34
L 4 - Stellar Evolution II: August- September, 2004 1 [email protected] L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk & Liseau, Serpens Core with VLT ANTU and ISAAC

[email protected] L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

L 4: Collapse phase – observational evidence

Background image: courtesy Gålfalk & Liseau, Serpens Core with VLT ANTU and ISAAC

Page 2: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

L 4: Collapse phase – observational evidence

Known Methods & Techniques

What is the problem ?

How to solve it ?

Page 3: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

L 4: Collapse phase – observational evidence

What is the problem ?

Theories may give different answers what to look for – butpredictions include

]2 to5.1 [e.g., on distributidensity a (d)

]5.0 [e.g., v field velocity a (c)

pc a offraction aRlength (b)

) :cold , :(dense

few a mass (a)

)o few a(for J

2/3J

2/1J

oJ

rρ(r)

r(r)

TMM

MMM

α

M

Page 4: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

L 4: Collapse phase – observational evidence

How to solve it ?or - how and where to look ?

m3 :IR

K10 :re temperatu[2]

m2for 1.0 :IR

10 )/( :extinction

mag cm 102 (H) dust gas of

cm1012)H((H) :densitycolumn [1]

(b) and (a)

3

V

3V0

12V

21

]pc2.0,3

cm4

10)2H([ 221

v

T

AA

eII

AN

dlnN

-

Ln

In dense interstellar clouds with infrared techniques !

Page 5: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

Protostars are the Holy Grail of infrared astronomy

Any observational difficulties ?

Page 6: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

L 4: Collapse phase – observational evidence

(Known) Methods & Techniques

Radiation(1) Continuum

(2) Spectral Lines

Page 7: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(1)Continuum

(Proto-)stellar photospheresFree-free gas emissionThermal radiation from (radiatively) heated dust grains

To infer the total mass one needs

Gas-Dust Relation

[ generally assumed: m(g)/m(d) = 100 ]

Thermal radiation from (radiatively) heated dust grains

Page 8: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(1) Continuum

Spectral Energy Distributions SEDs

Observations

and

Theoretical Models

Current Paradigm

Adapted from van Zadelhoff 2002, PhD thesis

AstronomicalTaxonomy

notice thespatial scales &

time scales

Page 9: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(1) Continuum

Spectral Energy Distributions (SEDs)

SED fitting

Observations

Theoretical models

Adams, Lada & Shu 1987ApJ 312, 788

+

protostar

Page 10: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(1) Continuum

Spatial Profilefitting

Observations

Theoretical models

Butner et al. 1991 ApJ 376, 636

+

KAO50 m

100 m

IRS 5L1551

residuals

I / Ipeak

radial offset ( ´´ )

Page 11: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(1) Continuum

Spatial Profilefitting

Shirley et al. 2000 ApJS 131, 249

FIR & submmSCUBA 850 m 450 m

Observations

AzimuthalIntensity

Distribution

Page 12: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

Compare to theory

of collapse(see L 3)

488 214, ApJ 1977,Shu : max

451.6crit

Bonnor 1956 MNRAS 116, 351

0ext V

P

0ext V

P

centrally condensed

flat distribution

Shu 1977extreme case

max

Page 13: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

See also L 1:

Motte et al. made fits at 1.3 mm => mostly Bonnor-Ebert spheres (flat) and Oph A with I(r) ~ r - 2

and furthermore obtained ...

Page 14: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

Clump Mass Spectrum & IMF1 clump - 1 star

no further Fragmentation ? - see Eduardo (L 3)

Motte et al. 1998, AA 336, 150

? IMF 5.2d

d

spectrum mass clump

mm

n

Also Johnstone et al. 2000, ApJ 545, 327

Page 15: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(1) Continuum

Spatial Profilefitting

Firstly and only

directly observed

~ r - 1.5 profile

Keck-I, K band (Hodapp 1998, ApJ 500, L 183)

B 335 FIRS

Page 16: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

Harvey et al. 2003, ApJ 583, 809

Infall ? ``YES´´

Inside-out ? ``NO´´

IRAM-PdB Interferometer

1.2 mm

3 mm

Page 17: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(1) Continuum

Major pitfalls/caveats:

Geometry - spheres vs disks

Calorimetric vs `true´ Luminosities

Dust Optical Depths (Properties)

Temperatures (Dust and Gas)

Observations

Theoretical models

Inhouse work, see, e.g. :Larsson et al. 2000White et al. 2000, AA

Page 18: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(2) Spectral Lines

What lines – species ?

(low-lying) Rotational Transitions in Molecules

Physical Conditions of Excitation

Cold ( Tk ~ a few x 10 K ~ meV )

Large AV (no / little external radiation) and dense (n > 103 cm -3): collisional excitations dominate level populations ( if << 1 )

mostly neutrals but CosmicRays => molecular ions and e-

Page 19: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(2) Spectral Lines

(a) Optically thin lines(b) Optically thick lines

1]bg/kin[for kin

mol

bgex

bgex

bgex

] re temperatu [intensity bgex

111

...)1(111

)(

case) normal'' (the emission :

difficult)but - somethingleast (at absorption:

)(oohps! line no:

)(

)1()(

:Jeans)-Rayleigh & LTE(ion approximatSimplest

TT

TI

TTe

NTe

ii

TT

TT

TT

i

eTTT

Why ?

does not necessarily

imply there’s `nothing´ there

Page 20: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(2) Spectral Lines

(a) Optically thin lines(b) Optically thick lines

Theoretical profiles: cf. L3

Foster & Chevalier 1993, ApJ 416, 303

AmmoniaNH3

(a?)

(b?)

Symmetrical Profiles

no,spatial

resolution

Page 21: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(2) Spectral Lines

(a) Optically thin lines(b) Optically thick lines

Theoretical profiles

Leung & Brown 1977, ApJ 214, L73

Carbon monoxideCO =12C16O (a?)

and Isotopes (b?)

Asymmetrical Profiles

cloudcenter

offset

...hmm...,needs to be verified

Page 22: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(2) Spectral Lines

(b) Optically thick lines

Theoretical profiles

Zhou et al. 1993, ApJ 404, 232Shu Infall

Asymmetrical Profiles

fornegative temperature

gradient

cooler:less

intensity

warmer:more

intensity

los

Page 23: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

inside-out collapse (Shu 1977, ApJ 214, 488) (see: L 3) B 335

not fromShu model

p = -1.5

p = -2

Rinf = cs tinf

= -0.5

= 0

adapted from Hartstein & Liseau 1998, AA 332, 703

Page 24: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(2) Spectral Lines

(b) Optically thick lines

Theoretical profiles

Hartstein & Liseau 1998, AA 332, 703

Carbon SulfideCS

Observations

+

Asymmetrical Profiles

high blue low red

Page 25: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(2) Spectral Lines

(b) Optically thick lines

Observed & Theoretical profiles

Hartstein & Liseau 1998, AA 332, 703

Example:Carbon Monoxide

13COCarbon Sulfide

CS

(non-)equilibrium andinformation content

thermalised

C18O13CO

Page 26: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(2) Spectral Lines

(b) Optically thick lines

Carbon SulfideCS

Water VapourH2O

Observation:dependence of profiles

on spatial resolution(``beam´´)

oH2O (1-0)

CS (2-1)

10´´

20´´

120´´

B 335 infall model

24´´38´´51´´

Page 27: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

Wilner et al. 2000, ApJ 544, L69

Inside – out collapse: wings

Observation: no wings

B 335

Observed

+Theoretical Profiles

Single Dish

Interferometer

Page 28: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

(3) Continuum and Spectral Lines Theoretical profiles

+Observations

Inhouse, e.g.:

Larsson et al. – Odin H2O + ground based

Schöier et al. – ground based inc. chemistry

Oph A

IRAS 16293 ( Oph east )

... but steady state models ....

of a highly dynamic situation...

e.g. Stark et al. 2004, ApJ 608, 341

Page 29: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

Outflow contamination & confusion!

`` finn fem fel ´´

Current Paradigm - ?

Adapted from van Zadelhoff 2002, PhD thesis

Page 30: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

FOV = 2.5 X 2.5 amin2

(0.2 X 0.2 pc2)

Serp SMM 1 (S68 FIRS 1)*Infall CandidateOutflow Source

Disk Source* D = 310 pc

ISO SWS & LWS+ submm/mm

Fitting the observed SED*:

Menv = 6 Mo

L = 140 Lo

* 2-D radiative transfer(Larsson et al. 2002, AA 386, 1055)

Page 31: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

dustmol

6o

52o2

o13,12

%1 - %5.0

102 OH)( , 20.0 OH)(

101 O)H( , 21.0 O)H(

37.0CO)(

LL

XLL

XLL

LL

Emission not from

Disk

Infalling Envelope

but

Outflow/Shocks

Modeling the Line Emission

Page 32: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

Outflow contamination & confusion! Single Stars?

`` finn fem fel ´´

Current Paradigm - ?

Adapted from van Zadelhoff 2002, PhD thesis

Page 33: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

Number of Infall Candidates: Reasonable ? Expected ? *

Object Classes and LifetimesSFR of the solar neighbourhood Consistent picture?

Magnus´ IMF talk

* High mass starformation – cloud/cluster collapse

Page 34: Rene@astro.su.se L 4 - Stellar Evolution II: August-September, 20041 L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &

L 4 - Stellar Evolution II: August-September, 2004 [email protected]

L 4: conclusions• a variety of observational techniques are exploited• a number of collapse candidates have been found• all are strong outflow sources• multiplicity is common

L 4: open questions• How many collapse processes do occur in nature ? more than one ? which ? • What is the `certain´ collapse tracer ?• What spectral & spatial resolution is needed ?• Are stars/BDs/planets formed differently ? How ?