.1 37.3

67490629 -7.1 -1.5 -8.0 -3.2 -12.8 -5.1 1.9 7.8 1.2 10.4 6.4 18.4 6.5 10.5 5.3 18.4 12.5 31.2

67490630 -7.2 -2.7 -9.2 -4.3 -15.5 -6.3 5.4 10.8 3.8 10.8 8.3 19.7 9.3 18.0 8.1 19.8 16.6 35.2

67490631 -7.5 -2.9 -9.3 -3.3 -13.9 -5.4 0.6 7.0 2.6 11.4 8.1 19.1 4.4 10.6 7.2 20.7 14.7 33.0

67490632 -8.0 -2.9 -10.6 -4.5 -14.2 -6.5 3.4 9.0 3.7 11.4 9.4 19.8 10.4 13.6 9.0 22.0 16.4 34.0

67490633 -8.8 -2.0 -9.9 -2.8 -11.9 -3.2 -2.5 5.0 3.2 12.0 7.9 18.4 1.3 13.8 6.8 21.9 12.3 30.3

67490634 -9.9 -2.9 -11.3 -3.7 -15.2 -4.9 -1.6 5.2 3.8 12.7 9.4 20.7 1.8 15.1 7.8 24.0 15.1 35.9

67490635 -9.3 -2.4 -9.1 -3.2 -11.9 -3.4 -1.9 5.9 4.1 12.4 8.5 19.2 1.2 15.2 7.7 21.5 12.2 31.1

67490636 -11.3 -2.5 -10.6 -2.9 -14.5 -3.2 -1.1 7.8 4.3 13.9 10.2 22.0 2.0 19.1 7.5 24.5 14.3 36.5

67490637 -8.7 -3.0 -11.0 -3.6 -13.0 -5.7 -0.6 6.1 3.7 12.7 8.6 19.5 2.4 13.4 7.9 23.7 14.3 32.5

67490638 -9.0 -3.8 -11.2 -4.3 -16.0 -6.7 4.2 8.8 4.0 11.9 9.6 20.4 10.9 14.6 9.0 23.1 17.7 36.4

67490642 -12.4 -2.9 -11.4 -2.9 -15.3 -3.8 -0.5 9.3 4.8 14.0 10.3 22.0 2.9 21.7 8.1 25.4 15.1 37.3

67490643 -10.3 -2.4 -9.9 -2.7 -10.9 -2.7 -2.0 6.4 3.9 11.7 7.8 18.6 1.4 16.7 6.9 21.6 10.7 29.5

67490644 -10.3 -4.0 -11.5 -3.9 -14.4 -4.2 -1.7 6.0 3.8 12.9 8.5 20.0 3.4 16.3 8.4 24.4 14.0 34.4

67490645 -11.5 -3.1 -12.0 -4.9 -15.5 -6.6 0.2 8.3 5.8 15.0 11.1 22.6 4.3 19.8 11.2 27.0 18.5 38.1

67490646 -10.1 -2.5 -10.1 -2.5 -10.9 -2.8 -2.0 6.2 4.0 11.9 8.0 18.7 1.4 16.3 6.8 22.0 10.8 29.6

67490647 -10.0 -1.9 -9.1 -2.6 -10.9 -0.9 -2.0 6.1 3.8 11.1 7.4 17.4 0.8 16.1 6.5 20.2 9.8 28.3

67490648 -13.0 -3.2 -12.1 -5.6 -16.6 -6.2 1.5 11.5 7.2 16.4 12.7 24.5 5.4 24.5 13.3 28.5 19.9 41.1

67490649 -8.6 -2.1 -8.9 -1.3 -9.0 -0.6 -2.1 5.5 3.6 10.8 7.3 16.7 1.0 14.1 4.9 19.7 9.5 25.7

67490650 -9.7 -1.6 -8.3 -1.4 -9.2 -0.1 5.5 13.5 11.4 18.2 14.6 24.6 8.0 23.2 12.8 26.5 15.6 33.8

67490651 -11.4 -2.9 -10.9 -2.8 -11.8 -2.8 -0.6 8.6 5.1 13.4 9.0 21.0 3.4 20.0 8.6 24.3 12.1 32.8

67490653 -12.1 -2.8 -11.5 -4.3 -14.2 -6.0 6.9 16.5 12.9 22.2 18.4 26.6 10.6 28.6 18.4 33.7 26.4 40.8

67490654 -11.8 -3.6 -11.2 -4.2 -14.2 -3.8 1.0 9.8 6.3 14.7 11.1 22.6 5.3 21.6 11.1 25.9 16.9 36.8

67490655 -14.2 -5.1 -13.4 -6.2 -17.6 -5.8 2.0 11.3 7.7 16.5 12.7 19.3 7.9 25.5 14.7 29.9 20.6 36.9

67490657 -11.8 -1.6 -10.7 -2.8 -13.8 -4.3 5.9 16.1 11.8 21.9 17.2 26.4 8.8 27.9 16.1 32.6 23.8 40.2

67490658 -12.7 -3.0 -10.7 -3.2 -13.8 -3.1 -1.2 9.3 4.5 14.4 9.7 22.4 2.8 22.0 9.2 25.1 13.7 36.2

67490659 -12.2 -4.2 -10.6 -4.3 -14.2 -2.6 7.8 15.7 12.8 20.9 17.6 23.2 12.7 27.9 18.3 31.5 22.6 37.4

67490660 -8.6 -0.4 -8.5 -2.6 -11.7 -0.3 5.2 13.9 10.7 15.4 13.7 26.0 7.7 22.5 15.2 23.9 14.0 37.7

67490661 -11.1 -3.7 -11.0 -3.9 -14.3 -2.2 8.0 15.6 12.8 21.3 17.8 24.4 13.2 26.7 18.6 32.3 22.8 38.7

67490662 -12.1 -3.5 -11.8 -5.3 -16.6 -4.0 7.1 16.1 12.4 22.0 17.7 26.2 11.2 28.2 18.7 33.8 25.2 42.8

Page 41: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 33

67490663 -10.8 -1.6 -10.7 -4.1 -14.6 -2.5 6.8 15.7 12.2 17.5 15.6 28.3 10.6 26.5 17.9 28.2 18.7 42.9

67490664 -11.0 -3.4 -11.1 -3.6 -13.9 -1.5 7.7 14.8 12.2 20.8 17.4 24.3 13.0 25.8 18.0 31.9 21.9 38.2

67490665 -9.4 -0.7 -8.9 -2.0 -12.9 0.2 5.7 13.5 10.6 14.7 13.6 24.6 7.8 22.9 13.9 23.6 14.3 37.5

67490667 -9.4 -0.5 -10.0 -3.1 -13.9 -1.4 5.5 13.8 10.8 16.2 14.5 27.3 7.1 23.2 15.0 26.2 17.0 41.2

67490668 -9.0 -2.4 -9.5 -2.3 -11.8 0.4 6.7 13.5 11.3 14.3 14.3 23.8 10.5 22.5 15.0 23.8 14.1 35.6

67490669 -7.9 -1.1 -7.8 -1.6 -11.0 0.5 5.8 12.1 10.2 18.1 15.3 21.5 8.8 20.0 13.5 25.9 18.1 32.5

67490670 -7.5 -1.8 -9.2 -2.0 -16.9 0.5 2.9 7.6 4.4 15.8 10.0 31.9 4.7 14.7 7.6 25.0 15.7 48.8

67490672 -9.4 -2.5 -10.1 -2.4 -15.2 0.6 6.4 9.8 9.2 15.0 10.4 28.5 11.0 16.8 11.6 25.1 14.7 43.7

67490673 -9.9 -1.9 -10.0 -2.7 -12.1 0.1 6.1 12.7 10.5 18.8 15.8 22.6 9.6 22.6 15.5 28.8 19.1 34.7

67490674 -7.9 -1.7 -9.2 -2.6 -12.7 0.4 5.6 12.9 10.5 15.0 9.8 26.1 7.7 20.8 14.8 24.2 14.9 38.8

67490675 -6.8 -1.2 -7.5 -1.7 -10.0 0.9 6.0 11.2 10.1 13.6 9.4 20.6 8.6 18.0 12.6 19.2 12.3 30.6

67490676 -9.7 -2.8 -10.7 -3.2 -12.8 -0.3 6.6 13.1 11.1 14.8 10.7 24.6 11.3 22.8 15.6 25.5 15.6 37.4

67490677 -6.4 -1.5 -6.8 -1.5 -9.5 0.1 5.3 9.7 6.8 10.3 8.9 18.9 8.1 16.1 8.3 17.1 12.1 28.4

67490678 -6.4 0.2 -7.5 -1.1 -9.9 1.2 5.4 10.9 9.5 13.2 13.3 20.8 7.3 17.3 11.4 19.3 12.1 30.7

67490679 -6.5 -1.6 -8.0 -2.5 -12.1 -0.1 5.5 9.2 8.5 12.4 10.5 22.7 8.8 12.0 11.0 20.4 14.0 34.8

67490680 -6.4 -1.6 -9.3 -0.8 ni ni 0.7 6.7 5.2 17.9 ni ni 2.7 13.1 9.0 27.2 15.9 100.1

67490681 -7.4 -1.0 -11.3 -0.5 ni ni 0.0 6.4 4.9 19.7 ni ni 2.9 13.8 8.8 31.0 16.7 96.8

67490683 -7.1 -1.3 -8.9 -1.5 -17.3 2.3 1.6 7.2 6.0 15.3 11.6 29.2 4.6 14.3 9.6 24.2 13.4 46.5

Table A9. Cont.

ID(#)

∆ Break-up date, days ∆ Freeze-up date, days ∆ Open water duration, days2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

67490685 -5.4 -1.5 -6.7 -1.1 -14.4 0.7 0.6 5.1 4.7 12.2 10.4 26.5 3.5 10.5 7.9 18.9 12.8 40.9

67490686 -7.3 -0.9 -13.4 -0.8 ni ni 6.3 11.2 11.2 26.5 ni ni 10.4 18.5 15.8 39.9 28.4 97.1

67490687 -7.4 -0.9 -7.2 -1.8 -13.0 1.5 5.4 8.7 4.3 12.4 9.7 24.2 8.9 12.8 8.1 19.6 12.0 37.2

67490688 -7.4 -1.0 -9.2 -1.5 -18.0 5.4 0.9 6.5 5.5 14.9 11.3 30.1 3.2 13.9 9.7 24.1 9.9 48.1

67490689 -3.9 1.6 -7.8 0.9 ni ni 4.2 8.3 8.3 19.7 ni ni 4.5 12.2 9.0 27.5 20.1 97.0

67490690 -7.6 -1.8 -8.3 -1.8 -14.6 1.2 3.6 7.3 5.2 13.6 10.7 28.1 5.4 13.7 9.4 21.9 13.3 42.7

67490691 -6.9 -0.9 -7.8 -1.1 -17.1 4.4 0.9 5.8 5.3 14.0 11.2 27.8 4.1 12.7 9.4 21.8 10.2 44.9

67490692 -5.1 -0.5 -9.2 -1.0 ni ni 5.9 10.3 10.3 22.8 ni ni 8.4 14.8 13.5 32.0 26.9 97.6

67490693 -6.6 0.0 -7.6 -0.4 -16.6 4.4 0.9 5.6 5.6 13.8 11.4 27.2 2.9 12.2 9.2 21.4 10.3 43.8

67490694 -3.3 -0.3 -11.0 -2.0 ni ni 5.3 9.4 10.8 22.5 ni ni 7.4 11.6 14.6 31.8 29.6 89.7

67490695 -6.2 -1.0 -14.6 -3.1 ni ni 5.8 11.6 13.4 26.7 ni ni 8.8 17.8 18.8 41.3 31.3 85.5

67490696 -5.3 1.0 -8.2 1.2 ni ni 1.0 4.6 5.7 15.5 ni ni 1.7 9.9 7.4 23.7 17.6 95.3

67490697 -4.3 -0.1 -10.8 -1.1 ni ni 6.5 9.3 11.8 23.7 ni ni 8.2 13.6 15.6 34.5 27.6 93.5

67490698 -2.1 1.6 -10.1 -1.1 ni ni 4.0 7.1 9.6 21.9 ni ni 5.5 8.5 12.8 32.0 28.2 87.4

67490699 -2.8 0.9 -11.9 -1.3 ni ni 5.3 7.6 12.5 21.5 ni ni 4.6 10.4 13.8 33.4 26.6 86.0

Min -14.2 -5.1 -14.6 -6.2 -18.0 -9.4 -2.5 4.6 1.2 10.3 6.2 16.7 0.8 8.5 4.9 17.1 9.5 25.7

Max -2.1 1.6 -6.7 1.2 -9.0 5.4 8.0 16.5 13.4 26.7 18.4 31.9 13.2 28.6 18.8 41.3 31.3 100.1

Page 42: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

34 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Tabl

e A1

0. P

roje

cted

mea

n an

nual

air

tem

pera

ture

(MAA

T ºC

), br

eak-

up a

nd fr

eeze

dat

es, a

nd o

pen

wate

r dur

atio

n (d

ays)

at t

he c

entro

ids

of O

ntar

io’s

inla

nd F

isher

y M

anag

emen

t Zon

es (F

MZ)

give

n th

e cli

mat

e no

rms

for 2

011-

2040

, 204

1-20

70, a

nd 2

071-

2100

sim

ulat

ed w

ith th

e CG

CM31

GCM

, usin

g th

e B1

and

A2

emiss

ion

scen

ario

s, fo

r tw

o siz

es/d

epth

s of

lake

(S –

are

a 70

2 km

2 , m

ean

dept

h 20

m; L

- ar

ea 1

215

km2 ,

mea

n de

pth

50 m

).

Scen

ario

/ FM

Z #

2011

-204

020

41-2

070

2071

-210

0M

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erM

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erM

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erS

LS

LS

LS

LS

LS

LS

LS

LS

LB

1

1-3

.59

140.

414

0.9

338.

935

7.8

198.

521

6.9

-2.5

013

9.3

139.

734

1.6

360.

520

2.3

220.

8-2

.14

138.

013

8.5

342.

736

1.6

204.

722

3.1

20.

0313

4.1

134.

634

2.9

361.

820

8.8

227.

21.

2013

4.3

134.

834

6.2

365.

121

1.9

230.

31.

5313

2.5

133.

034

7.0

365.

921

4.5

232.

93

0.19

131.

313

1.8

347.

236

6.1

215.

923

4.3

1.38

130.

913

1.4

342.

736

1.7

211.

823

0.3

1.78

128.

812

9.3

343.

836

2.8

215.

023

3.5

42.

4812

8.1

128.

634

1.0

359.

921

2.9

231.

33.

6612

7.3

127.

834

4.4

363.

421

7.1

235.

64.

0512

7.9

128.

434

4.7

363.

721

6.8

235.

35

3.70

124.

012

4.5

344.

336

3.2

220.

323

8.7

4.86

124.

212

4.6

347.

536

6.5

223.

324

1.9

5.31

125.

212

5.7

347.

836

6.7

222.

624

1.0

61.

8112

6.1

126.

634

1.4

360.

421

5.3

233.

83.

0612

5.4

125.

934

4.8

363.

821

9.4

237.

93.

4612

5.2

125.

734

5.5

364.

522

0.3

238.

87

2.46

125.

712

6.2

344.

336

3.2

218.

623

7.0

3.75

125.

712

6.2

347.

936

6.8

222.

224

0.6

4.13

125.

412

5.8

348.

436

7.4

223.

024

1.6

81.

9812

7.8

128.

334

3.5

362.

521

5.7

234.

23.

2412

7.0

127.

534

7.4

366.

322

0.4

238.

83.

6512

7.2

127.

734

8.3

367.

222

1.1

239.

510

4.19

121.

412

1.8

351.

537

0.5

230.

124

8.7

5.57

121.

912

2.4

355.

637

4.6

233.

725

2.2

5.94

121.

512

2.0

356.

637

5.6

235.

125

3.6

114.

5311

8.5

118.

935

4.7

373.

623

6.2

254.

75.

8811

8.5

119.

035

9.3

378.

324

0.8

259.

36.

2911

8.3

118.

836

0.4

379.

324

2.1

260.

515

4.65

119.

111

9.6

354.

837

3.7

235.

725

4.1

6.06

119.

411

9.9

359.

737

8.7

240.

325

8.8

6.44

118.

911

9.3

360.

737

9.7

241.

826

0.4

167.

6710

3.4

103.

936

6.3

385.

326

2.9

281.

49.

0810

6.2

106.

737

1.9

390.

826

5.7

284.

19.

4010

6.2

106.

737

3.4

392.

426

7.2

285.

717

7.51

107.

510

8.0

369.

038

7.9

261.

527

9.9

8.97

108.

910

9.4

368.

738

7.6

259.

827

8.2

9.32

109.

410

9.9

370.

438

9.4

261.

027

9.5

187.

3910

9.4

109.

836

6.8

385.

725

7.4

275.

98.

8311

0.4

110.

837

1.9

390.

826

1.5

280.

09.

1911

0.7

111.

236

7.7

386.

725

7.0

275.

5A

2 1-3

.40

139.

614

0.1

340.

435

9.3

200.

821

9.2

-1.3

913

7.5

138.

034

5.0

363.

920

7.5

225.

90.

5813

4.8

135.

234

2.3

361.

320

7.5

226.

12

0.43

133.

913

4.4

345.

036

3.9

211.

122

9.5

2.20

131.

413

1.9

342.

036

0.9

210.

622

9.0

3.78

129.

913

0.4

345.

336

4.2

215.

423

3.8

30.

5912

9.7

130.

234

2.0

360.

921

2.3

230.

72.

4212

7.8

128.

334

6.7

365.

621

8.9

237.

34.

2512

6.5

127.

035

1.3

370.

222

4.8

243.

24

2.94

128.

112

8.5

343.

436

2.4

215.

323

3.9

4.60

125.

212

5.7

348.

436

7.3

223.

224

1.6

6.08

127.

012

7.5

350.

936

9.9

223.

924

2.4

54.

2012

4.2

124.

734

6.7

365.

722

2.5

241.

05.

8012

1.7

122.

135

1.2

370.

222

9.5

248.

17.

2412

3.7

124.

235

3.9

372.

923

0.2

248.

76

2.30

124.

812

5.3

343.

736

2.6

218.

923

7.3

3.97

123.

212

3.7

348.

936

7.9

225.

724

4.2

5.42

123.

712

4.1

352.

137

1.1

228.

424

7.0

72.

9912

5.2

125.

734

6.9

365.

822

1.7

240.

14.

6312

2.0

122.

535

2.1

371.

123

0.1

248.

66.

1912

3.2

123.

735

6.3

375.

223

3.1

251.

58

2.50

126.

512

7.0

346.

836

5.7

220.

323

8.7

4.15

124.

612

5.1

351.

337

0.3

226.

724

5.2

5.91

124.

712

5.2

356.

537

5.5

231.

825

0.3

104.

8612

1.6

122.

035

4.6

373.

523

3.0

251.

56.

3211

9.6

120.

135

9.8

378.

824

0.2

258.

77.

9711

8.6

119.

136

6.4

385.

424

7.8

266.

311

5.22

117.

811

8.3

358.

337

7.2

240.

525

8.9

6.65

116.

711

7.2

363.

138

2.1

246.

426

4.9

8.43

115.

511

6.0

369.

738

8.7

254.

227

2.7

155.

4111

8.9

119.

435

8.2

377.

223

9.3

257.

86.

7911

7.3

117.

736

3.3

382.

324

6.0

264.

68.

5511

6.4

116.

937

0.5

389.

425

4.1

272.

516

8.44

105.

110

5.5

370.

138

9.0

265.

028

3.5

9.74

104.

710

5.2

375.

939

4.9

271.

228

9.7

11.3

010

4.9

105.

438

1.8

400.

727

6.9

295.

317

8.31

107.

910

8.3

367.

438

6.3

259.

527

8.0

9.68

107.

210

7.7

373.

439

2.4

266.

228

4.7

11.4

010

7.0

107.

537

9.7

398.

627

2.7

291.

118

8.18

109.

611

0.0

371.

039

0.0

261.

428

0.0

9.55

108.

110

8.6

371.

039

0.0

262.

928

1.4

11.3

710

7.9

108.

437

7.6

396.

626

9.7

288.

2

Page 43: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 35

Tabl

e A1

1. P

roje

cted

mea

n an

nual

air

tem

pera

ture

(MAA

T ºC

), br

eak-

up a

nd fr

eeze

dat

es, a

nd o

pen

wate

r dur

atio

n (d

ays)

at t

he c

entro

ids

of O

ntar

io’s

inla

nd F

isher

y M

anag

emen

t Zon

es (F

MZ)

give

n th

e cli

mat

e no

rms

for 2

011-

2040

, 204

1-20

70, a

nd 2

071-

2100

sim

ulat

ed w

ith th

e NC

ARCC

SM3

GCM

, usin

g th

e B1

and

A2

emiss

ions

sc

enar

ios,

for t

wo s

izes/

dept

hs o

f lak

e (S

– a

rea

702

km2 ,

mea

n de

pth

20 m

; L -

area

121

5 km

2 , m

ean

dept

h 50

m).

Scen

ario

/ FM

Z #

2011

-204

020

41-2

070

2071

-210

0M

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erM

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erM

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erS

LS

LS

LS

LS

LS

LS

LS

LS

LB1

1

-2.6

313

8.9

139.

334

1.0

359.

920

2.1

220.

6-2

.12

137.

213

7.7

343.

836

2.8

206.

622

5.1

-1.7

513

6.0

136.

434

5.7

364.

720

9.7

228.

32

0.98

132.

813

3.3

346.

136

5.0

213.

323

1.7

1.39

129.

913

0.3

341.

436

0.3

211.

523

0.0

1.71

128.

512

9.0

344.

136

3.1

215.

623

4.1

31.

0712

8.4

128.

934

3.8

362.

821

5.4

233.

91.

5212

4.7

125.

234

8.1

367.

022

3.4

241.

81.

7312

2.8

123.

335

1.3

370.

222

8.5

246.

94

3.39

125.

212

5.7

346.

036

4.9

220.

823

9.2

3.78

122.

712

3.2

350.

336

9.3

227.

624

6.1

4.10

119.

111

9.5

353.

737

2.6

234.

625

3.1

54.

5912

0.5

121.

035

0.4

369.

322

9.9

248.

34.

9811

7.0

117.

535

4.7

373.

623

7.7

256.

15.

2911

5.7

116.

235

6.7

375.

724

1.0

259.

56

2.63

121.

912

2.4

347.

636

6.5

225.

724

4.1

3.07

118.

411

8.9

352.

937

1.9

234.

525

3.0

3.25

116.

011

6.4

355.

037

4.0

239.

025

7.6

73.

1711

9.7

120.

235

2.0

371.

023

2.3

250.

83.

6511

6.7

117.

235

6.5

375.

523

9.8

258.

33.

7311

5.0

115.

535

8.3

377.

324

3.3

261.

88

2.70

122.

612

3.0

351.

237

0.2

228.

624

7.2

3.22

119.

211

9.7

356.

137

5.0

236.

925

5.3

3.32

117.

511

8.0

357.

637

6.5

240.

125

8.5

104.

7411

5.2

115.

736

0.2

379.

124

5.0

263.

45.

2711

2.3

112.

736

4.4

383.

325

2.1

270.

65.

3111

1.9

112.

436

5.0

383.

925

3.1

271.

511

5.04

113.

411

3.9

362.

238

1.1

248.

826

7.2

5.62

111.

511

2.0

366.

338

5.2

254.

827

3.2

5.62

110.

711

1.2

366.

338

5.2

255.

627

4.0

155.

0311

4.5

115.

036

1.7

380.

724

7.2

265.

75.

6411

1.1

111.

636

6.0

384.

925

4.9

273.

35.

6411

0.6

111.

036

5.6

384.

525

5.0

273.

516

8.05

101.

710

2.1

372.

039

1.0

270.

328

8.9

8.63

99.9

100.

437

5.9

394.

827

6.0

294.

48.

6498

.198

.637

5.2

394.

227

7.1

295.

617

7.85

104.

710

5.2

368.

738

7.7

264.

028

2.5

8.45

102.

610

3.1

372.

839

1.7

270.

228

8.6

8.45

102.

310

2.8

371.

739

0.6

269.

428

7.8

187.

6810

6.5

107.

036

6.3

385.

325

9.8

278.

38.

3010

4.5

105.

037

0.3

389.

226

5.8

284.

28.

3310

4.3

104.

836

9.2

388.

126

4.9

283.

3A2 1

-2.8

613

8.8

139.

334

1.6

360.

620

2.8

221.

3-0

.74

134.

913

5.4

341.

736

0.7

206.

822

5.3

1.44

128.

712

9.2

351.

337

0.3

222.

624

1.1

20.

6713

0.6

131.

134

7.1

366.

021

6.5

234.

92.

6512

8.1

128.

534

6.9

365.

821

8.8

237.

34.

5312

3.0

123.

535

6.2

375.

223

3.2

251.

73

0.84

125.

712

6.2

345.

836

4.8

220.

123

8.6

2.80

122.

912

3.3

353.

937

2.9

231.

024

9.6

4.79

118.

711

9.2

362.

038

0.9

243.

326

1.7

43.

0712

2.5

123.

034

7.8

366.

722

5.3

243.

74.

9512

1.0

121.

535

4.9

373.

923

3.9

252.

46.

7211

8.6

119.

136

1.7

380.

724

3.1

261.

65

4.26

117.

511

8.0

352.

737

1.7

235.

225

3.7

6.10

118.

011

8.5

357.

937

6.8

239.

925

8.3

7.83

115.

811

6.2

364.

738

3.6

248.

926

7.4

62.

3711

8.6

119.

135

0.2

369.

223

1.6

250.

14.

1611

7.5

118.

035

6.7

375.

723

9.2

257.

75.

9311

4.6

115.

136

4.2

383.

124

9.6

268.

07

2.96

115.

511

6.0

355.

037

3.9

239.

525

7.9

4.78

116.

311

6.8

360.

137

9.1

243.

826

2.3

6.56

112.

411

2.8

368.

438

7.4

256.

027

4.6

82.

5611

8.1

118.

635

4.5

373.

423

6.4

254.

84.

4312

0.1

120.

635

9.2

378.

223

9.1

257.

66.

2611

6.3

116.

836

7.2

386.

125

0.9

269.

310

4.67

112.

811

3.3

361.

938

0.9

249.

126

7.6

6.40

112.

011

2.5

367.

938

6.9

255.

927

4.4

8.10

108.

210

8.7

372.

239

1.2

264.

028

2.5

115.

0211

1.0

111.

536

3.7

382.

725

2.7

271.

26.

7511

0.9

111.

436

9.6

388.

525

8.7

277.

18.

4810

7.1

107.

637

3.0

391.

926

5.9

284.

315

5.12

110.

811

1.3

363.

438

2.3

252.

627

1.0

6.73

110.

811

1.3

369.

338

8.2

258.

527

6.9

8.43

108.

610

9.1

373.

239

2.1

264.

628

3.0

168.

1198

.398

.837

2.9

391.

927

4.6

293.

19.

6597

.297

.738

1.2

400.

228

4.0

302.

511

.26

88.9

89.4

395.

041

4.0

306.

132

4.6

177.

9510

2.0

102.

536

9.8

388.

826

7.8

286.

39.

4910

1.3

101.

837

7.3

396.

227

6.0

294.

411

.16

94.0

94.5

391.

541

0.4

297.

531

5.9

187.

7910

4.7

105.

236

7.4

386.

326

2.7

281.

19.

3510

3.2

103.

737

4.2

393.

227

1.0

289.

511

.05

100.

210

0.6

384.

640

3.5

284.

430

2.9

Page 44: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

36 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Tabl

e A1

2. P

roje

cted

mea

n an

nual

air

tem

pera

ture

(MAA

T ºC

), br

eak-

up a

nd fr

eeze

dat

es, a

nd o

pen

wate

r dur

atio

n (d

ays)

at t

he c

entro

ids

of O

ntar

io’s

inla

nd

Fish

ery

Man

agem

ent Z

ones

(FM

Z) g

iven

the

clim

ate

norm

s fo

r 201

1-20

40, 2

041-

2070

, and

207

1-21

00 s

imul

ated

with

the

MIR

OC3

2MR

GCM

, usin

g th

e B1

and

A2

em

issio

ns s

cena

rios,

for t

wo s

izes/

dept

hs o

f lak

e (S

– a

rea

702

km2 ,

mea

n de

pth

20 m

; L -

area

121

5 km

2 , m

ean

dept

h 50

m).

Scen

ario

/ FM

Z #

2011

-204

020

41-2

070

2071

-210

0M

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erM

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erM

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erS

LS

LS

LS

LS

LS

LS

LS

LS

LB1

1

-2.7

114

0.1

140.

633

9.9

358.

919

9.8

218.

3-1

.33

139.

514

0.0

342.

936

1.9

203.

422

1.9

-0.0

813

7.1

137.

634

6.6

365.

520

9.5

227.

92

0.60

134.

213

4.7

343.

936

2.8

209.

722

8.1

1.81

134.

713

5.2

347.

436

6.3

212.

723

1.1

2.79

132.

113

2.6

342.

036

1.0

209.

922

8.4

30.

9513

0.6

131.

034

0.1

359.

120

9.5

228.

12.

2413

1.4

131.

934

3.6

362.

621

2.2

230.

73.

3112

9.5

130.

034

6.7

365.

721

7.2

235.

74

2.91

127.

712

8.1

342.

236

1.2

214.

523

3.1

4.14

128.

212

8.7

346.

036

5.0

217.

823

6.3

5.09

125.

312

5.8

348.

636

7.5

223.

324

1.7

54.

0812

3.0

123.

534

5.5

364.

522

2.5

241.

05.

3712

4.3

124.

834

9.9

368.

822

5.6

244.

06.

3512

1.8

122.

235

2.1

371.

023

0.3

248.

86

2.20

124.

812

5.3

342.

936

1.8

218.

123

6.5

3.45

125.

712

6.2

347.

136

6.0

221.

423

9.8

4.39

122.

912

3.4

349.

436

8.4

226.

524

5.0

72.

8712

4.4

124.

934

6.2

365.

122

1.8

240.

24.

1412

4.7

125.

135

0.1

369.

022

5.4

243.

95.

0512

2.7

123.

235

2.5

371.

522

9.8

248.

38

2.61

128.

112

8.6

345.

236

4.2

217.

123

5.6

3.92

127.

512

8.0

349.

336

8.2

221.

824

0.2

4.86

125.

812

6.3

351.

837

0.8

226.

024

4.5

104.

7111

9.9

120.

435

4.9

373.

923

5.0

253.

56.

0411

9.7

120.

235

9.9

378.

824

0.2

258.

67.

0111

8.4

118.

936

2.0

381.

024

3.6

262.

111

5.16

117.

011

7.5

357.

837

6.7

240.

825

9.2

6.52

117.

511

8.0

362.

538

1.5

245.

026

3.5

7.46

117.

211

7.6

364.

338

3.2

247.

126

5.6

155.

2411

6.6

117.

135

8.4

377.

424

1.8

260.

36.

6411

6.9

117.

436

3.6

382.

624

6.7

265.

27.

5711

7.2

117.

736

5.1

384.

124

7.9

266.

416

8.27

102.

110

2.6

370.

138

9.1

268.

028

6.5

9.60

104.

310

4.8

375.

539

4.5

271.

228

9.7

10.5

610

4.2

104.

737

7.9

396.

827

3.7

292.

117

8.07

105.

510

6.0

371.

439

0.4

265.

928

4.4

9.47

106.

810

7.3

372.

339

1.3

265.

528

4.0

10.3

810

7.8

108.

337

3.6

392.

626

5.8

284.

318

7.92

107.

710

8.2

369.

238

8.2

261.

528

0.0

9.34

108.

910

9.4

369.

838

8.8

260.

927

9.4

10.2

210

9.4

109.

937

0.6

389.

526

1.2

279.

6A2 1

-2.5

714

0.8

141.

233

9.4

358.

319

8.6

217.

1-0

.83

138.

313

8.8

344.

336

3.3

206.

022

4.5

2.18

134.

813

5.2

343.

836

2.7

209.

022

7.5

20.

7713

5.6

136.

134

3.3

362.

320

7.7

226.

22.

2413

4.1

134.

634

0.1

359.

020

6.0

224.

45.

0113

0.7

131.

234

7.1

366.

021

6.4

234.

83

1.16

132.

013

2.4

340.

135

9.0

208.

122

6.6

2.73

131.

013

1.5

345.

036

4.0

214.

023

2.5

5.45

128.

812

9.3

351.

837

0.7

223.

024

1.4

43.

0312

8.9

129.

334

2.0

360.

921

3.1

231.

64.

6212

8.2

128.

634

6.8

365.

721

8.6

237.

17.

3412

6.9

127.

435

3.0

372.

022

6.1

244.

65

4.16

124.

312

4.7

345.

436

4.3

221.

123

9.6

5.87

124.

912

5.4

350.

536

9.5

225.

624

4.1

8.63

125.

612

6.1

355.

937

4.8

230.

324

8.7

62.

3312

6.7

127.

234

2.8

361.

721

6.1

234.

53.

9412

5.4

125.

934

8.1

367.

022

2.7

241.

16.

6412

4.6

125.

135

3.7

372.

722

9.1

247.

67

3.05

125.

612

6.1

346.

036

5.0

220.

423

8.9

4.59

124.

412

4.9

351.

137

0.1

226.

724

5.2

7.26

122.

912

3.4

357.

237

6.2

234.

325

2.8

82.

8012

8.7

129.

234

5.2

364.

221

6.5

235.

04.

3512

7.4

127.

935

0.5

369.

522

3.1

241.

66.

9612

6.3

126.

835

6.7

375.

723

0.4

248.

910

4.78

120.

112

0.6

354.

237

3.2

234.

125

2.6

6.40

119.

612

0.1

360.

737

9.7

241.

125

9.6

9.09

120.

912

1.4

367.

138

6.0

246.

226

4.6

115.

2011

7.5

118.

035

7.4

376.

323

9.9

258.

36.

8511

7.5

118.

036

3.3

382.

224

5.8

264.

29.

4111

9.9

120.

436

9.2

388.

124

9.3

267.

715

5.26

117.

211

7.7

357.

937

6.8

240.

725

9.1

6.94

117.

811

8.3

364.

538

3.4

246.

726

5.1

9.42

120.

512

1.0

369.

838

8.8

249.

326

7.8

168.

2810

2.0

102.

536

9.3

388.

226

7.3

285.

79.

9610

4.9

105.

337

6.5

395.

427

1.6

290.

112

.50

110.

511

1.0

381.

940

0.8

271.

428

9.8

178.

0810

5.2

105.

737

1.1

390.

126

5.9

284.

49.

7810

7.8

108.

337

2.9

391.

926

5.1

283.

612

.20

110.

811

1.3

378.

239

7.1

267.

428

5.8

187.

9310

7.1

107.

636

9.1

388.

026

2.0

280.

49.

6310

8.7

109.

237

0.3

389.

226

1.6

280.

011

.96

111.

111

1.6

375.

739

4.6

264.

628

3.0

Page 45: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 37

Tabl

e A1

3. P

roje

cted

mea

n an

nual

air

tem

pera

ture

(MAA

T ºC

), br

eak-

up a

nd fr

eeze

dat

es, a

nd o

pen

wate

r dur

atio

n (d

ays)

at t

he c

entro

ids

of O

ntar

io’s

inla

nd F

isher

y M

anag

emen

t Zon

es (F

MZ)

give

n th

e cli

mat

e no

rms

for 2

011-

2040

, 204

1-20

70, a

nd 2

071-

2100

sim

ulat

ed w

ith th

e CS

IRO

MK3

5 G

CM, u

sing

the

B1 a

nd A

2 em

issio

ns

scen

ario

s, fo

r two

size

s/de

pths

of l

ake

(S –

are

a 70

2 km

2 , m

ean

dept

h 20

m; L

- ar

ea 1

215

km2 ,

mea

n de

pth

50 m

).

Scen

ario

/ FM

Z #

2011

-204

020

41-2

070

2071

-210

0M

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erM

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erM

AAT

Brea

k-up

Free

ze-u

pO

pen

wat

erS

LS

LS

LS

LS

LS

LS

LS

LS

LB1

1

-3.7

014

1.5

142.

033

7.3

356.

319

5.8

214.

3-2

.40

140.

414

0.9

339.

135

8.1

198.

721

7.2

-0.8

113

8.3

138.

834

3.0

362.

020

4.7

223.

22

-0.2

113

4.8

135.

334

1.7

360.

720

6.9

225.

40.

9213

4.1

134.

534

3.7

362.

720

9.6

228.

22.

0313

2.3

132.

834

7.3

366.

321

5.0

233.

53

0.10

130.

313

0.8

347.

136

6.0

216.

823

5.2

1.22

129.

913

0.4

341.

136

0.1

211.

222

9.7

2.55

129.

212

9.6

344.

836

3.8

215.

623

4.2

42.

3512

8.2

128.

734

0.7

359.

621

2.5

230.

93.

3812

7.6

128.

134

2.9

361.

821

5.3

233.

74.

4512

6.1

126.

534

6.0

365.

021

9.9

238.

55

3.65

123.

712

4.2

344.

836

3.7

221.

123

9.5

4.54

122.

412

2.9

346.

836

5.7

224.

424

2.8

5.64

122.

412

2.9

349.

536

8.5

227.

124

5.6

61.

7112

4.7

125.

234

1.6

360.

521

6.9

235.

32.

6712

3.8

124.

334

3.7

362.

721

9.9

238.

43.

7312

3.2

123.

734

6.4

365.

322

3.2

241.

67

2.35

124.

012

4.5

345.

436

4.3

221.

423

9.8

3.31

123.

112

3.6

347.

336

6.2

224.

224

2.6

4.40

122.

412

2.9

350.

236

9.1

227.

824

6.2

81.

9912

6.3

126.

734

5.3

364.

221

9.0

237.

52.

9712

6.7

127.

234

6.8

365.

722

0.1

238.

54.

1512

4.5

125.

035

0.3

369.

322

5.8

244.

310

4.15

118.

311

8.7

354.

437

3.4

236.

125

4.7

4.97

119.

712

0.2

355.

037

4.0

235.

325

3.8

5.83

118.

711

9.2

357.

637

6.5

238.

925

7.3

114.

5711

5.9

116.

435

7.8

376.

724

1.9

260.

35.

3511

6.4

116.

935

8.6

377.

624

2.2

260.

76.

1711

6.2

116.

636

0.8

379.

824

4.6

263.

215

4.73

116.

411

6.9

357.

737

6.7

241.

325

9.8

5.44

116.

711

7.2

358.

937

7.8

242.

226

0.6

6.13

116.

011

6.5

360.

837

9.7

244.

826

3.2

167.

8310

3.0

103.

536

8.3

387.

326

5.3

283.

88.

5110

2.4

102.

937

0.2

389.

226

7.8

286.

39.

0610

2.0

102.

537

2.2

391.

127

0.2

288.

617

7.66

106.

410

6.8

370.

338

9.2

263.

928

2.4

8.36

105.

610

6.1

366.

838

5.7

261.

227

9.6

8.99

104.

710

5.2

368.

638

7.5

263.

928

2.3

187.

5510

9.0

109.

536

8.1

387.

125

9.1

277.

68.

2710

9.0

109.

437

0.4

389.

326

1.4

279.

98.

9610

7.9

108.

437

2.0

391.

026

4.1

282.

6A2 1

-3.1

314

0.8

141.

333

7.9

356.

819

7.1

215.

5-1

.21

138.

613

9.1

342.

636

1.6

204.

022

2.5

1.17

135.

213

5.7

340.

635

9.5

205.

422

3.8

20.

1613

4.6

135.

134

2.0

360.

920

7.4

225.

81.

7413

2.8

133.

334

7.2

366.

221

4.4

232.

93.

6412

9.9

130.

434

4.8

363.

721

4.9

233.

33

0.60

130.

713

1.1

347.

236

6.1

216.

523

5.0

2.30

128.

712

9.1

344.

636

3.6

215.

923

4.5

4.23

126.

712

7.2

350.

636

9.6

223.

924

2.4

42.

6012

8.4

128.

934

0.4

359.

421

2.0

230.

54.

1912

5.5

126.

034

6.4

365.

422

0.9

239.

45.

8912

4.9

125.

435

1.5

370.

422

6.6

245.

05

3.83

123.

112

3.6

344.

436

3.3

221.

323

9.7

5.39

121.

712

2.1

350.

336

9.2

228.

624

7.1

6.97

120.

712

1.2

355.

237

4.1

234.

525

2.9

61.

9412

4.8

125.

334

1.3

360.

321

6.5

235.

03.

4712

3.2

123.

734

6.9

365.

822

3.7

242.

15.

1712

1.6

122.

135

2.2

371.

223

0.6

249.

17

2.65

123.

912

4.4

345.

036

3.9

221.

123

9.5

4.18

122.

112

2.6

350.

536

9.5

228.

424

6.9

5.93

120.

712

1.2

355.

837

4.8

235.

125

3.6

82.

3412

6.4

126.

934

4.7

363.

721

8.3

236.

84.

0012

5.2

125.

735

0.2

369.

222

5.0

243.

55.

7412

3.3

123.

835

5.6

374.

523

2.3

250.

710

4.33

119.

912

0.4

352.

937

1.8

233.

025

1.4

5.80

118.

811

9.3

358.

237

7.1

239.

425

7.8

7.31

116.

111

6.5

363.

538

2.4

247.

426

5.9

114.

7111

6.6

117.

135

6.5

375.

523

9.9

258.

46.

2211

6.1

116.

536

1.1

380.

024

5.0

263.

57.

7111

4.1

114.

636

6.3

385.

225

2.2

270.

615

4.79

117.

111

7.6

356.

537

5.5

239.

425

7.9

6.19

116.

811

7.3

361.

038

0.0

244.

226

2.7

7.59

114.

011

4.4

366.

338

5.3

252.

327

0.9

167.

8310

2.6

103.

136

8.0

387.

026

5.4

283.

99.

0910

1.7

102.

137

2.7

391.

727

1.0

289.

610

.45

99.3

99.8

378.

639

7.5

279.

329

7.7

177.

6910

6.0

106.

537

0.0

388.

926

4.0

282.

49.

0210

5.4

105.

936

8.9

387.

826

3.5

281.

910

.39

103.

610

4.1

374.

439

3.4

270.

828

9.3

187.

6010

8.6

109.

136

8.0

386.

925

9.4

277.

89.

0010

7.5

108.

036

6.6

385.

625

9.1

277.

610

.37

106.

010

6.5

372.

239

1.2

266.

228

4.7

Page 46: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

38 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Table A14. Projected mean annual air temperature (MAAT ºC), ice cover duration (days) and maximum ice thickness (cm) at the centroids of Ontario’s inland Fishery Management Zones (FMZ) given the climate norms for 2011-2040, 2041-2070, and 2071-2100 simulated with the CGCM31 GCM, using the B1 and A2 emissions scenarios, for two sizes/depths of lake (S – area 702 km2, mean depth 20 m; L - area 1215 km2, mean depth 50 m).

Scenario/ FMZ

#

2011-2040 2041-2070 2071-2100MAAT Ice cover Ice Thickness MAAT Ice cover Ice Thickness MAAT Ice cover Ice Thickness

S L S L S L S L S L S LB1 1 -3.59 166.5 148.1 106.7 97.1 -2.50 162.7 144.2 104.7 95.1 -2.14 160.3 141.9 103.5 93.92 0.03 156.2 137.8 95.7 86.5 1.20 153.1 134.7 94.1 85.0 1.53 150.5 132.1 92.9 83.63 0.19 149.1 130.7 90.6 81.6 1.38 153.2 134.7 92.6 83.6 1.78 150.0 131.5 91.1 82.04 2.48 152.1 133.7 89.5 80.7 3.66 147.9 129.4 87.5 78.6 4.05 148.2 129.7 87.6 78.85 3.70 144.7 126.3 83.6 75.0 4.86 141.7 123.1 82.2 73.4 5.31 142.4 124.0 82.5 73.96 1.81 149.7 131.2 85.8 77.2 3.06 145.6 127.1 83.9 75.3 3.46 144.7 126.2 83.5 74.87 2.46 146.4 128.0 84.0 75.4 3.75 142.8 124.4 82.3 73.7 4.13 142.0 123.4 82.0 73.38 1.98 149.3 130.8 86.2 77.6 3.24 144.6 126.2 84.0 75.4 3.65 143.9 125.5 83.7 75.0

10 4.19 134.9 116.3 75.0 66.6 5.57 131.3 112.8 73.4 65.0 5.94 129.9 111.4 72.8 64.411 4.53 128.8 110.3 72.1 63.7 5.88 124.2 105.7 70.0 61.5 6.29 122.9 104.5 69.4 61.015 4.65 129.3 110.9 69.9 61.8 6.06 124.7 106.2 67.9 59.7 6.44 123.2 104.6 67.2 59.016 7.67 102.1 83.6 55.3 47.1 9.08 99.3 80.9 54.1 45.9 9.40 97.8 79.3 53.4 45.217 7.51 103.5 85.1 56.9 48.7 8.97 105.2 86.8 57.7 49.4 9.32 104.0 85.5 57.1 48.818 7.39 107.6 89.1 59.5 51.2 8.83 103.5 85.0 57.7 49.3 9.19 108.0 89.5 59.7 51.4A21 -3.40 164.2 145.8 105.5 95.9 -1.39 157.5 139.1 102.0 92.4 0.58 157.5 138.9 102.0 92.32 0.43 153.9 135.5 94.5 85.4 2.20 154.4 136.0 94.8 85.6 3.78 149.6 131.2 92.4 83.23 0.59 152.7 134.3 92.4 83.4 2.42 146.1 127.7 89.2 80.1 4.25 140.2 121.8 86.3 77.14 2.94 149.7 131.1 88.4 79.4 4.60 141.8 123.4 84.6 75.7 6.08 141.1 122.6 84.3 75.35 4.20 142.5 124.0 82.6 73.9 5.80 135.5 116.9 79.3 70.5 7.24 134.8 116.3 79.0 70.26 2.30 146.1 127.7 84.2 75.6 3.97 139.3 120.8 81.0 72.3 5.42 136.6 118.0 79.7 70.97 2.99 143.3 124.9 82.6 74.0 4.63 134.9 116.4 78.7 69.9 6.19 131.9 113.5 77.3 68.58 2.50 144.7 126.3 84.1 75.4 4.15 138.3 119.8 81.1 72.3 5.91 133.2 114.7 78.7 69.8

10 4.86 132.0 113.5 73.7 65.3 6.32 124.8 106.3 70.5 62.0 7.97 117.2 98.7 67.0 58.411 5.22 124.5 106.1 70.2 61.7 6.65 118.6 100.1 67.5 58.9 8.43 110.8 92.3 63.9 55.215 5.41 125.7 107.2 68.3 60.2 6.79 119.0 100.4 65.4 57.1 8.55 110.9 92.5 61.8 53.516 8.44 100.0 81.5 54.4 46.2 9.74 93.8 75.3 51.7 43.3 11.30 88.1 69.7 49.2 40.717 8.31 105.5 87.0 57.8 49.5 9.68 98.8 80.3 54.8 46.4 11.40 92.3 73.9 51.9 43.518 8.18 103.6 85.0 57.7 49.3 9.55 102.1 83.6 57.1 48.6 11.37 95.3 76.8 54.0 45.4

Page 47: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 39

Table A15. Projected mean annual air temperature (MAAT ºC), ice cover duration (days) and maximum ice thickness (cm) at the centroids of Ontario’s inland Fishery Management Zones (FMZ) given the climate norms for 2011-2040, 2041-2070, and 2071-2100 simulated with the NCARCCSM3 GCM, using the B1 and A2 emissions scenarios, for two sizes/depths of lake (S – area 702 km2, mean depth 20 m; L - area 1215 km2, mean depth 50 m).

Scenario/ FMZ

#

2011-2040 2041-2070 2071-2100MAAT Ice cover Ice Thickness MAAT Ice cover Ice Thickness MAAT Ice cover Ice Thickness

S L S L S L S L S L S LB1 1 -2.63 162.9 144.4 104.8 95.2 -2.12 158.4 139.9 102.5 92.8 -1.75 155.3 136.7 100.9 91.12 0.98 151.7 133.3 93.4 84.3 1.39 153.5 135.0 94.3 85.1 1.71 149.4 130.9 92.3 83.03 1.07 149.6 131.1 90.9 81.8 1.52 141.6 123.2 87.0 77.8 1.73 136.5 118.1 84.4 75.24 3.39 144.2 125.8 85.7 76.9 3.78 137.4 118.9 82.5 73.5 4.10 130.4 111.9 79.1 70.05 4.59 135.1 116.7 79.1 70.4 4.98 127.3 108.9 75.4 66.6 5.29 124.0 105.5 73.9 64.96 2.63 139.3 120.9 81.0 72.3 3.07 130.5 112.0 76.9 68.0 3.25 126.0 107.4 74.8 65.87 3.17 132.7 114.2 77.6 68.9 3.65 125.2 106.7 74.1 65.2 3.73 121.7 103.2 72.4 63.58 2.70 136.4 117.8 80.2 71.3 3.22 128.1 109.7 76.3 67.4 3.32 124.9 106.5 74.7 65.8

10 4.74 120.0 101.6 68.3 59.8 5.27 112.9 94.4 65.0 56.4 5.31 111.9 93.5 64.6 55.911 5.04 116.2 97.8 66.4 57.8 5.62 110.2 91.8 63.6 55.0 5.62 109.4 91.0 63.3 54.615 5.03 117.8 99.3 64.9 56.6 5.64 110.1 91.7 61.5 53.1 5.64 110.0 91.5 61.4 53.016 8.05 94.7 76.1 52.1 43.7 8.63 89.0 70.6 49.6 41.2 8.64 87.9 69.4 49.1 40.617 7.85 101.0 82.5 55.8 47.5 8.45 94.8 76.4 53.1 44.6 8.45 95.6 77.2 53.4 45.018 7.68 105.2 86.7 58.5 50.1 8.30 99.2 80.8 55.8 47.3 8.33 100.1 81.7 56.2 47.7A21 -2.86 162.2 143.7 104.5 94.8 -0.74 158.2 139.7 102.4 92.7 1.44 142.4 123.9 94.1 84.22 0.67 148.5 130.1 91.9 82.6 2.65 146.2 127.7 90.7 81.4 4.53 131.8 113.3 83.5 74.03 0.84 144.9 126.4 88.6 79.4 2.80 134.0 115.4 83.2 73.8 4.79 121.7 103.3 77.0 67.64 3.07 139.7 121.3 83.6 74.7 4.95 131.1 112.6 79.4 70.3 6.72 121.9 103.4 74.9 65.75 4.26 129.8 111.3 76.6 67.7 6.10 125.1 106.7 74.4 65.5 7.83 116.1 97.6 70.1 61.06 2.37 133.4 114.9 78.2 69.4 4.16 125.8 107.3 74.7 65.7 5.93 115.4 97.0 69.7 60.67 2.96 125.5 107.1 74.3 65.4 4.78 121.2 102.7 72.2 63.2 6.56 109.0 90.4 66.3 57.18 2.56 128.6 110.2 76.5 67.6 4.43 125.9 107.4 75.2 66.2 6.26 114.1 95.7 69.5 60.4

10 4.67 115.9 97.4 66.4 57.8 6.40 109.1 90.6 63.3 54.5 8.10 101.0 82.5 59.5 50.611 5.02 112.3 93.8 64.6 55.9 6.75 106.3 87.9 61.8 53.1 8.48 99.1 80.7 58.4 49.615 5.12 112.4 94.0 62.5 54.1 6.73 106.5 88.1 59.8 51.4 8.43 100.4 82.0 57.1 48.516 8.11 90.4 71.9 50.2 41.8 9.65 81.0 62.5 46.0 37.3 11.26 58.9 40.4 35.6 26.317 7.95 97.2 78.7 54.1 45.7 9.49 89.0 70.6 50.4 41.9 11.16 67.5 49.1 40.4 31.318 7.79 102.3 83.9 57.2 48.8 9.35 94.0 75.5 53.4 44.8 11.05 80.6 62.1 47.2 38.3

Page 48: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

40 CLIMATE CHANGE RESEARCH REPORT CCRR-40

Table A16. Projected mean annual air temperature (MAAT ºC), ice cover duration (days) and maximum ice thickness (cm) at the centroids of Ontario’s inland Fishery Management Zones (FMZ) given the climate norms for 2011-2040, 2041-2070, and 2071-2100 simulated with the MIROC32MR GCM, using the B1 and A2 emissions scenarios, for two sizes/depths of lake (S – area 702 km2, mean depth 20 m; L - area 1215 km2, mean depth 50 m).

Scenario/ FMZ

#

2011-2040 2041-2070 2071-2100MAAT Ice cover Ice Thickness MAAT Ice cover Ice Thickness MAAT Ice cover Ice Thickness

S L S L S L S L S L S LB1 1 -2.71 165.2 146.7 106.0 96.4 -1.33 161.6 143.1 104.2 94.5 -0.08 155.5 137.1 101.0 91.32 0.60 155.3 136.9 95.2 86.1 1.81 152.3 133.9 93.7 84.6 2.79 155.1 136.6 95.1 85.93 0.95 155.5 136.9 93.7 84.6 2.24 152.8 134.3 92.4 83.4 3.31 147.8 129.3 90.0 80.94 2.91 150.5 131.9 88.7 79.8 4.14 147.2 128.7 87.2 78.3 5.09 141.7 123.3 84.6 75.65 4.08 142.5 124.0 82.6 73.9 5.37 139.4 121.0 81.1 72.4 6.35 134.7 116.2 78.9 70.16 2.20 146.9 128.5 84.5 75.9 3.45 143.6 125.2 83.0 74.4 4.39 138.5 120.0 80.6 71.97 2.87 143.2 124.8 82.5 73.9 4.14 139.6 121.1 80.9 72.2 5.05 135.2 116.7 78.8 70.18 2.61 147.9 129.4 85.6 76.9 3.92 143.2 124.8 83.4 74.7 4.86 139.0 120.5 81.4 72.6

10 4.71 130.0 111.5 72.8 64.4 6.04 124.8 106.4 70.5 62.0 7.01 121.4 102.9 68.9 60.411 5.16 124.2 105.8 70.0 61.6 6.52 120.0 101.5 68.1 59.6 7.46 117.9 99.4 67.2 58.615 5.24 123.2 104.7 67.2 59.0 6.64 118.3 99.8 65.1 56.8 7.57 117.1 98.6 64.6 56.316 8.27 97.0 78.5 53.1 44.8 9.60 93.8 75.3 51.7 43.3 10.56 91.3 72.9 50.6 42.217 8.07 99.1 80.6 55.0 46.6 9.47 99.5 81.0 55.1 46.8 10.38 99.2 80.7 55.0 46.618 7.92 103.5 85.0 57.7 49.3 9.34 104.1 85.6 58.0 49.6 10.22 103.8 85.4 57.8 49.5A21 -2.57 166.4 147.9 106.6 97.0 -0.83 159.0 140.5 102.8 93.1 2.18 156.0 137.5 101.3 91.52 0.77 157.3 138.8 96.2 87.0 2.24 159.0 140.6 97.0 87.9 5.01 148.6 130.2 91.9 82.73 1.16 156.9 138.4 94.4 85.4 2.73 151.0 132.5 91.6 82.5 5.45 142.0 123.6 87.2 78.04 3.03 151.9 133.4 89.4 80.6 4.62 146.4 127.9 86.8 77.9 7.34 138.9 120.4 83.2 74.25 4.16 143.9 125.4 83.2 74.5 5.87 139.4 120.9 81.1 72.4 8.63 134.7 116.3 78.9 70.26 2.33 148.9 130.5 85.5 76.9 3.94 142.3 123.9 82.4 73.8 6.64 135.9 117.4 79.4 70.67 3.05 144.6 126.1 83.2 74.5 4.59 138.3 119.8 80.3 71.5 7.26 130.7 112.2 76.7 67.98 2.80 148.5 130.0 85.9 77.2 4.35 141.9 123.4 82.8 74.0 6.96 134.6 116.1 79.4 70.5

10 4.78 130.9 112.4 73.2 64.8 6.40 123.9 105.4 70.1 61.6 9.09 118.8 100.4 67.8 59.211 5.20 125.1 106.7 70.4 62.0 6.85 119.2 100.8 67.8 59.2 9.41 115.7 97.3 66.2 57.615 5.26 124.3 105.9 67.7 59.6 6.94 118.3 99.9 65.1 56.9 9.42 115.7 97.2 63.9 55.616 8.28 97.7 79.3 53.4 45.2 9.96 93.4 74.9 51.5 43.2 12.50 93.6 75.2 51.6 43.317 8.08 99.1 80.6 55.0 46.6 9.78 99.9 81.4 55.3 47.0 12.20 97.6 79.2 54.3 45.918 7.93 103.0 84.6 57.5 49.1 9.63 103.4 85.0 57.7 49.3 11.96 100.4 82.0 56.3 47.9

Page 49: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CLIMATE CHANGE RESEARCH REPORT CCRR-40 41

Table A17. Projected mean annual air temperature (MAAT ºC), ice cover duration (days) and maximum ice thickness (cm) at the centroids of Ontario’s inland Fishery Management Zones (FMZ) given the climate norms for 2011-2040, 2041-2070, and 2071-2100 simulated with the CSIROMK35 GCM, using the B1 and A2 emissions scenarios, for two sizes/depths of lake (S – area 702 km2, mean depth 20 m; L - area 1215 km2, mean depth 50 m).

Scenario/ FMZ

#

2011-2040 2041-2070 2071-2100MAAT Ice cover Ice Thickness MAAT Ice cover Ice Thickness MAAT Ice cover Ice Thickness

S L S L S L S L S L S LB1 1 -3.70 169.2 150.7 108.1 98.5 -2.40 166.3 147.8 106.6 97.0 -0.81 160.3 141.8 103.5 93.82 -0.21 158.1 139.6 96.6 87.4 0.92 155.4 136.8 95.3 86.0 2.03 150.0 131.5 92.6 83.33 0.10 148.2 129.8 90.2 81.1 1.22 153.8 135.3 92.9 83.9 2.55 149.4 130.8 90.8 81.64 2.35 152.5 134.1 89.7 80.9 3.38 149.7 131.3 88.4 79.5 4.45 145.1 126.5 86.2 77.25 3.65 143.9 125.5 83.2 74.6 4.54 140.6 122.2 81.7 73.0 5.64 137.9 119.4 80.4 71.76 1.71 148.1 129.7 85.1 76.5 2.67 145.1 126.6 83.7 75.0 3.73 141.8 123.4 82.2 73.57 2.35 143.6 125.2 82.7 74.1 3.31 140.8 122.4 81.4 72.8 4.40 137.2 118.8 79.8 71.18 1.99 146.0 127.5 84.7 76.0 2.97 144.9 126.5 84.2 75.5 4.15 139.2 120.7 81.5 72.7

10 4.15 128.9 110.3 72.3 63.8 4.97 129.7 111.2 72.7 64.3 5.83 126.1 107.7 71.1 62.611 4.57 123.1 104.7 69.5 61.1 5.35 122.8 104.3 69.4 60.9 6.17 120.4 101.8 68.3 59.715 4.73 123.7 105.2 67.5 59.3 5.44 122.8 104.4 67.1 58.9 6.13 120.2 101.8 65.9 57.716 7.83 99.7 81.2 54.3 46.0 8.51 97.2 78.7 53.2 44.9 9.06 94.8 76.4 52.1 43.917 7.66 101.1 82.6 55.9 47.5 8.36 103.8 85.4 57.0 48.8 8.99 101.1 82.7 55.9 47.618 7.55 105.9 87.4 58.8 50.4 8.27 103.6 85.1 57.7 49.3 8.96 100.9 82.4 56.5 48.1A21 -3.13 167.9 149.5 107.4 97.9 -1.21 161.0 142.5 103.8 94.2 1.17 159.6 141.2 103.1 93.52 0.16 157.6 139.2 96.3 87.2 1.74 150.6 132.1 92.9 83.6 3.64 150.1 131.7 92.7 83.43 0.60 148.5 130.0 90.3 81.2 2.30 149.1 130.5 90.6 81.5 4.23 141.1 122.6 86.7 77.54 2.60 153.0 134.5 89.9 81.1 4.19 144.1 125.6 85.7 76.8 5.89 138.4 120.0 83.0 74.05 3.83 143.7 125.3 83.1 74.5 5.39 136.4 117.9 79.7 70.9 6.97 130.5 112.1 77.0 68.16 1.94 148.5 130.0 85.3 76.6 3.47 141.3 122.9 81.9 73.3 5.17 134.4 115.9 78.7 69.97 2.65 143.9 125.5 82.9 74.3 4.18 136.6 118.1 79.5 70.7 5.93 129.9 111.4 76.3 67.58 2.34 146.7 128.2 85.0 76.3 4.00 140.0 121.5 81.9 73.1 5.74 132.7 114.3 78.5 69.6

10 4.33 132.0 113.6 73.7 65.4 5.80 125.6 107.2 70.8 62.4 7.31 117.6 99.1 67.2 58.611 4.71 125.1 106.6 70.4 62.0 6.22 120.0 101.5 68.1 59.6 7.71 112.8 94.4 64.8 56.215 4.79 125.6 107.1 68.3 60.1 6.19 120.8 102.3 66.2 57.9 7.59 112.7 94.1 62.6 54.216 7.83 99.6 81.1 54.2 46.0 9.09 94.0 75.4 51.8 43.4 10.45 85.7 67.3 48.1 39.617 7.69 101.0 82.6 55.8 47.5 9.02 101.5 83.1 56.0 47.7 10.39 94.2 75.7 52.8 44.318 7.60 105.6 87.2 58.6 50.3 9.00 105.9 87.4 58.8 50.4 10.37 98.8 80.3 55.6 47.1

Page 50: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans
Page 51: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

CCRR-01 Wotton, M., K. Logan and R. McAlpine. 2005. Climate Change and the Future Fire Environment in Ontario: Fire Occurrence and Fire Management Impacts in Ontario Under a Changing Climate.

CCRR-02 Boivin, J., J.-N. Candau, J. Chen, S. Colombo and M. Ter-Mikaelian. 2005. The Ontario Ministry of Natural Resources Large-Scale Forest Carbon Project: A Summary.

CCRR-03 Colombo, S.J., W.C. Parker, N. Luckai, Q. Dang and T. Cai. 2005. The Effects of Forest Management on Carbon Storage in Ontario’s Forests.

CCRR-04 Hunt, L.M. and J. Moore. 2006. The Potential Impacts of Climate Change on Recreational Fishing in Northern Ontario.

CCRR-05 Colombo, S.J., D.W. McKenney, K.M. Lawrence and P.A. Gray. 2007. Climate Change Projections for Ontario: Practical Information for Policymakers and Planners.

CCRR-06 Lemieux, C.J., D.J. Scott, P.A. Gray and R.G. Davis. 2007. Climate Change and Ontario’s Provincial Parks: Towards an Adaptation Strategy.

CCRR-07 Carter, T., W. Gunter, M. Lazorek and R. Craig. 2007. Geological Sequestration of Carbon Dioxide: A Technology Review and Analysis of Opportunities in Ontario.

CCRR-08 Browne, S.A. and L.M Hunt. 2007. Climate Change and Nature-based Tourism, Outdoor Recreation, and Forestry in Ontario: Potential Effects and Adaptation Strategies.

CCRR-09 Varrin, R. J. Bowman and P.A. Gray. 2007. The Known and Potential Effects of Climate Change on Biodiversity in Ontario’s Terrestrial Ecosystems: Case Studies and Recommendations for Adaptation.

CCRR-11 Dove-Thompson, D. C. Lewis, P.A. Gray, C. Chu and W. Dunlop. 2011. A Summary of the Effects of Climate Change on Ontario’s Aquatic Ecosystems.

CCRR-12 Colombo, S.J. 2008. Ontario’s Forests and Forestry in a Changing Climate.

CCRR-13 Candau, J.-N. and R. Fleming. 2008. Forecasting the Response to Climate Change of the Major Natural Biotic Disturbance Regime in Ontario’s Forests: The Spruce Budworm.

CCRR-14 Minns, C.K., B.J. Shuter and J.L. McDermid. 2009. Regional Projections of Climate Change Effects on Ontario Lake Trout (Salvelinus namaycush) Populations.

CCRR-15 Subedi, N., M. Sharma, and J. Parton. 2009. An Evaluation of Site Index Models for Young Black Spruce and Jack Pine Plantations in a Changing Climate.

CCRR-16 McKenney, D.W., J.H. Pedlar, K. Lawrence, P.A. Gray, S.J. Colombo and W.J. Crins. 2010. Current and Projected Future Climatic Conditions for Ecoregions and Selected Natural Heritage Areas in Ontario.

CCRR-17 Hasnain, S.S., C.K. Minns and B.J. Shuter. 2010. Key Ecological Temperature Metrics for Canadian Freshwater Fishes.

CCRR-18 Scoular, M., R. Suffling, D. Matthews, M. Gluck and P. Elkie. 2010. Comparing Various Approaches for Estimating Fire Frequency: The Case of Quetico Provincial Park.

CCRR-19 Eskelin, N., W. C. Parker, S.J. Colombo and P. Lu. 2011. Assessing Assisted Migration as a Climate Change Adaptation Strategy for Ontario’s Forests: Project Overview and Bibliography.

CCRR-20 Stocks, B.J. and P.C. Ward. 2011. Climate Change, Carbon Sequestration, and Forest Fire Protection in the Canadian Boreal Zone.

CCRR-21 Chu, C. 2011. Potential Effects of Climate Change and Adaptive Strategies for Lake Simcoe and the Wetlands and Streams within the Watershed.

CCRR-22 Walpole, A and J. Bowman. 2011. Wildlife Vulnerability to Climate Change: An Assessment for the Lake Simcoe Watershed.

CCRR-23 Evers, A.K., A.M. Gordon, P.A. Gray and W.I. Dunlop. 2012. Implications of a Potential Range Expansion of Invasive Earthworms in Ontario’s Forested Ecosystems: A Preliminary Vulnerability Analysis.

CCRR-24 Lalonde, R., J. Gleeson, P.A. Gray, A. Douglas, C. Blakemore and L. Ferguson. 2012. Climate Change Vulnerability Assessment and Adaptation Options for Ontario’s Clay Belt – A Case Study.

CCRR-25 Bowman, J. and C. Sadowski. 2012. Vulnerability of Furbearers in the Clay Belt to Climate Change.

CCRR-26 Rempel, R.S. 2012. Effects of Climate Change on Moose Populations: A Vulnerability Analysis for the Clay Belt Ecodistrict (3E-1) in Northeastern Ontario.

CCRR-27 Minns, C.K., B.J. Shuter and S. Fung. 2012. Regional Projections of Climate Change Effects on Ice Cover and Open-Water Duration for Ontario Lakes

CCRR-28 Lemieux, C.J., P. A. Gray, D.J. Scott, D.W. McKenney and S. MacFarlane. 2012. Climate Change and the Lake Simcoe Watershed: A Vulnerability Assessment of Natural Heritage Areas and Nature-Based Tourism.

CCRR-29 Hunt, L.M. and B. Kolman. 2012. Selected Social Implications of Climate Change for Ontario’s Ecodistrict 3E-1 (The Clay Belt).

CCRR-30 Chu, C. and F. Fischer. 2012. Climate Change Vulnerability Assessment for Aquatic Ecosystems in the Clay Belt Ecodistrict (3E-1) of Northeastern Ontario.

CCRR-31 Brinker, S. and C. Jones. 2012. The Vulnerability of Provincially Rare Species (Species at Risk) to Climate Change in the Lake Simcoe Watershed, Ontario, Canada

CCRR-32 Parker, W.C., S. J. Colombo and M. Sharma. 2012. An Assessment of the Vulnerability of Forest Vegetation of Ontario’s Clay Belt (Ecodistrict 3E-1) to Climate Change.

CCRR-33 Chen, J, S.J. Colombo, and M.T. Ter-Mikaelian. 2013. Carbon Stocks and Flows From Harvest to Disposal in Harvested Wood Products from Ontario and Canada.

CCRR-34 J. McLaughlin, and K. Webster. 2013. Effects of a Changing Climate on Peatlands in Permafrost Zones: A Literature Review and Application to Ontario’s Far North.

CCRR-35 Lafleur, B., N.J. Fenton and Y. Bergeron. 2013. The Potential Effects of Climate Change on the Growth and Development of Forested Peatlands in the Clay Belt (Ecodistrict 3E-1) of Northeastern Ontario.

CCRR-36 L. Nituch, and J. Bowman. 2013. Community-Level Effects of Climate Change on Ontario’s Terrestrial Biodiversity.

CCRR-37 Douglas, A., C. Lemieux, G. Nielson, P. Gray, V Anderson and S. MacRitchie. Responding to the Effects of Climate Change in the Lake Simcoe Watershed: A Pilot Study to Inform Development of an Adaptation Strategy on a Watershed Basis

CCRR-38 Furrer, M., M. Gillis, R. Mussakowski, T. Cowie and T. Veer.Monitoring Programs Sponsored by the Ontario Ministry of Natural Resources and their Relevance to Climate Change.

CCRR-39 McKechnie, J., J. Chen, D. Vakalis and H. MacLean. Energy Use and Greenhouse Gas Inventory Model for Harvested Wood Product Manufacture in Ontario.

Climate Change Report Series

Page 52: Regional projections of climate change effects on ice ...periods (2011-2040, 2041-2070, and 2071-2100). ... climatique sur la couverture de glace et la durée des eaux libres dans

62836(0.2k P.R.,14 04 30)ISBN 978-1-4606-3829-3 (print)ISBN 978-1-4606-3830-9 (pdf)