130
Table 2. Codes used to identify the sampling sites for the Alpine Wet Deposition Project and Lake Comparison Project. Site Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows Lost Lake Mammoth Mountain Mineral King Onion Valley Pear Lake Ruby Lake Sonora Pass South Lake Tioga Pass Topaz Lake Code AM ANG CR EBL EML KP KM LL MM, MMl, MM2 (Co-located collectors) MK OV, OVl, OV2 (Co-located collectors) PR RB SN SL TG TZ 69

Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 2 Codes used to identify the sampling sites for the Alpine Wet Deposition Project and Lake Comparison Project

Site

Alpine Meadows

Angora Lake

Crystal Lake

Eastern Brook Lake

Emerald Lake

Kaiser Pass

Kirkwood Meadows

Lost Lake

Mammoth Mountain

Mineral King

Onion Valley

Pear Lake

Ruby Lake

Sonora Pass

South Lake

Tioga Pass

Topaz Lake

Code

AM

ANG

CR

EBL

EML

KP

KM

LL

MM MMl MM2 (Co-located collectors)

MK

OV OVl OV2 (Co-located collectors)

PR

RB

SN

SL

TG

TZ

69

Table 3 Summary of accuracy data for analysis of snow samples generated at UCSB during 1990-1995 based on comparison with NBS Simulated Rainwater 2694-II (i990-i99i) or 2694-1 (1992-1995) ACC is the average percent difference for each determination of the NBS control Percent difference = (measured [ ]-certified [ ] - certified [ ]) x 100 N is the number of measurements Calcium was not used in this analysis because the calcium concentration in the NBS controls was below the method detection limit for calcium

1990 1991 1992 1993 1994-95 Solute ACC N ACC N ACC N ACC N ACC N

Chloride 83 8 58 9 -52 8 -23 6 -134 22

Nitrate -23 8 38 9 15 8 -44 6 02 22

Sulfate 04 8 55 9 84 8 57 6 80 22

Magnesium -95 3 -24 3 80 3 25 3 22 8

Sodium -48 3 -55 3 00 3 06 3 -64 8

Potassium 25 3 32 3 175 3 05 3 11 8

70

Table 4 Summary of accuracy data for analysis of snow samples generated at UCSB during i990-i993 based on recovery of known additions to actual samples Accuracy was not determined during 1994 and 1995 ACC is the average recovery() of known additions made to samples of snow Recovery= (final [] - initial [])+known addition) x 100 N is the number of measurements

Measured 1990 1991 1992 1993

Constituent ACC N ACC N ACC N ACC N

Chloride 91 17 100 18 103 14 97 15

Nitrate 102 17 103 18 104 14 99 15

Sulfate 100 17 108 18 108 14 105 15

Acetate 98 11 104 12 125 11 104 11

Formate 83 11 113 12 119 11 107 11

Calcium 103 8 107 9 107 6 89 8

Magnesium 101 8 108 9 112 6 98 8

Sodium 112 8 114 9 111 6 102 8

Potassium 102 8 107 9 106 6 103 8

71

Table 5 Ion chemistry of deionized rinsewater from Aero Chemetrics collectors deployed for one to two weeks during Lle Alpine let Deposition Project 1990-1993 When no precipitation occurred during the 1 to 2-week period the collectors were rinsed with 250 ml of deionized water this rinse water ~ analyzed for dissolved constituents All values are in microequivalents per liter (microEq L- ) Undetectable levels are designated by u and a dash indicates no data In 1993 colocated collectors (1 and 2) were deployed at Onion Valley and at Mammoth Mountain No rinses were collected during 1994

Site amp Date NH4 Ca Mg Na K CI N03 S04 OAc OFm

Onion Valley 90 08 31 28 04 os 02 lS lS 12 90 09 11 03 01 03 u u u u 90 10 14 32 os 04 02 01 32 06

91 06 26 42 37 os 10 04 10 2S 18 10 10 91 07 25 46 1S0 2S 36 40 22 S8 39 08 02 910828 S4 1S0 18 24 16 12 107 32 08 08 910923 36 73 10 12 14 12 49 16 os os

bulln 9110 09 226 71 25 40 i60 24 230 10 u ii 9110 23 09 44 os 02 02 u 01 01 os os 92 06 0S-1 362 363 81 84 67 20 280 300 08 03 92 06 0S-2 17S 213 40 46 31 23 160 160 os 03 92 06 21-2 9S 167 28 31 2S 23 114 76 os lS 920710-1 28 2S 04 08 02 os 14 1S os 20 92 07 10-2 39 20 04 09 02 02 10 06 1S ss 92 07 29-1 33 27 03 09 02 02 26 11 02 01 92 07 29-2 26 12 02 11 os 02 12 os os 01 92 09 14-1 S8S 268 S1 32 76 29 14S 66 os os 92 09 14-2 20 258 09 14 07 08 26 19 os 01 92 10 02-1 66 237 43 38 3S 13 12S 34 1S os 92 10 02-2 02 23 02 09 01 u 01 u 02 01 92 10 18-1 147 141 16 19 17 u 80 13 os 03 92 10 18-2 07 30 03 10 01 u u u os 01

93 06 19-1 u 13 u 02 01 08 u 04 u u 93 06 19-2 41 84 11 26 13 18 38 38 os 02 93 07 04-1 u 08 02 u 01 02 01 01 u u 93 07 04-2 06 73 07 06 04 12 02 02 11 20 93 07 19-1 os 1S 02 04 03 11 01 os u 01 93 07 19-2 04 49 04 01 01 02 01 01 u u 93 08 02-1 04 47 04 01 01 os 01 02 14 01 93 08 02-2 02 42 07 07 09 06 06 18 08 01 93 08 24-1 03 u 04 os 09 06 17 07 u u 93 08 24-2 37 u 04 03 06 03 S6 03 u u 93 09 07-1 2S u 04 04 os 04 27 21 60 1S 93 09 07-2 S1 S1 09 13 14 09 103 62 os 01 93 09 22-1 07 11 01 01 03 06 01 01 u u 93 09 22-2 92 140 26 09 21 24 168 84 09 02 93 10 06-1 08 06 u 01 02 03 u u u u 93 10 06-2 07 17 01 04 03 09 u 02 06 os

72

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K CI N03 S04 OAc OFm

South Lake 90 07 02 43 07 08 24 u 33 39 90 08 03 90 08 31

260 09

64 02

135 05

115 01

66 u

540 04

450 02

90 09 11 02 01 02 02 u 02 02 90 10 14 12 02 04 01 01 19 04

910711 240 142 39 66 27 49 235 172 10 05 910725 32 20 06 08 09 05 27 18 05 u 910828 910923

20 36

34 54

04 11

06 36

04 11

05 24

14 66

08 52

u 05

u u

9110 09 9110 23

12 29

05 102

01 12

01 15

01 17

u 19

05 78

03 47

u 29

u 11

92 09 14 92 10 02 92 10 18

17 27 07

09 20 06

01 04 01

10 05 u

12 u u

u 02 01

u 14 u

u 11 01

02 05 02

02 03 02

93 06 28 02 07 01 07 01 17 u 02 os u 93 07 15 93 07 29 93 08 24

22 u 02

26 07 04

04 01 01

05 03 02

05 03 03

12 07 09

03 u 03

07 05 03

u 06 05

u 18 u

93 09 22 93 10 05

u 20

os 02

01 01

02 01

01 01

01 u

u u

01 u

u 09

u 05

Eastern Brook Lake 90 09 13 90 10 14

03 nu

01 u

02 n A u

02 u

u u

u n u~

u u

910828 06 08 02 03 02 os 05 02 02 u 91 10 09 07 03 01 01 u 14 01 02 os u

92 0914 92 10 02 92 10 18

21 19 49

68 104 30

13 14 05

17 23 16

17 12 lS

03 08 02

36 56 33

19 26 09

02 05 os

01 03 03

93 06 19 93 07 04 93 07 19 93 08 04

u 02 u 03

09 14 u u

02 04 u u

02 03 01 02

02 05 01 01

05 03 05 15

u 01 01 19

02 02 01 08

u 04 35 22

u 01 60 50

93 08 24 93 09 22 93 10 OS

02 13 07

01 03 12

u 01 01

01 03 03

u 01 02

u 04 03

u 06 01

u 03 u

u 04 02

u 30 05

MammothMtn 90 08 03 66 25 46 53 36 148 92 9009 06 144 29 30 19 29 230 43 90 10 12 250 70 95 40 53 360 234

910829 n1 nn 1 v bullu

91 10 10

12 n D uo

13 n bullu 08

03 n bullu 02

03 u 01

01 u 01

u u u

07 n bullv 01

04 n bullv 01

os n v 08

02 nUlt

os

73

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Mammoth Min (cont) 92 05 12 63 32 06 15 u 05 35 67 02 02 92 05 28 45 20 05 07 02 03 18 20 os 02 92 07 31-1 05 07 01 u u 04 u 01 03 u 92 07 31-2 13 os u u u 04 u 01 03 u 92 10 19-1 20 06 01 01 u u u 01 08 os 92 10 19-2 11 08 01 01 u u 01 01 os 01

93 06 20-1 u os 01 02 01 03 01 03 01 02 93 06 20-2 08 2S 01 04 03 10 02 06 u 01 93 07 06-1 u os u 02 01 03 01 01 u u 93 07 06-2 09 os u 04 01 07 os os u u 93 07 20-1 u 11 u 02 01 01 01 01 01 02 93 07 20-2 u 21 01 os 03 07 03 04 04 os 93 08 03-1 02 06 u 02 01 03 01 01 02 u 93 08 03-2 02 09 01 02 02 02 01 03 u u 93 08 17-1 04 12 02 34 99 1SS 07 21 09 04 93 08 17-2 42 34 06 11 10 12 80 34 os 01 93 08 31-1 03 07 u 01 01 u u u 20 u 93 08 31-2 10 13 02 04 os 10 lS 07 u u 93 09 15-1 05 07 01 06 LO 25 01 03 03 u 93 09 15-2 54 56 09 12 08 09 95 19 u 93 09 28-1 08 07 u 01 01 02 u u 06 08 93 09 28-2 09 u 01 02 01 04 os 03 30 u 93 11 02-1 os u 03 04 04 06 09 07 01 u 93 11 02-2 07 u 02 07 07 os 08 08 01 u

Tioga Pass nn no 17U VO JI

n 1 bullbullv

1 bullbullv

1 nbullbull v - C I 0

T7

90 09 02 37 07 09 04 u 39 26 90 09 16 03 u 03 u u 10 u

92 09 1S 02 21 04 07 06 u 11 os 02 01 92 10 19 02 07 02 01 05 02 01 01 02 01

93 07 20 06 14 01 02 03 11 01 02 07 20 93 08 17 u 16 02 02 08 04 11 09 10 u 93 08 31 09 03 01 01 02 04 02 03 10 u 93 09 1S 39 12 01 02 02 01 os 03 07 u 93 10 03 08 09 01 01 01 u u u 13 02

Kaiser Pass 910712 33 3S 12 lS 19 18 2S 20 10 02 910729 07 11 02 os 04 02 02 01 910809 16 2S 04 06 04 o~ 02 02 08 01 910827 os 02 03 03 02 02 01 u u 910829 67 47 13 16 09 20 62 43 u u 91091S 122 30 49 46 31 116 90 910924 S5 18 os 09 04 10 22 16 u u 9110 10 24 29 os 06 03 13 30 17 u u 9110 24 88 19S 31 20 12 26 163 12S u u

74

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl NO3 SO4 OAc OFm

Kaiser Pass (cont) 92 05 22 136 92 05 26 113 92 07 08 92 07 20 19 92 07 27 07 92 08 06 68 92 08 31 08

115 120 36 18 10 39 10

27 38 10 15 02 07 02

29 39 10 05 06 19 02

31 43 12 27 u 04 u

38 32 u u 02 21 u

66 49 u u 01 74 01

60 68 15 05 01 55 01

05 20

10 01

Sonora Pass 90 08 02 9009 01 90 09 20 90 10 12

35 45 03 05

12 13 01 05

08 09 03 01

16 08 01 02

u 30 u 01

37 38 10 06

18 16 u u

910712 91 08 14 910924 91 10 10 91 10 24

210 18 18 33

19 347 08 13 60

06 77 02 02 19

04 90 01 01 07

08 52 01 01 10

05 61 u u 15

03 02 u 04 48

04 190 u 02 30

05 25 05 05 u

01 63 01 05 u

92 07 31 92 08 07 92 09 IS 92 10 19

32 14 56 15

05 07

379 22

02 02 69 03

02 01 13 01

u u 36 u

02 01 13 01

02 u

110 03

01 01 30 01

22 02 15 02

12 01 10 02

93 07 05 93 07 20 93 08 03 93 08 17 93 08 31 93 09 15

04 u 1 A~ u u 02

01 09 1 u u u

01 u n u bull gt

u u 01

02 01 nA u

01 04 01

01 01 n v 01 07 06

04 04 nL vu 01 02 02

u u 1 n1

01 01 01

04 01 bull L10

u u u

u u nu 14 07 13

u u u 01 05 03

Alpine Meadows 90 07 27 168 19 12 27 30 143 29

92 07 17 10 80 05 06 u 01 14 106

Lost Lake 90 09 03 90 09 17 90 09 25

01 01 01

u u u

u 01 u

u u 01

u 04 01

u u u

u 02 02

91 07 08 91 09 21 91 10 11

06 03

11 05 01

05 02 u

30 05 01

02 01 u

05 12 u

02 01 01

08 01 01

02 02 u

15 02 u

92 08 08 92 08 28 92 09 25 92 09 10

05 22 08 u

08 08 os 18

01 01 01 04

u 02 04 os

u u u u

u u u u

u os 04 os

u 01 01 05

08 os 01 01

01 18 02 06

75

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Lost Lake (cont) 93 06 27 u u u 03 u u 04 01 93 07 06 01 u u 06 05 08 05 01 u 05 93 07 12 03 u 01 05 06 04 03 02 u 01 93 07 20 u 03 01 02 01 u 03 u u u 93 08 11 01 02 01 02 01 u 01 u u u 93 08 18 u 03 01 03 02 u 03 u u u 93 09 06 02 04 02 03 01 04 04 02 u u 93 09 14 u 10 04 05 01 u 54 01 01 01

Mineral King 910624 14 04 02 02 01 u 02 02 05 01 910709 16 30 04 10 01 05 u 05 05 01 91 07 17 10 04 02 01 01 u 01 u 02 01 910723 910808

22 13

11 03

05 02

03 u

06 01

01 u

13 04

05 u

05 05

02 02

910821 910828

14 14

02 07

02 02

01 02

u 01

u u

02 02

02 05

05 08

05 08

92 07 08 02 34 10 11 13 u u 10 08 05 92 07 30 117 119 37 65 38 27 157 175 15 05 92 08 04 u 24 05 09 03 02 u 05 05 02 92 08 07 24 100 22 17 14 u 76 45 05 05 92 08 28 24 110 22 20 12 02 80 35 05 05 92 09 03 03 23 05 07 03 u 30 05 02 02 92 09 14 64 85 17 17 16 03 91 20 05 02 9210 06 01 56 06 05 03 u 24 10 05 02

Cl1 rv 71 VU 1T

93 07 06 gtA gtmiddot 235

nuv

120 77 59

105 29

247 145

84 30

460 01

470 90

10 20

u 05

93 07 15 65 80 43 22 11S 19 u 103 10 02 93 07 29 u 37 28 15 07 08 u 15 20 10 93 08 08 16 66 32 25 14 18 118 94 u u 93 08 18 u u 02 01 04 03 03 07 u u 93 08 24 01 u u u 01 01 02 03 02 u 93 09 02 02 u 02 03 04 05 14 13 u u 93 09 22 02 13 04 07 04 21 u 14 02 02

Emerald Lake 91 07 24 11 04 29 05 14 02 12 900 16S 91 08 13 07 05 03 03 01 02 02 01 345 70 910827 910924

14 14

03 10

02 04

02 10

01 07

02 02

01 u

01 02

82S 52S

130 15S

92 07 28 92 09 06

18 04

16 15

03 02

10 05

u u

03 04

22 u

12 08

02 55

02 18

93 07 OS 93 07 20

01 01

01 01

u u

u u

u u

u u

u u

01 01

02 03

03 02

93 08 23 u 01 u u u 01 u 01 01 04 93 09 07 u 01 u u u u u 01 02 02 n nn 7J V7 I-

93 10 07 n 1 v

u 01 u u u u

u u

u u

u 01

01 03

03 04

76

Table 6 Comparison of pH and major ion determinations between UCSB and CARB laboratories Five different subsamples each of lakewater snowmelt ~d rainwater were sent to the ARB laboratory in El Monte Ion levels are tabulated as microEq L-

MampSamp)e Lab Cl N01 Na K Ca cl~ Lakewater LL-I UCSB 71 02 63 170 39 so 272 618

EIMte 62 lt06 67 144 33 49 289 S99

TZ-61 UCSB 47 2S 9S 188 100 72 444 S66 EMte 4S lt06 8S 196 97 66 394 628

CR-119 UCSB 24 04 70 162 3S 43 237 620 El Mte 20 lt06 1S 16S 36 41 250 629

RB-107 UCSB 18 lt01 78 100 40 31 476 618 EIMte 23 lt06 104 126 40 33 574 633

EML-10 UCSB S6 07 1S 171 43 42 24S 627 EIMte S6 lt06 1S 161 33 41 344 629

Sno~elt lt bull lt ~ 06PR-7 UCSB 17 05 13 535

EIMte 2S 16 33 17 os 08 90 S87

SN-8 UCSB 10 13 11 os 02 02 08 S46 EIMte 11 10 33 04 03 08 60 S60

KW-9 UCSB 10 22 16 08 04 04 os S25 EIMte 14 11 42 04 03 08 60 S61

LL-2 UCSB 10 16 1S 08 01 03 os S3S EMte 14 1S 33 08 lt03 08 90 SSl

Rainwater TPlO 7-16 UCSB so 210 124 46 20 14 S6 449

EIMte 4S 187 131 3S 1S 16 140 S28

SL 7-18 UCSB 43 270 174 S1 26 1S 88 441 EMte 39 247 192 3S 1S 2S 8S 490

AM 9-24 UCSB 43 180 98 31 1S 23 168 463 EMte 31 179 104 30 10 2S 11S S39

SN 7-14 UCSB 48 274 167 29 13 16 72 464 EIMte 42 258 181 26 13 16 8S 479

MM7-16 UCSB 60 362 181 18 14 10 32 441 El Mte S6 331 182 26 1S 16 90 498

77

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 2: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 3 Summary of accuracy data for analysis of snow samples generated at UCSB during 1990-1995 based on comparison with NBS Simulated Rainwater 2694-II (i990-i99i) or 2694-1 (1992-1995) ACC is the average percent difference for each determination of the NBS control Percent difference = (measured [ ]-certified [ ] - certified [ ]) x 100 N is the number of measurements Calcium was not used in this analysis because the calcium concentration in the NBS controls was below the method detection limit for calcium

1990 1991 1992 1993 1994-95 Solute ACC N ACC N ACC N ACC N ACC N

Chloride 83 8 58 9 -52 8 -23 6 -134 22

Nitrate -23 8 38 9 15 8 -44 6 02 22

Sulfate 04 8 55 9 84 8 57 6 80 22

Magnesium -95 3 -24 3 80 3 25 3 22 8

Sodium -48 3 -55 3 00 3 06 3 -64 8

Potassium 25 3 32 3 175 3 05 3 11 8

70

Table 4 Summary of accuracy data for analysis of snow samples generated at UCSB during i990-i993 based on recovery of known additions to actual samples Accuracy was not determined during 1994 and 1995 ACC is the average recovery() of known additions made to samples of snow Recovery= (final [] - initial [])+known addition) x 100 N is the number of measurements

Measured 1990 1991 1992 1993

Constituent ACC N ACC N ACC N ACC N

Chloride 91 17 100 18 103 14 97 15

Nitrate 102 17 103 18 104 14 99 15

Sulfate 100 17 108 18 108 14 105 15

Acetate 98 11 104 12 125 11 104 11

Formate 83 11 113 12 119 11 107 11

Calcium 103 8 107 9 107 6 89 8

Magnesium 101 8 108 9 112 6 98 8

Sodium 112 8 114 9 111 6 102 8

Potassium 102 8 107 9 106 6 103 8

71

Table 5 Ion chemistry of deionized rinsewater from Aero Chemetrics collectors deployed for one to two weeks during Lle Alpine let Deposition Project 1990-1993 When no precipitation occurred during the 1 to 2-week period the collectors were rinsed with 250 ml of deionized water this rinse water ~ analyzed for dissolved constituents All values are in microequivalents per liter (microEq L- ) Undetectable levels are designated by u and a dash indicates no data In 1993 colocated collectors (1 and 2) were deployed at Onion Valley and at Mammoth Mountain No rinses were collected during 1994

Site amp Date NH4 Ca Mg Na K CI N03 S04 OAc OFm

Onion Valley 90 08 31 28 04 os 02 lS lS 12 90 09 11 03 01 03 u u u u 90 10 14 32 os 04 02 01 32 06

91 06 26 42 37 os 10 04 10 2S 18 10 10 91 07 25 46 1S0 2S 36 40 22 S8 39 08 02 910828 S4 1S0 18 24 16 12 107 32 08 08 910923 36 73 10 12 14 12 49 16 os os

bulln 9110 09 226 71 25 40 i60 24 230 10 u ii 9110 23 09 44 os 02 02 u 01 01 os os 92 06 0S-1 362 363 81 84 67 20 280 300 08 03 92 06 0S-2 17S 213 40 46 31 23 160 160 os 03 92 06 21-2 9S 167 28 31 2S 23 114 76 os lS 920710-1 28 2S 04 08 02 os 14 1S os 20 92 07 10-2 39 20 04 09 02 02 10 06 1S ss 92 07 29-1 33 27 03 09 02 02 26 11 02 01 92 07 29-2 26 12 02 11 os 02 12 os os 01 92 09 14-1 S8S 268 S1 32 76 29 14S 66 os os 92 09 14-2 20 258 09 14 07 08 26 19 os 01 92 10 02-1 66 237 43 38 3S 13 12S 34 1S os 92 10 02-2 02 23 02 09 01 u 01 u 02 01 92 10 18-1 147 141 16 19 17 u 80 13 os 03 92 10 18-2 07 30 03 10 01 u u u os 01

93 06 19-1 u 13 u 02 01 08 u 04 u u 93 06 19-2 41 84 11 26 13 18 38 38 os 02 93 07 04-1 u 08 02 u 01 02 01 01 u u 93 07 04-2 06 73 07 06 04 12 02 02 11 20 93 07 19-1 os 1S 02 04 03 11 01 os u 01 93 07 19-2 04 49 04 01 01 02 01 01 u u 93 08 02-1 04 47 04 01 01 os 01 02 14 01 93 08 02-2 02 42 07 07 09 06 06 18 08 01 93 08 24-1 03 u 04 os 09 06 17 07 u u 93 08 24-2 37 u 04 03 06 03 S6 03 u u 93 09 07-1 2S u 04 04 os 04 27 21 60 1S 93 09 07-2 S1 S1 09 13 14 09 103 62 os 01 93 09 22-1 07 11 01 01 03 06 01 01 u u 93 09 22-2 92 140 26 09 21 24 168 84 09 02 93 10 06-1 08 06 u 01 02 03 u u u u 93 10 06-2 07 17 01 04 03 09 u 02 06 os

72

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K CI N03 S04 OAc OFm

South Lake 90 07 02 43 07 08 24 u 33 39 90 08 03 90 08 31

260 09

64 02

135 05

115 01

66 u

540 04

450 02

90 09 11 02 01 02 02 u 02 02 90 10 14 12 02 04 01 01 19 04

910711 240 142 39 66 27 49 235 172 10 05 910725 32 20 06 08 09 05 27 18 05 u 910828 910923

20 36

34 54

04 11

06 36

04 11

05 24

14 66

08 52

u 05

u u

9110 09 9110 23

12 29

05 102

01 12

01 15

01 17

u 19

05 78

03 47

u 29

u 11

92 09 14 92 10 02 92 10 18

17 27 07

09 20 06

01 04 01

10 05 u

12 u u

u 02 01

u 14 u

u 11 01

02 05 02

02 03 02

93 06 28 02 07 01 07 01 17 u 02 os u 93 07 15 93 07 29 93 08 24

22 u 02

26 07 04

04 01 01

05 03 02

05 03 03

12 07 09

03 u 03

07 05 03

u 06 05

u 18 u

93 09 22 93 10 05

u 20

os 02

01 01

02 01

01 01

01 u

u u

01 u

u 09

u 05

Eastern Brook Lake 90 09 13 90 10 14

03 nu

01 u

02 n A u

02 u

u u

u n u~

u u

910828 06 08 02 03 02 os 05 02 02 u 91 10 09 07 03 01 01 u 14 01 02 os u

92 0914 92 10 02 92 10 18

21 19 49

68 104 30

13 14 05

17 23 16

17 12 lS

03 08 02

36 56 33

19 26 09

02 05 os

01 03 03

93 06 19 93 07 04 93 07 19 93 08 04

u 02 u 03

09 14 u u

02 04 u u

02 03 01 02

02 05 01 01

05 03 05 15

u 01 01 19

02 02 01 08

u 04 35 22

u 01 60 50

93 08 24 93 09 22 93 10 OS

02 13 07

01 03 12

u 01 01

01 03 03

u 01 02

u 04 03

u 06 01

u 03 u

u 04 02

u 30 05

MammothMtn 90 08 03 66 25 46 53 36 148 92 9009 06 144 29 30 19 29 230 43 90 10 12 250 70 95 40 53 360 234

910829 n1 nn 1 v bullu

91 10 10

12 n D uo

13 n bullu 08

03 n bullu 02

03 u 01

01 u 01

u u u

07 n bullv 01

04 n bullv 01

os n v 08

02 nUlt

os

73

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Mammoth Min (cont) 92 05 12 63 32 06 15 u 05 35 67 02 02 92 05 28 45 20 05 07 02 03 18 20 os 02 92 07 31-1 05 07 01 u u 04 u 01 03 u 92 07 31-2 13 os u u u 04 u 01 03 u 92 10 19-1 20 06 01 01 u u u 01 08 os 92 10 19-2 11 08 01 01 u u 01 01 os 01

93 06 20-1 u os 01 02 01 03 01 03 01 02 93 06 20-2 08 2S 01 04 03 10 02 06 u 01 93 07 06-1 u os u 02 01 03 01 01 u u 93 07 06-2 09 os u 04 01 07 os os u u 93 07 20-1 u 11 u 02 01 01 01 01 01 02 93 07 20-2 u 21 01 os 03 07 03 04 04 os 93 08 03-1 02 06 u 02 01 03 01 01 02 u 93 08 03-2 02 09 01 02 02 02 01 03 u u 93 08 17-1 04 12 02 34 99 1SS 07 21 09 04 93 08 17-2 42 34 06 11 10 12 80 34 os 01 93 08 31-1 03 07 u 01 01 u u u 20 u 93 08 31-2 10 13 02 04 os 10 lS 07 u u 93 09 15-1 05 07 01 06 LO 25 01 03 03 u 93 09 15-2 54 56 09 12 08 09 95 19 u 93 09 28-1 08 07 u 01 01 02 u u 06 08 93 09 28-2 09 u 01 02 01 04 os 03 30 u 93 11 02-1 os u 03 04 04 06 09 07 01 u 93 11 02-2 07 u 02 07 07 os 08 08 01 u

Tioga Pass nn no 17U VO JI

n 1 bullbullv

1 bullbullv

1 nbullbull v - C I 0

T7

90 09 02 37 07 09 04 u 39 26 90 09 16 03 u 03 u u 10 u

92 09 1S 02 21 04 07 06 u 11 os 02 01 92 10 19 02 07 02 01 05 02 01 01 02 01

93 07 20 06 14 01 02 03 11 01 02 07 20 93 08 17 u 16 02 02 08 04 11 09 10 u 93 08 31 09 03 01 01 02 04 02 03 10 u 93 09 1S 39 12 01 02 02 01 os 03 07 u 93 10 03 08 09 01 01 01 u u u 13 02

Kaiser Pass 910712 33 3S 12 lS 19 18 2S 20 10 02 910729 07 11 02 os 04 02 02 01 910809 16 2S 04 06 04 o~ 02 02 08 01 910827 os 02 03 03 02 02 01 u u 910829 67 47 13 16 09 20 62 43 u u 91091S 122 30 49 46 31 116 90 910924 S5 18 os 09 04 10 22 16 u u 9110 10 24 29 os 06 03 13 30 17 u u 9110 24 88 19S 31 20 12 26 163 12S u u

74

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl NO3 SO4 OAc OFm

Kaiser Pass (cont) 92 05 22 136 92 05 26 113 92 07 08 92 07 20 19 92 07 27 07 92 08 06 68 92 08 31 08

115 120 36 18 10 39 10

27 38 10 15 02 07 02

29 39 10 05 06 19 02

31 43 12 27 u 04 u

38 32 u u 02 21 u

66 49 u u 01 74 01

60 68 15 05 01 55 01

05 20

10 01

Sonora Pass 90 08 02 9009 01 90 09 20 90 10 12

35 45 03 05

12 13 01 05

08 09 03 01

16 08 01 02

u 30 u 01

37 38 10 06

18 16 u u

910712 91 08 14 910924 91 10 10 91 10 24

210 18 18 33

19 347 08 13 60

06 77 02 02 19

04 90 01 01 07

08 52 01 01 10

05 61 u u 15

03 02 u 04 48

04 190 u 02 30

05 25 05 05 u

01 63 01 05 u

92 07 31 92 08 07 92 09 IS 92 10 19

32 14 56 15

05 07

379 22

02 02 69 03

02 01 13 01

u u 36 u

02 01 13 01

02 u

110 03

01 01 30 01

22 02 15 02

12 01 10 02

93 07 05 93 07 20 93 08 03 93 08 17 93 08 31 93 09 15

04 u 1 A~ u u 02

01 09 1 u u u

01 u n u bull gt

u u 01

02 01 nA u

01 04 01

01 01 n v 01 07 06

04 04 nL vu 01 02 02

u u 1 n1

01 01 01

04 01 bull L10

u u u

u u nu 14 07 13

u u u 01 05 03

Alpine Meadows 90 07 27 168 19 12 27 30 143 29

92 07 17 10 80 05 06 u 01 14 106

Lost Lake 90 09 03 90 09 17 90 09 25

01 01 01

u u u

u 01 u

u u 01

u 04 01

u u u

u 02 02

91 07 08 91 09 21 91 10 11

06 03

11 05 01

05 02 u

30 05 01

02 01 u

05 12 u

02 01 01

08 01 01

02 02 u

15 02 u

92 08 08 92 08 28 92 09 25 92 09 10

05 22 08 u

08 08 os 18

01 01 01 04

u 02 04 os

u u u u

u u u u

u os 04 os

u 01 01 05

08 os 01 01

01 18 02 06

75

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Lost Lake (cont) 93 06 27 u u u 03 u u 04 01 93 07 06 01 u u 06 05 08 05 01 u 05 93 07 12 03 u 01 05 06 04 03 02 u 01 93 07 20 u 03 01 02 01 u 03 u u u 93 08 11 01 02 01 02 01 u 01 u u u 93 08 18 u 03 01 03 02 u 03 u u u 93 09 06 02 04 02 03 01 04 04 02 u u 93 09 14 u 10 04 05 01 u 54 01 01 01

Mineral King 910624 14 04 02 02 01 u 02 02 05 01 910709 16 30 04 10 01 05 u 05 05 01 91 07 17 10 04 02 01 01 u 01 u 02 01 910723 910808

22 13

11 03

05 02

03 u

06 01

01 u

13 04

05 u

05 05

02 02

910821 910828

14 14

02 07

02 02

01 02

u 01

u u

02 02

02 05

05 08

05 08

92 07 08 02 34 10 11 13 u u 10 08 05 92 07 30 117 119 37 65 38 27 157 175 15 05 92 08 04 u 24 05 09 03 02 u 05 05 02 92 08 07 24 100 22 17 14 u 76 45 05 05 92 08 28 24 110 22 20 12 02 80 35 05 05 92 09 03 03 23 05 07 03 u 30 05 02 02 92 09 14 64 85 17 17 16 03 91 20 05 02 9210 06 01 56 06 05 03 u 24 10 05 02

Cl1 rv 71 VU 1T

93 07 06 gtA gtmiddot 235

nuv

120 77 59

105 29

247 145

84 30

460 01

470 90

10 20

u 05

93 07 15 65 80 43 22 11S 19 u 103 10 02 93 07 29 u 37 28 15 07 08 u 15 20 10 93 08 08 16 66 32 25 14 18 118 94 u u 93 08 18 u u 02 01 04 03 03 07 u u 93 08 24 01 u u u 01 01 02 03 02 u 93 09 02 02 u 02 03 04 05 14 13 u u 93 09 22 02 13 04 07 04 21 u 14 02 02

Emerald Lake 91 07 24 11 04 29 05 14 02 12 900 16S 91 08 13 07 05 03 03 01 02 02 01 345 70 910827 910924

14 14

03 10

02 04

02 10

01 07

02 02

01 u

01 02

82S 52S

130 15S

92 07 28 92 09 06

18 04

16 15

03 02

10 05

u u

03 04

22 u

12 08

02 55

02 18

93 07 OS 93 07 20

01 01

01 01

u u

u u

u u

u u

u u

01 01

02 03

03 02

93 08 23 u 01 u u u 01 u 01 01 04 93 09 07 u 01 u u u u u 01 02 02 n nn 7J V7 I-

93 10 07 n 1 v

u 01 u u u u

u u

u u

u 01

01 03

03 04

76

Table 6 Comparison of pH and major ion determinations between UCSB and CARB laboratories Five different subsamples each of lakewater snowmelt ~d rainwater were sent to the ARB laboratory in El Monte Ion levels are tabulated as microEq L-

MampSamp)e Lab Cl N01 Na K Ca cl~ Lakewater LL-I UCSB 71 02 63 170 39 so 272 618

EIMte 62 lt06 67 144 33 49 289 S99

TZ-61 UCSB 47 2S 9S 188 100 72 444 S66 EMte 4S lt06 8S 196 97 66 394 628

CR-119 UCSB 24 04 70 162 3S 43 237 620 El Mte 20 lt06 1S 16S 36 41 250 629

RB-107 UCSB 18 lt01 78 100 40 31 476 618 EIMte 23 lt06 104 126 40 33 574 633

EML-10 UCSB S6 07 1S 171 43 42 24S 627 EIMte S6 lt06 1S 161 33 41 344 629

Sno~elt lt bull lt ~ 06PR-7 UCSB 17 05 13 535

EIMte 2S 16 33 17 os 08 90 S87

SN-8 UCSB 10 13 11 os 02 02 08 S46 EIMte 11 10 33 04 03 08 60 S60

KW-9 UCSB 10 22 16 08 04 04 os S25 EIMte 14 11 42 04 03 08 60 S61

LL-2 UCSB 10 16 1S 08 01 03 os S3S EMte 14 1S 33 08 lt03 08 90 SSl

Rainwater TPlO 7-16 UCSB so 210 124 46 20 14 S6 449

EIMte 4S 187 131 3S 1S 16 140 S28

SL 7-18 UCSB 43 270 174 S1 26 1S 88 441 EMte 39 247 192 3S 1S 2S 8S 490

AM 9-24 UCSB 43 180 98 31 1S 23 168 463 EMte 31 179 104 30 10 2S 11S S39

SN 7-14 UCSB 48 274 167 29 13 16 72 464 EIMte 42 258 181 26 13 16 8S 479

MM7-16 UCSB 60 362 181 18 14 10 32 441 El Mte S6 331 182 26 1S 16 90 498

77

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 3: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 4 Summary of accuracy data for analysis of snow samples generated at UCSB during i990-i993 based on recovery of known additions to actual samples Accuracy was not determined during 1994 and 1995 ACC is the average recovery() of known additions made to samples of snow Recovery= (final [] - initial [])+known addition) x 100 N is the number of measurements

Measured 1990 1991 1992 1993

Constituent ACC N ACC N ACC N ACC N

Chloride 91 17 100 18 103 14 97 15

Nitrate 102 17 103 18 104 14 99 15

Sulfate 100 17 108 18 108 14 105 15

Acetate 98 11 104 12 125 11 104 11

Formate 83 11 113 12 119 11 107 11

Calcium 103 8 107 9 107 6 89 8

Magnesium 101 8 108 9 112 6 98 8

Sodium 112 8 114 9 111 6 102 8

Potassium 102 8 107 9 106 6 103 8

71

Table 5 Ion chemistry of deionized rinsewater from Aero Chemetrics collectors deployed for one to two weeks during Lle Alpine let Deposition Project 1990-1993 When no precipitation occurred during the 1 to 2-week period the collectors were rinsed with 250 ml of deionized water this rinse water ~ analyzed for dissolved constituents All values are in microequivalents per liter (microEq L- ) Undetectable levels are designated by u and a dash indicates no data In 1993 colocated collectors (1 and 2) were deployed at Onion Valley and at Mammoth Mountain No rinses were collected during 1994

Site amp Date NH4 Ca Mg Na K CI N03 S04 OAc OFm

Onion Valley 90 08 31 28 04 os 02 lS lS 12 90 09 11 03 01 03 u u u u 90 10 14 32 os 04 02 01 32 06

91 06 26 42 37 os 10 04 10 2S 18 10 10 91 07 25 46 1S0 2S 36 40 22 S8 39 08 02 910828 S4 1S0 18 24 16 12 107 32 08 08 910923 36 73 10 12 14 12 49 16 os os

bulln 9110 09 226 71 25 40 i60 24 230 10 u ii 9110 23 09 44 os 02 02 u 01 01 os os 92 06 0S-1 362 363 81 84 67 20 280 300 08 03 92 06 0S-2 17S 213 40 46 31 23 160 160 os 03 92 06 21-2 9S 167 28 31 2S 23 114 76 os lS 920710-1 28 2S 04 08 02 os 14 1S os 20 92 07 10-2 39 20 04 09 02 02 10 06 1S ss 92 07 29-1 33 27 03 09 02 02 26 11 02 01 92 07 29-2 26 12 02 11 os 02 12 os os 01 92 09 14-1 S8S 268 S1 32 76 29 14S 66 os os 92 09 14-2 20 258 09 14 07 08 26 19 os 01 92 10 02-1 66 237 43 38 3S 13 12S 34 1S os 92 10 02-2 02 23 02 09 01 u 01 u 02 01 92 10 18-1 147 141 16 19 17 u 80 13 os 03 92 10 18-2 07 30 03 10 01 u u u os 01

93 06 19-1 u 13 u 02 01 08 u 04 u u 93 06 19-2 41 84 11 26 13 18 38 38 os 02 93 07 04-1 u 08 02 u 01 02 01 01 u u 93 07 04-2 06 73 07 06 04 12 02 02 11 20 93 07 19-1 os 1S 02 04 03 11 01 os u 01 93 07 19-2 04 49 04 01 01 02 01 01 u u 93 08 02-1 04 47 04 01 01 os 01 02 14 01 93 08 02-2 02 42 07 07 09 06 06 18 08 01 93 08 24-1 03 u 04 os 09 06 17 07 u u 93 08 24-2 37 u 04 03 06 03 S6 03 u u 93 09 07-1 2S u 04 04 os 04 27 21 60 1S 93 09 07-2 S1 S1 09 13 14 09 103 62 os 01 93 09 22-1 07 11 01 01 03 06 01 01 u u 93 09 22-2 92 140 26 09 21 24 168 84 09 02 93 10 06-1 08 06 u 01 02 03 u u u u 93 10 06-2 07 17 01 04 03 09 u 02 06 os

72

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K CI N03 S04 OAc OFm

South Lake 90 07 02 43 07 08 24 u 33 39 90 08 03 90 08 31

260 09

64 02

135 05

115 01

66 u

540 04

450 02

90 09 11 02 01 02 02 u 02 02 90 10 14 12 02 04 01 01 19 04

910711 240 142 39 66 27 49 235 172 10 05 910725 32 20 06 08 09 05 27 18 05 u 910828 910923

20 36

34 54

04 11

06 36

04 11

05 24

14 66

08 52

u 05

u u

9110 09 9110 23

12 29

05 102

01 12

01 15

01 17

u 19

05 78

03 47

u 29

u 11

92 09 14 92 10 02 92 10 18

17 27 07

09 20 06

01 04 01

10 05 u

12 u u

u 02 01

u 14 u

u 11 01

02 05 02

02 03 02

93 06 28 02 07 01 07 01 17 u 02 os u 93 07 15 93 07 29 93 08 24

22 u 02

26 07 04

04 01 01

05 03 02

05 03 03

12 07 09

03 u 03

07 05 03

u 06 05

u 18 u

93 09 22 93 10 05

u 20

os 02

01 01

02 01

01 01

01 u

u u

01 u

u 09

u 05

Eastern Brook Lake 90 09 13 90 10 14

03 nu

01 u

02 n A u

02 u

u u

u n u~

u u

910828 06 08 02 03 02 os 05 02 02 u 91 10 09 07 03 01 01 u 14 01 02 os u

92 0914 92 10 02 92 10 18

21 19 49

68 104 30

13 14 05

17 23 16

17 12 lS

03 08 02

36 56 33

19 26 09

02 05 os

01 03 03

93 06 19 93 07 04 93 07 19 93 08 04

u 02 u 03

09 14 u u

02 04 u u

02 03 01 02

02 05 01 01

05 03 05 15

u 01 01 19

02 02 01 08

u 04 35 22

u 01 60 50

93 08 24 93 09 22 93 10 OS

02 13 07

01 03 12

u 01 01

01 03 03

u 01 02

u 04 03

u 06 01

u 03 u

u 04 02

u 30 05

MammothMtn 90 08 03 66 25 46 53 36 148 92 9009 06 144 29 30 19 29 230 43 90 10 12 250 70 95 40 53 360 234

910829 n1 nn 1 v bullu

91 10 10

12 n D uo

13 n bullu 08

03 n bullu 02

03 u 01

01 u 01

u u u

07 n bullv 01

04 n bullv 01

os n v 08

02 nUlt

os

73

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Mammoth Min (cont) 92 05 12 63 32 06 15 u 05 35 67 02 02 92 05 28 45 20 05 07 02 03 18 20 os 02 92 07 31-1 05 07 01 u u 04 u 01 03 u 92 07 31-2 13 os u u u 04 u 01 03 u 92 10 19-1 20 06 01 01 u u u 01 08 os 92 10 19-2 11 08 01 01 u u 01 01 os 01

93 06 20-1 u os 01 02 01 03 01 03 01 02 93 06 20-2 08 2S 01 04 03 10 02 06 u 01 93 07 06-1 u os u 02 01 03 01 01 u u 93 07 06-2 09 os u 04 01 07 os os u u 93 07 20-1 u 11 u 02 01 01 01 01 01 02 93 07 20-2 u 21 01 os 03 07 03 04 04 os 93 08 03-1 02 06 u 02 01 03 01 01 02 u 93 08 03-2 02 09 01 02 02 02 01 03 u u 93 08 17-1 04 12 02 34 99 1SS 07 21 09 04 93 08 17-2 42 34 06 11 10 12 80 34 os 01 93 08 31-1 03 07 u 01 01 u u u 20 u 93 08 31-2 10 13 02 04 os 10 lS 07 u u 93 09 15-1 05 07 01 06 LO 25 01 03 03 u 93 09 15-2 54 56 09 12 08 09 95 19 u 93 09 28-1 08 07 u 01 01 02 u u 06 08 93 09 28-2 09 u 01 02 01 04 os 03 30 u 93 11 02-1 os u 03 04 04 06 09 07 01 u 93 11 02-2 07 u 02 07 07 os 08 08 01 u

Tioga Pass nn no 17U VO JI

n 1 bullbullv

1 bullbullv

1 nbullbull v - C I 0

T7

90 09 02 37 07 09 04 u 39 26 90 09 16 03 u 03 u u 10 u

92 09 1S 02 21 04 07 06 u 11 os 02 01 92 10 19 02 07 02 01 05 02 01 01 02 01

93 07 20 06 14 01 02 03 11 01 02 07 20 93 08 17 u 16 02 02 08 04 11 09 10 u 93 08 31 09 03 01 01 02 04 02 03 10 u 93 09 1S 39 12 01 02 02 01 os 03 07 u 93 10 03 08 09 01 01 01 u u u 13 02

Kaiser Pass 910712 33 3S 12 lS 19 18 2S 20 10 02 910729 07 11 02 os 04 02 02 01 910809 16 2S 04 06 04 o~ 02 02 08 01 910827 os 02 03 03 02 02 01 u u 910829 67 47 13 16 09 20 62 43 u u 91091S 122 30 49 46 31 116 90 910924 S5 18 os 09 04 10 22 16 u u 9110 10 24 29 os 06 03 13 30 17 u u 9110 24 88 19S 31 20 12 26 163 12S u u

74

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl NO3 SO4 OAc OFm

Kaiser Pass (cont) 92 05 22 136 92 05 26 113 92 07 08 92 07 20 19 92 07 27 07 92 08 06 68 92 08 31 08

115 120 36 18 10 39 10

27 38 10 15 02 07 02

29 39 10 05 06 19 02

31 43 12 27 u 04 u

38 32 u u 02 21 u

66 49 u u 01 74 01

60 68 15 05 01 55 01

05 20

10 01

Sonora Pass 90 08 02 9009 01 90 09 20 90 10 12

35 45 03 05

12 13 01 05

08 09 03 01

16 08 01 02

u 30 u 01

37 38 10 06

18 16 u u

910712 91 08 14 910924 91 10 10 91 10 24

210 18 18 33

19 347 08 13 60

06 77 02 02 19

04 90 01 01 07

08 52 01 01 10

05 61 u u 15

03 02 u 04 48

04 190 u 02 30

05 25 05 05 u

01 63 01 05 u

92 07 31 92 08 07 92 09 IS 92 10 19

32 14 56 15

05 07

379 22

02 02 69 03

02 01 13 01

u u 36 u

02 01 13 01

02 u

110 03

01 01 30 01

22 02 15 02

12 01 10 02

93 07 05 93 07 20 93 08 03 93 08 17 93 08 31 93 09 15

04 u 1 A~ u u 02

01 09 1 u u u

01 u n u bull gt

u u 01

02 01 nA u

01 04 01

01 01 n v 01 07 06

04 04 nL vu 01 02 02

u u 1 n1

01 01 01

04 01 bull L10

u u u

u u nu 14 07 13

u u u 01 05 03

Alpine Meadows 90 07 27 168 19 12 27 30 143 29

92 07 17 10 80 05 06 u 01 14 106

Lost Lake 90 09 03 90 09 17 90 09 25

01 01 01

u u u

u 01 u

u u 01

u 04 01

u u u

u 02 02

91 07 08 91 09 21 91 10 11

06 03

11 05 01

05 02 u

30 05 01

02 01 u

05 12 u

02 01 01

08 01 01

02 02 u

15 02 u

92 08 08 92 08 28 92 09 25 92 09 10

05 22 08 u

08 08 os 18

01 01 01 04

u 02 04 os

u u u u

u u u u

u os 04 os

u 01 01 05

08 os 01 01

01 18 02 06

75

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Lost Lake (cont) 93 06 27 u u u 03 u u 04 01 93 07 06 01 u u 06 05 08 05 01 u 05 93 07 12 03 u 01 05 06 04 03 02 u 01 93 07 20 u 03 01 02 01 u 03 u u u 93 08 11 01 02 01 02 01 u 01 u u u 93 08 18 u 03 01 03 02 u 03 u u u 93 09 06 02 04 02 03 01 04 04 02 u u 93 09 14 u 10 04 05 01 u 54 01 01 01

Mineral King 910624 14 04 02 02 01 u 02 02 05 01 910709 16 30 04 10 01 05 u 05 05 01 91 07 17 10 04 02 01 01 u 01 u 02 01 910723 910808

22 13

11 03

05 02

03 u

06 01

01 u

13 04

05 u

05 05

02 02

910821 910828

14 14

02 07

02 02

01 02

u 01

u u

02 02

02 05

05 08

05 08

92 07 08 02 34 10 11 13 u u 10 08 05 92 07 30 117 119 37 65 38 27 157 175 15 05 92 08 04 u 24 05 09 03 02 u 05 05 02 92 08 07 24 100 22 17 14 u 76 45 05 05 92 08 28 24 110 22 20 12 02 80 35 05 05 92 09 03 03 23 05 07 03 u 30 05 02 02 92 09 14 64 85 17 17 16 03 91 20 05 02 9210 06 01 56 06 05 03 u 24 10 05 02

Cl1 rv 71 VU 1T

93 07 06 gtA gtmiddot 235

nuv

120 77 59

105 29

247 145

84 30

460 01

470 90

10 20

u 05

93 07 15 65 80 43 22 11S 19 u 103 10 02 93 07 29 u 37 28 15 07 08 u 15 20 10 93 08 08 16 66 32 25 14 18 118 94 u u 93 08 18 u u 02 01 04 03 03 07 u u 93 08 24 01 u u u 01 01 02 03 02 u 93 09 02 02 u 02 03 04 05 14 13 u u 93 09 22 02 13 04 07 04 21 u 14 02 02

Emerald Lake 91 07 24 11 04 29 05 14 02 12 900 16S 91 08 13 07 05 03 03 01 02 02 01 345 70 910827 910924

14 14

03 10

02 04

02 10

01 07

02 02

01 u

01 02

82S 52S

130 15S

92 07 28 92 09 06

18 04

16 15

03 02

10 05

u u

03 04

22 u

12 08

02 55

02 18

93 07 OS 93 07 20

01 01

01 01

u u

u u

u u

u u

u u

01 01

02 03

03 02

93 08 23 u 01 u u u 01 u 01 01 04 93 09 07 u 01 u u u u u 01 02 02 n nn 7J V7 I-

93 10 07 n 1 v

u 01 u u u u

u u

u u

u 01

01 03

03 04

76

Table 6 Comparison of pH and major ion determinations between UCSB and CARB laboratories Five different subsamples each of lakewater snowmelt ~d rainwater were sent to the ARB laboratory in El Monte Ion levels are tabulated as microEq L-

MampSamp)e Lab Cl N01 Na K Ca cl~ Lakewater LL-I UCSB 71 02 63 170 39 so 272 618

EIMte 62 lt06 67 144 33 49 289 S99

TZ-61 UCSB 47 2S 9S 188 100 72 444 S66 EMte 4S lt06 8S 196 97 66 394 628

CR-119 UCSB 24 04 70 162 3S 43 237 620 El Mte 20 lt06 1S 16S 36 41 250 629

RB-107 UCSB 18 lt01 78 100 40 31 476 618 EIMte 23 lt06 104 126 40 33 574 633

EML-10 UCSB S6 07 1S 171 43 42 24S 627 EIMte S6 lt06 1S 161 33 41 344 629

Sno~elt lt bull lt ~ 06PR-7 UCSB 17 05 13 535

EIMte 2S 16 33 17 os 08 90 S87

SN-8 UCSB 10 13 11 os 02 02 08 S46 EIMte 11 10 33 04 03 08 60 S60

KW-9 UCSB 10 22 16 08 04 04 os S25 EIMte 14 11 42 04 03 08 60 S61

LL-2 UCSB 10 16 1S 08 01 03 os S3S EMte 14 1S 33 08 lt03 08 90 SSl

Rainwater TPlO 7-16 UCSB so 210 124 46 20 14 S6 449

EIMte 4S 187 131 3S 1S 16 140 S28

SL 7-18 UCSB 43 270 174 S1 26 1S 88 441 EMte 39 247 192 3S 1S 2S 8S 490

AM 9-24 UCSB 43 180 98 31 1S 23 168 463 EMte 31 179 104 30 10 2S 11S S39

SN 7-14 UCSB 48 274 167 29 13 16 72 464 EIMte 42 258 181 26 13 16 8S 479

MM7-16 UCSB 60 362 181 18 14 10 32 441 El Mte S6 331 182 26 1S 16 90 498

77

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 4: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 5 Ion chemistry of deionized rinsewater from Aero Chemetrics collectors deployed for one to two weeks during Lle Alpine let Deposition Project 1990-1993 When no precipitation occurred during the 1 to 2-week period the collectors were rinsed with 250 ml of deionized water this rinse water ~ analyzed for dissolved constituents All values are in microequivalents per liter (microEq L- ) Undetectable levels are designated by u and a dash indicates no data In 1993 colocated collectors (1 and 2) were deployed at Onion Valley and at Mammoth Mountain No rinses were collected during 1994

Site amp Date NH4 Ca Mg Na K CI N03 S04 OAc OFm

Onion Valley 90 08 31 28 04 os 02 lS lS 12 90 09 11 03 01 03 u u u u 90 10 14 32 os 04 02 01 32 06

91 06 26 42 37 os 10 04 10 2S 18 10 10 91 07 25 46 1S0 2S 36 40 22 S8 39 08 02 910828 S4 1S0 18 24 16 12 107 32 08 08 910923 36 73 10 12 14 12 49 16 os os

bulln 9110 09 226 71 25 40 i60 24 230 10 u ii 9110 23 09 44 os 02 02 u 01 01 os os 92 06 0S-1 362 363 81 84 67 20 280 300 08 03 92 06 0S-2 17S 213 40 46 31 23 160 160 os 03 92 06 21-2 9S 167 28 31 2S 23 114 76 os lS 920710-1 28 2S 04 08 02 os 14 1S os 20 92 07 10-2 39 20 04 09 02 02 10 06 1S ss 92 07 29-1 33 27 03 09 02 02 26 11 02 01 92 07 29-2 26 12 02 11 os 02 12 os os 01 92 09 14-1 S8S 268 S1 32 76 29 14S 66 os os 92 09 14-2 20 258 09 14 07 08 26 19 os 01 92 10 02-1 66 237 43 38 3S 13 12S 34 1S os 92 10 02-2 02 23 02 09 01 u 01 u 02 01 92 10 18-1 147 141 16 19 17 u 80 13 os 03 92 10 18-2 07 30 03 10 01 u u u os 01

93 06 19-1 u 13 u 02 01 08 u 04 u u 93 06 19-2 41 84 11 26 13 18 38 38 os 02 93 07 04-1 u 08 02 u 01 02 01 01 u u 93 07 04-2 06 73 07 06 04 12 02 02 11 20 93 07 19-1 os 1S 02 04 03 11 01 os u 01 93 07 19-2 04 49 04 01 01 02 01 01 u u 93 08 02-1 04 47 04 01 01 os 01 02 14 01 93 08 02-2 02 42 07 07 09 06 06 18 08 01 93 08 24-1 03 u 04 os 09 06 17 07 u u 93 08 24-2 37 u 04 03 06 03 S6 03 u u 93 09 07-1 2S u 04 04 os 04 27 21 60 1S 93 09 07-2 S1 S1 09 13 14 09 103 62 os 01 93 09 22-1 07 11 01 01 03 06 01 01 u u 93 09 22-2 92 140 26 09 21 24 168 84 09 02 93 10 06-1 08 06 u 01 02 03 u u u u 93 10 06-2 07 17 01 04 03 09 u 02 06 os

72

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K CI N03 S04 OAc OFm

South Lake 90 07 02 43 07 08 24 u 33 39 90 08 03 90 08 31

260 09

64 02

135 05

115 01

66 u

540 04

450 02

90 09 11 02 01 02 02 u 02 02 90 10 14 12 02 04 01 01 19 04

910711 240 142 39 66 27 49 235 172 10 05 910725 32 20 06 08 09 05 27 18 05 u 910828 910923

20 36

34 54

04 11

06 36

04 11

05 24

14 66

08 52

u 05

u u

9110 09 9110 23

12 29

05 102

01 12

01 15

01 17

u 19

05 78

03 47

u 29

u 11

92 09 14 92 10 02 92 10 18

17 27 07

09 20 06

01 04 01

10 05 u

12 u u

u 02 01

u 14 u

u 11 01

02 05 02

02 03 02

93 06 28 02 07 01 07 01 17 u 02 os u 93 07 15 93 07 29 93 08 24

22 u 02

26 07 04

04 01 01

05 03 02

05 03 03

12 07 09

03 u 03

07 05 03

u 06 05

u 18 u

93 09 22 93 10 05

u 20

os 02

01 01

02 01

01 01

01 u

u u

01 u

u 09

u 05

Eastern Brook Lake 90 09 13 90 10 14

03 nu

01 u

02 n A u

02 u

u u

u n u~

u u

910828 06 08 02 03 02 os 05 02 02 u 91 10 09 07 03 01 01 u 14 01 02 os u

92 0914 92 10 02 92 10 18

21 19 49

68 104 30

13 14 05

17 23 16

17 12 lS

03 08 02

36 56 33

19 26 09

02 05 os

01 03 03

93 06 19 93 07 04 93 07 19 93 08 04

u 02 u 03

09 14 u u

02 04 u u

02 03 01 02

02 05 01 01

05 03 05 15

u 01 01 19

02 02 01 08

u 04 35 22

u 01 60 50

93 08 24 93 09 22 93 10 OS

02 13 07

01 03 12

u 01 01

01 03 03

u 01 02

u 04 03

u 06 01

u 03 u

u 04 02

u 30 05

MammothMtn 90 08 03 66 25 46 53 36 148 92 9009 06 144 29 30 19 29 230 43 90 10 12 250 70 95 40 53 360 234

910829 n1 nn 1 v bullu

91 10 10

12 n D uo

13 n bullu 08

03 n bullu 02

03 u 01

01 u 01

u u u

07 n bullv 01

04 n bullv 01

os n v 08

02 nUlt

os

73

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Mammoth Min (cont) 92 05 12 63 32 06 15 u 05 35 67 02 02 92 05 28 45 20 05 07 02 03 18 20 os 02 92 07 31-1 05 07 01 u u 04 u 01 03 u 92 07 31-2 13 os u u u 04 u 01 03 u 92 10 19-1 20 06 01 01 u u u 01 08 os 92 10 19-2 11 08 01 01 u u 01 01 os 01

93 06 20-1 u os 01 02 01 03 01 03 01 02 93 06 20-2 08 2S 01 04 03 10 02 06 u 01 93 07 06-1 u os u 02 01 03 01 01 u u 93 07 06-2 09 os u 04 01 07 os os u u 93 07 20-1 u 11 u 02 01 01 01 01 01 02 93 07 20-2 u 21 01 os 03 07 03 04 04 os 93 08 03-1 02 06 u 02 01 03 01 01 02 u 93 08 03-2 02 09 01 02 02 02 01 03 u u 93 08 17-1 04 12 02 34 99 1SS 07 21 09 04 93 08 17-2 42 34 06 11 10 12 80 34 os 01 93 08 31-1 03 07 u 01 01 u u u 20 u 93 08 31-2 10 13 02 04 os 10 lS 07 u u 93 09 15-1 05 07 01 06 LO 25 01 03 03 u 93 09 15-2 54 56 09 12 08 09 95 19 u 93 09 28-1 08 07 u 01 01 02 u u 06 08 93 09 28-2 09 u 01 02 01 04 os 03 30 u 93 11 02-1 os u 03 04 04 06 09 07 01 u 93 11 02-2 07 u 02 07 07 os 08 08 01 u

Tioga Pass nn no 17U VO JI

n 1 bullbullv

1 bullbullv

1 nbullbull v - C I 0

T7

90 09 02 37 07 09 04 u 39 26 90 09 16 03 u 03 u u 10 u

92 09 1S 02 21 04 07 06 u 11 os 02 01 92 10 19 02 07 02 01 05 02 01 01 02 01

93 07 20 06 14 01 02 03 11 01 02 07 20 93 08 17 u 16 02 02 08 04 11 09 10 u 93 08 31 09 03 01 01 02 04 02 03 10 u 93 09 1S 39 12 01 02 02 01 os 03 07 u 93 10 03 08 09 01 01 01 u u u 13 02

Kaiser Pass 910712 33 3S 12 lS 19 18 2S 20 10 02 910729 07 11 02 os 04 02 02 01 910809 16 2S 04 06 04 o~ 02 02 08 01 910827 os 02 03 03 02 02 01 u u 910829 67 47 13 16 09 20 62 43 u u 91091S 122 30 49 46 31 116 90 910924 S5 18 os 09 04 10 22 16 u u 9110 10 24 29 os 06 03 13 30 17 u u 9110 24 88 19S 31 20 12 26 163 12S u u

74

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl NO3 SO4 OAc OFm

Kaiser Pass (cont) 92 05 22 136 92 05 26 113 92 07 08 92 07 20 19 92 07 27 07 92 08 06 68 92 08 31 08

115 120 36 18 10 39 10

27 38 10 15 02 07 02

29 39 10 05 06 19 02

31 43 12 27 u 04 u

38 32 u u 02 21 u

66 49 u u 01 74 01

60 68 15 05 01 55 01

05 20

10 01

Sonora Pass 90 08 02 9009 01 90 09 20 90 10 12

35 45 03 05

12 13 01 05

08 09 03 01

16 08 01 02

u 30 u 01

37 38 10 06

18 16 u u

910712 91 08 14 910924 91 10 10 91 10 24

210 18 18 33

19 347 08 13 60

06 77 02 02 19

04 90 01 01 07

08 52 01 01 10

05 61 u u 15

03 02 u 04 48

04 190 u 02 30

05 25 05 05 u

01 63 01 05 u

92 07 31 92 08 07 92 09 IS 92 10 19

32 14 56 15

05 07

379 22

02 02 69 03

02 01 13 01

u u 36 u

02 01 13 01

02 u

110 03

01 01 30 01

22 02 15 02

12 01 10 02

93 07 05 93 07 20 93 08 03 93 08 17 93 08 31 93 09 15

04 u 1 A~ u u 02

01 09 1 u u u

01 u n u bull gt

u u 01

02 01 nA u

01 04 01

01 01 n v 01 07 06

04 04 nL vu 01 02 02

u u 1 n1

01 01 01

04 01 bull L10

u u u

u u nu 14 07 13

u u u 01 05 03

Alpine Meadows 90 07 27 168 19 12 27 30 143 29

92 07 17 10 80 05 06 u 01 14 106

Lost Lake 90 09 03 90 09 17 90 09 25

01 01 01

u u u

u 01 u

u u 01

u 04 01

u u u

u 02 02

91 07 08 91 09 21 91 10 11

06 03

11 05 01

05 02 u

30 05 01

02 01 u

05 12 u

02 01 01

08 01 01

02 02 u

15 02 u

92 08 08 92 08 28 92 09 25 92 09 10

05 22 08 u

08 08 os 18

01 01 01 04

u 02 04 os

u u u u

u u u u

u os 04 os

u 01 01 05

08 os 01 01

01 18 02 06

75

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Lost Lake (cont) 93 06 27 u u u 03 u u 04 01 93 07 06 01 u u 06 05 08 05 01 u 05 93 07 12 03 u 01 05 06 04 03 02 u 01 93 07 20 u 03 01 02 01 u 03 u u u 93 08 11 01 02 01 02 01 u 01 u u u 93 08 18 u 03 01 03 02 u 03 u u u 93 09 06 02 04 02 03 01 04 04 02 u u 93 09 14 u 10 04 05 01 u 54 01 01 01

Mineral King 910624 14 04 02 02 01 u 02 02 05 01 910709 16 30 04 10 01 05 u 05 05 01 91 07 17 10 04 02 01 01 u 01 u 02 01 910723 910808

22 13

11 03

05 02

03 u

06 01

01 u

13 04

05 u

05 05

02 02

910821 910828

14 14

02 07

02 02

01 02

u 01

u u

02 02

02 05

05 08

05 08

92 07 08 02 34 10 11 13 u u 10 08 05 92 07 30 117 119 37 65 38 27 157 175 15 05 92 08 04 u 24 05 09 03 02 u 05 05 02 92 08 07 24 100 22 17 14 u 76 45 05 05 92 08 28 24 110 22 20 12 02 80 35 05 05 92 09 03 03 23 05 07 03 u 30 05 02 02 92 09 14 64 85 17 17 16 03 91 20 05 02 9210 06 01 56 06 05 03 u 24 10 05 02

Cl1 rv 71 VU 1T

93 07 06 gtA gtmiddot 235

nuv

120 77 59

105 29

247 145

84 30

460 01

470 90

10 20

u 05

93 07 15 65 80 43 22 11S 19 u 103 10 02 93 07 29 u 37 28 15 07 08 u 15 20 10 93 08 08 16 66 32 25 14 18 118 94 u u 93 08 18 u u 02 01 04 03 03 07 u u 93 08 24 01 u u u 01 01 02 03 02 u 93 09 02 02 u 02 03 04 05 14 13 u u 93 09 22 02 13 04 07 04 21 u 14 02 02

Emerald Lake 91 07 24 11 04 29 05 14 02 12 900 16S 91 08 13 07 05 03 03 01 02 02 01 345 70 910827 910924

14 14

03 10

02 04

02 10

01 07

02 02

01 u

01 02

82S 52S

130 15S

92 07 28 92 09 06

18 04

16 15

03 02

10 05

u u

03 04

22 u

12 08

02 55

02 18

93 07 OS 93 07 20

01 01

01 01

u u

u u

u u

u u

u u

01 01

02 03

03 02

93 08 23 u 01 u u u 01 u 01 01 04 93 09 07 u 01 u u u u u 01 02 02 n nn 7J V7 I-

93 10 07 n 1 v

u 01 u u u u

u u

u u

u 01

01 03

03 04

76

Table 6 Comparison of pH and major ion determinations between UCSB and CARB laboratories Five different subsamples each of lakewater snowmelt ~d rainwater were sent to the ARB laboratory in El Monte Ion levels are tabulated as microEq L-

MampSamp)e Lab Cl N01 Na K Ca cl~ Lakewater LL-I UCSB 71 02 63 170 39 so 272 618

EIMte 62 lt06 67 144 33 49 289 S99

TZ-61 UCSB 47 2S 9S 188 100 72 444 S66 EMte 4S lt06 8S 196 97 66 394 628

CR-119 UCSB 24 04 70 162 3S 43 237 620 El Mte 20 lt06 1S 16S 36 41 250 629

RB-107 UCSB 18 lt01 78 100 40 31 476 618 EIMte 23 lt06 104 126 40 33 574 633

EML-10 UCSB S6 07 1S 171 43 42 24S 627 EIMte S6 lt06 1S 161 33 41 344 629

Sno~elt lt bull lt ~ 06PR-7 UCSB 17 05 13 535

EIMte 2S 16 33 17 os 08 90 S87

SN-8 UCSB 10 13 11 os 02 02 08 S46 EIMte 11 10 33 04 03 08 60 S60

KW-9 UCSB 10 22 16 08 04 04 os S25 EIMte 14 11 42 04 03 08 60 S61

LL-2 UCSB 10 16 1S 08 01 03 os S3S EMte 14 1S 33 08 lt03 08 90 SSl

Rainwater TPlO 7-16 UCSB so 210 124 46 20 14 S6 449

EIMte 4S 187 131 3S 1S 16 140 S28

SL 7-18 UCSB 43 270 174 S1 26 1S 88 441 EMte 39 247 192 3S 1S 2S 8S 490

AM 9-24 UCSB 43 180 98 31 1S 23 168 463 EMte 31 179 104 30 10 2S 11S S39

SN 7-14 UCSB 48 274 167 29 13 16 72 464 EIMte 42 258 181 26 13 16 8S 479

MM7-16 UCSB 60 362 181 18 14 10 32 441 El Mte S6 331 182 26 1S 16 90 498

77

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 5: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K CI N03 S04 OAc OFm

South Lake 90 07 02 43 07 08 24 u 33 39 90 08 03 90 08 31

260 09

64 02

135 05

115 01

66 u

540 04

450 02

90 09 11 02 01 02 02 u 02 02 90 10 14 12 02 04 01 01 19 04

910711 240 142 39 66 27 49 235 172 10 05 910725 32 20 06 08 09 05 27 18 05 u 910828 910923

20 36

34 54

04 11

06 36

04 11

05 24

14 66

08 52

u 05

u u

9110 09 9110 23

12 29

05 102

01 12

01 15

01 17

u 19

05 78

03 47

u 29

u 11

92 09 14 92 10 02 92 10 18

17 27 07

09 20 06

01 04 01

10 05 u

12 u u

u 02 01

u 14 u

u 11 01

02 05 02

02 03 02

93 06 28 02 07 01 07 01 17 u 02 os u 93 07 15 93 07 29 93 08 24

22 u 02

26 07 04

04 01 01

05 03 02

05 03 03

12 07 09

03 u 03

07 05 03

u 06 05

u 18 u

93 09 22 93 10 05

u 20

os 02

01 01

02 01

01 01

01 u

u u

01 u

u 09

u 05

Eastern Brook Lake 90 09 13 90 10 14

03 nu

01 u

02 n A u

02 u

u u

u n u~

u u

910828 06 08 02 03 02 os 05 02 02 u 91 10 09 07 03 01 01 u 14 01 02 os u

92 0914 92 10 02 92 10 18

21 19 49

68 104 30

13 14 05

17 23 16

17 12 lS

03 08 02

36 56 33

19 26 09

02 05 os

01 03 03

93 06 19 93 07 04 93 07 19 93 08 04

u 02 u 03

09 14 u u

02 04 u u

02 03 01 02

02 05 01 01

05 03 05 15

u 01 01 19

02 02 01 08

u 04 35 22

u 01 60 50

93 08 24 93 09 22 93 10 OS

02 13 07

01 03 12

u 01 01

01 03 03

u 01 02

u 04 03

u 06 01

u 03 u

u 04 02

u 30 05

MammothMtn 90 08 03 66 25 46 53 36 148 92 9009 06 144 29 30 19 29 230 43 90 10 12 250 70 95 40 53 360 234

910829 n1 nn 1 v bullu

91 10 10

12 n D uo

13 n bullu 08

03 n bullu 02

03 u 01

01 u 01

u u u

07 n bullv 01

04 n bullv 01

os n v 08

02 nUlt

os

73

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Mammoth Min (cont) 92 05 12 63 32 06 15 u 05 35 67 02 02 92 05 28 45 20 05 07 02 03 18 20 os 02 92 07 31-1 05 07 01 u u 04 u 01 03 u 92 07 31-2 13 os u u u 04 u 01 03 u 92 10 19-1 20 06 01 01 u u u 01 08 os 92 10 19-2 11 08 01 01 u u 01 01 os 01

93 06 20-1 u os 01 02 01 03 01 03 01 02 93 06 20-2 08 2S 01 04 03 10 02 06 u 01 93 07 06-1 u os u 02 01 03 01 01 u u 93 07 06-2 09 os u 04 01 07 os os u u 93 07 20-1 u 11 u 02 01 01 01 01 01 02 93 07 20-2 u 21 01 os 03 07 03 04 04 os 93 08 03-1 02 06 u 02 01 03 01 01 02 u 93 08 03-2 02 09 01 02 02 02 01 03 u u 93 08 17-1 04 12 02 34 99 1SS 07 21 09 04 93 08 17-2 42 34 06 11 10 12 80 34 os 01 93 08 31-1 03 07 u 01 01 u u u 20 u 93 08 31-2 10 13 02 04 os 10 lS 07 u u 93 09 15-1 05 07 01 06 LO 25 01 03 03 u 93 09 15-2 54 56 09 12 08 09 95 19 u 93 09 28-1 08 07 u 01 01 02 u u 06 08 93 09 28-2 09 u 01 02 01 04 os 03 30 u 93 11 02-1 os u 03 04 04 06 09 07 01 u 93 11 02-2 07 u 02 07 07 os 08 08 01 u

Tioga Pass nn no 17U VO JI

n 1 bullbullv

1 bullbullv

1 nbullbull v - C I 0

T7

90 09 02 37 07 09 04 u 39 26 90 09 16 03 u 03 u u 10 u

92 09 1S 02 21 04 07 06 u 11 os 02 01 92 10 19 02 07 02 01 05 02 01 01 02 01

93 07 20 06 14 01 02 03 11 01 02 07 20 93 08 17 u 16 02 02 08 04 11 09 10 u 93 08 31 09 03 01 01 02 04 02 03 10 u 93 09 1S 39 12 01 02 02 01 os 03 07 u 93 10 03 08 09 01 01 01 u u u 13 02

Kaiser Pass 910712 33 3S 12 lS 19 18 2S 20 10 02 910729 07 11 02 os 04 02 02 01 910809 16 2S 04 06 04 o~ 02 02 08 01 910827 os 02 03 03 02 02 01 u u 910829 67 47 13 16 09 20 62 43 u u 91091S 122 30 49 46 31 116 90 910924 S5 18 os 09 04 10 22 16 u u 9110 10 24 29 os 06 03 13 30 17 u u 9110 24 88 19S 31 20 12 26 163 12S u u

74

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl NO3 SO4 OAc OFm

Kaiser Pass (cont) 92 05 22 136 92 05 26 113 92 07 08 92 07 20 19 92 07 27 07 92 08 06 68 92 08 31 08

115 120 36 18 10 39 10

27 38 10 15 02 07 02

29 39 10 05 06 19 02

31 43 12 27 u 04 u

38 32 u u 02 21 u

66 49 u u 01 74 01

60 68 15 05 01 55 01

05 20

10 01

Sonora Pass 90 08 02 9009 01 90 09 20 90 10 12

35 45 03 05

12 13 01 05

08 09 03 01

16 08 01 02

u 30 u 01

37 38 10 06

18 16 u u

910712 91 08 14 910924 91 10 10 91 10 24

210 18 18 33

19 347 08 13 60

06 77 02 02 19

04 90 01 01 07

08 52 01 01 10

05 61 u u 15

03 02 u 04 48

04 190 u 02 30

05 25 05 05 u

01 63 01 05 u

92 07 31 92 08 07 92 09 IS 92 10 19

32 14 56 15

05 07

379 22

02 02 69 03

02 01 13 01

u u 36 u

02 01 13 01

02 u

110 03

01 01 30 01

22 02 15 02

12 01 10 02

93 07 05 93 07 20 93 08 03 93 08 17 93 08 31 93 09 15

04 u 1 A~ u u 02

01 09 1 u u u

01 u n u bull gt

u u 01

02 01 nA u

01 04 01

01 01 n v 01 07 06

04 04 nL vu 01 02 02

u u 1 n1

01 01 01

04 01 bull L10

u u u

u u nu 14 07 13

u u u 01 05 03

Alpine Meadows 90 07 27 168 19 12 27 30 143 29

92 07 17 10 80 05 06 u 01 14 106

Lost Lake 90 09 03 90 09 17 90 09 25

01 01 01

u u u

u 01 u

u u 01

u 04 01

u u u

u 02 02

91 07 08 91 09 21 91 10 11

06 03

11 05 01

05 02 u

30 05 01

02 01 u

05 12 u

02 01 01

08 01 01

02 02 u

15 02 u

92 08 08 92 08 28 92 09 25 92 09 10

05 22 08 u

08 08 os 18

01 01 01 04

u 02 04 os

u u u u

u u u u

u os 04 os

u 01 01 05

08 os 01 01

01 18 02 06

75

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Lost Lake (cont) 93 06 27 u u u 03 u u 04 01 93 07 06 01 u u 06 05 08 05 01 u 05 93 07 12 03 u 01 05 06 04 03 02 u 01 93 07 20 u 03 01 02 01 u 03 u u u 93 08 11 01 02 01 02 01 u 01 u u u 93 08 18 u 03 01 03 02 u 03 u u u 93 09 06 02 04 02 03 01 04 04 02 u u 93 09 14 u 10 04 05 01 u 54 01 01 01

Mineral King 910624 14 04 02 02 01 u 02 02 05 01 910709 16 30 04 10 01 05 u 05 05 01 91 07 17 10 04 02 01 01 u 01 u 02 01 910723 910808

22 13

11 03

05 02

03 u

06 01

01 u

13 04

05 u

05 05

02 02

910821 910828

14 14

02 07

02 02

01 02

u 01

u u

02 02

02 05

05 08

05 08

92 07 08 02 34 10 11 13 u u 10 08 05 92 07 30 117 119 37 65 38 27 157 175 15 05 92 08 04 u 24 05 09 03 02 u 05 05 02 92 08 07 24 100 22 17 14 u 76 45 05 05 92 08 28 24 110 22 20 12 02 80 35 05 05 92 09 03 03 23 05 07 03 u 30 05 02 02 92 09 14 64 85 17 17 16 03 91 20 05 02 9210 06 01 56 06 05 03 u 24 10 05 02

Cl1 rv 71 VU 1T

93 07 06 gtA gtmiddot 235

nuv

120 77 59

105 29

247 145

84 30

460 01

470 90

10 20

u 05

93 07 15 65 80 43 22 11S 19 u 103 10 02 93 07 29 u 37 28 15 07 08 u 15 20 10 93 08 08 16 66 32 25 14 18 118 94 u u 93 08 18 u u 02 01 04 03 03 07 u u 93 08 24 01 u u u 01 01 02 03 02 u 93 09 02 02 u 02 03 04 05 14 13 u u 93 09 22 02 13 04 07 04 21 u 14 02 02

Emerald Lake 91 07 24 11 04 29 05 14 02 12 900 16S 91 08 13 07 05 03 03 01 02 02 01 345 70 910827 910924

14 14

03 10

02 04

02 10

01 07

02 02

01 u

01 02

82S 52S

130 15S

92 07 28 92 09 06

18 04

16 15

03 02

10 05

u u

03 04

22 u

12 08

02 55

02 18

93 07 OS 93 07 20

01 01

01 01

u u

u u

u u

u u

u u

01 01

02 03

03 02

93 08 23 u 01 u u u 01 u 01 01 04 93 09 07 u 01 u u u u u 01 02 02 n nn 7J V7 I-

93 10 07 n 1 v

u 01 u u u u

u u

u u

u 01

01 03

03 04

76

Table 6 Comparison of pH and major ion determinations between UCSB and CARB laboratories Five different subsamples each of lakewater snowmelt ~d rainwater were sent to the ARB laboratory in El Monte Ion levels are tabulated as microEq L-

MampSamp)e Lab Cl N01 Na K Ca cl~ Lakewater LL-I UCSB 71 02 63 170 39 so 272 618

EIMte 62 lt06 67 144 33 49 289 S99

TZ-61 UCSB 47 2S 9S 188 100 72 444 S66 EMte 4S lt06 8S 196 97 66 394 628

CR-119 UCSB 24 04 70 162 3S 43 237 620 El Mte 20 lt06 1S 16S 36 41 250 629

RB-107 UCSB 18 lt01 78 100 40 31 476 618 EIMte 23 lt06 104 126 40 33 574 633

EML-10 UCSB S6 07 1S 171 43 42 24S 627 EIMte S6 lt06 1S 161 33 41 344 629

Sno~elt lt bull lt ~ 06PR-7 UCSB 17 05 13 535

EIMte 2S 16 33 17 os 08 90 S87

SN-8 UCSB 10 13 11 os 02 02 08 S46 EIMte 11 10 33 04 03 08 60 S60

KW-9 UCSB 10 22 16 08 04 04 os S25 EIMte 14 11 42 04 03 08 60 S61

LL-2 UCSB 10 16 1S 08 01 03 os S3S EMte 14 1S 33 08 lt03 08 90 SSl

Rainwater TPlO 7-16 UCSB so 210 124 46 20 14 S6 449

EIMte 4S 187 131 3S 1S 16 140 S28

SL 7-18 UCSB 43 270 174 S1 26 1S 88 441 EMte 39 247 192 3S 1S 2S 8S 490

AM 9-24 UCSB 43 180 98 31 1S 23 168 463 EMte 31 179 104 30 10 2S 11S S39

SN 7-14 UCSB 48 274 167 29 13 16 72 464 EIMte 42 258 181 26 13 16 8S 479

MM7-16 UCSB 60 362 181 18 14 10 32 441 El Mte S6 331 182 26 1S 16 90 498

77

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 6: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Mammoth Min (cont) 92 05 12 63 32 06 15 u 05 35 67 02 02 92 05 28 45 20 05 07 02 03 18 20 os 02 92 07 31-1 05 07 01 u u 04 u 01 03 u 92 07 31-2 13 os u u u 04 u 01 03 u 92 10 19-1 20 06 01 01 u u u 01 08 os 92 10 19-2 11 08 01 01 u u 01 01 os 01

93 06 20-1 u os 01 02 01 03 01 03 01 02 93 06 20-2 08 2S 01 04 03 10 02 06 u 01 93 07 06-1 u os u 02 01 03 01 01 u u 93 07 06-2 09 os u 04 01 07 os os u u 93 07 20-1 u 11 u 02 01 01 01 01 01 02 93 07 20-2 u 21 01 os 03 07 03 04 04 os 93 08 03-1 02 06 u 02 01 03 01 01 02 u 93 08 03-2 02 09 01 02 02 02 01 03 u u 93 08 17-1 04 12 02 34 99 1SS 07 21 09 04 93 08 17-2 42 34 06 11 10 12 80 34 os 01 93 08 31-1 03 07 u 01 01 u u u 20 u 93 08 31-2 10 13 02 04 os 10 lS 07 u u 93 09 15-1 05 07 01 06 LO 25 01 03 03 u 93 09 15-2 54 56 09 12 08 09 95 19 u 93 09 28-1 08 07 u 01 01 02 u u 06 08 93 09 28-2 09 u 01 02 01 04 os 03 30 u 93 11 02-1 os u 03 04 04 06 09 07 01 u 93 11 02-2 07 u 02 07 07 os 08 08 01 u

Tioga Pass nn no 17U VO JI

n 1 bullbullv

1 bullbullv

1 nbullbull v - C I 0

T7

90 09 02 37 07 09 04 u 39 26 90 09 16 03 u 03 u u 10 u

92 09 1S 02 21 04 07 06 u 11 os 02 01 92 10 19 02 07 02 01 05 02 01 01 02 01

93 07 20 06 14 01 02 03 11 01 02 07 20 93 08 17 u 16 02 02 08 04 11 09 10 u 93 08 31 09 03 01 01 02 04 02 03 10 u 93 09 1S 39 12 01 02 02 01 os 03 07 u 93 10 03 08 09 01 01 01 u u u 13 02

Kaiser Pass 910712 33 3S 12 lS 19 18 2S 20 10 02 910729 07 11 02 os 04 02 02 01 910809 16 2S 04 06 04 o~ 02 02 08 01 910827 os 02 03 03 02 02 01 u u 910829 67 47 13 16 09 20 62 43 u u 91091S 122 30 49 46 31 116 90 910924 S5 18 os 09 04 10 22 16 u u 9110 10 24 29 os 06 03 13 30 17 u u 9110 24 88 19S 31 20 12 26 163 12S u u

74

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl NO3 SO4 OAc OFm

Kaiser Pass (cont) 92 05 22 136 92 05 26 113 92 07 08 92 07 20 19 92 07 27 07 92 08 06 68 92 08 31 08

115 120 36 18 10 39 10

27 38 10 15 02 07 02

29 39 10 05 06 19 02

31 43 12 27 u 04 u

38 32 u u 02 21 u

66 49 u u 01 74 01

60 68 15 05 01 55 01

05 20

10 01

Sonora Pass 90 08 02 9009 01 90 09 20 90 10 12

35 45 03 05

12 13 01 05

08 09 03 01

16 08 01 02

u 30 u 01

37 38 10 06

18 16 u u

910712 91 08 14 910924 91 10 10 91 10 24

210 18 18 33

19 347 08 13 60

06 77 02 02 19

04 90 01 01 07

08 52 01 01 10

05 61 u u 15

03 02 u 04 48

04 190 u 02 30

05 25 05 05 u

01 63 01 05 u

92 07 31 92 08 07 92 09 IS 92 10 19

32 14 56 15

05 07

379 22

02 02 69 03

02 01 13 01

u u 36 u

02 01 13 01

02 u

110 03

01 01 30 01

22 02 15 02

12 01 10 02

93 07 05 93 07 20 93 08 03 93 08 17 93 08 31 93 09 15

04 u 1 A~ u u 02

01 09 1 u u u

01 u n u bull gt

u u 01

02 01 nA u

01 04 01

01 01 n v 01 07 06

04 04 nL vu 01 02 02

u u 1 n1

01 01 01

04 01 bull L10

u u u

u u nu 14 07 13

u u u 01 05 03

Alpine Meadows 90 07 27 168 19 12 27 30 143 29

92 07 17 10 80 05 06 u 01 14 106

Lost Lake 90 09 03 90 09 17 90 09 25

01 01 01

u u u

u 01 u

u u 01

u 04 01

u u u

u 02 02

91 07 08 91 09 21 91 10 11

06 03

11 05 01

05 02 u

30 05 01

02 01 u

05 12 u

02 01 01

08 01 01

02 02 u

15 02 u

92 08 08 92 08 28 92 09 25 92 09 10

05 22 08 u

08 08 os 18

01 01 01 04

u 02 04 os

u u u u

u u u u

u os 04 os

u 01 01 05

08 os 01 01

01 18 02 06

75

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Lost Lake (cont) 93 06 27 u u u 03 u u 04 01 93 07 06 01 u u 06 05 08 05 01 u 05 93 07 12 03 u 01 05 06 04 03 02 u 01 93 07 20 u 03 01 02 01 u 03 u u u 93 08 11 01 02 01 02 01 u 01 u u u 93 08 18 u 03 01 03 02 u 03 u u u 93 09 06 02 04 02 03 01 04 04 02 u u 93 09 14 u 10 04 05 01 u 54 01 01 01

Mineral King 910624 14 04 02 02 01 u 02 02 05 01 910709 16 30 04 10 01 05 u 05 05 01 91 07 17 10 04 02 01 01 u 01 u 02 01 910723 910808

22 13

11 03

05 02

03 u

06 01

01 u

13 04

05 u

05 05

02 02

910821 910828

14 14

02 07

02 02

01 02

u 01

u u

02 02

02 05

05 08

05 08

92 07 08 02 34 10 11 13 u u 10 08 05 92 07 30 117 119 37 65 38 27 157 175 15 05 92 08 04 u 24 05 09 03 02 u 05 05 02 92 08 07 24 100 22 17 14 u 76 45 05 05 92 08 28 24 110 22 20 12 02 80 35 05 05 92 09 03 03 23 05 07 03 u 30 05 02 02 92 09 14 64 85 17 17 16 03 91 20 05 02 9210 06 01 56 06 05 03 u 24 10 05 02

Cl1 rv 71 VU 1T

93 07 06 gtA gtmiddot 235

nuv

120 77 59

105 29

247 145

84 30

460 01

470 90

10 20

u 05

93 07 15 65 80 43 22 11S 19 u 103 10 02 93 07 29 u 37 28 15 07 08 u 15 20 10 93 08 08 16 66 32 25 14 18 118 94 u u 93 08 18 u u 02 01 04 03 03 07 u u 93 08 24 01 u u u 01 01 02 03 02 u 93 09 02 02 u 02 03 04 05 14 13 u u 93 09 22 02 13 04 07 04 21 u 14 02 02

Emerald Lake 91 07 24 11 04 29 05 14 02 12 900 16S 91 08 13 07 05 03 03 01 02 02 01 345 70 910827 910924

14 14

03 10

02 04

02 10

01 07

02 02

01 u

01 02

82S 52S

130 15S

92 07 28 92 09 06

18 04

16 15

03 02

10 05

u u

03 04

22 u

12 08

02 55

02 18

93 07 OS 93 07 20

01 01

01 01

u u

u u

u u

u u

u u

01 01

02 03

03 02

93 08 23 u 01 u u u 01 u 01 01 04 93 09 07 u 01 u u u u u 01 02 02 n nn 7J V7 I-

93 10 07 n 1 v

u 01 u u u u

u u

u u

u 01

01 03

03 04

76

Table 6 Comparison of pH and major ion determinations between UCSB and CARB laboratories Five different subsamples each of lakewater snowmelt ~d rainwater were sent to the ARB laboratory in El Monte Ion levels are tabulated as microEq L-

MampSamp)e Lab Cl N01 Na K Ca cl~ Lakewater LL-I UCSB 71 02 63 170 39 so 272 618

EIMte 62 lt06 67 144 33 49 289 S99

TZ-61 UCSB 47 2S 9S 188 100 72 444 S66 EMte 4S lt06 8S 196 97 66 394 628

CR-119 UCSB 24 04 70 162 3S 43 237 620 El Mte 20 lt06 1S 16S 36 41 250 629

RB-107 UCSB 18 lt01 78 100 40 31 476 618 EIMte 23 lt06 104 126 40 33 574 633

EML-10 UCSB S6 07 1S 171 43 42 24S 627 EIMte S6 lt06 1S 161 33 41 344 629

Sno~elt lt bull lt ~ 06PR-7 UCSB 17 05 13 535

EIMte 2S 16 33 17 os 08 90 S87

SN-8 UCSB 10 13 11 os 02 02 08 S46 EIMte 11 10 33 04 03 08 60 S60

KW-9 UCSB 10 22 16 08 04 04 os S25 EIMte 14 11 42 04 03 08 60 S61

LL-2 UCSB 10 16 1S 08 01 03 os S3S EMte 14 1S 33 08 lt03 08 90 SSl

Rainwater TPlO 7-16 UCSB so 210 124 46 20 14 S6 449

EIMte 4S 187 131 3S 1S 16 140 S28

SL 7-18 UCSB 43 270 174 S1 26 1S 88 441 EMte 39 247 192 3S 1S 2S 8S 490

AM 9-24 UCSB 43 180 98 31 1S 23 168 463 EMte 31 179 104 30 10 2S 11S S39

SN 7-14 UCSB 48 274 167 29 13 16 72 464 EIMte 42 258 181 26 13 16 8S 479

MM7-16 UCSB 60 362 181 18 14 10 32 441 El Mte S6 331 182 26 1S 16 90 498

77

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 7: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl NO3 SO4 OAc OFm

Kaiser Pass (cont) 92 05 22 136 92 05 26 113 92 07 08 92 07 20 19 92 07 27 07 92 08 06 68 92 08 31 08

115 120 36 18 10 39 10

27 38 10 15 02 07 02

29 39 10 05 06 19 02

31 43 12 27 u 04 u

38 32 u u 02 21 u

66 49 u u 01 74 01

60 68 15 05 01 55 01

05 20

10 01

Sonora Pass 90 08 02 9009 01 90 09 20 90 10 12

35 45 03 05

12 13 01 05

08 09 03 01

16 08 01 02

u 30 u 01

37 38 10 06

18 16 u u

910712 91 08 14 910924 91 10 10 91 10 24

210 18 18 33

19 347 08 13 60

06 77 02 02 19

04 90 01 01 07

08 52 01 01 10

05 61 u u 15

03 02 u 04 48

04 190 u 02 30

05 25 05 05 u

01 63 01 05 u

92 07 31 92 08 07 92 09 IS 92 10 19

32 14 56 15

05 07

379 22

02 02 69 03

02 01 13 01

u u 36 u

02 01 13 01

02 u

110 03

01 01 30 01

22 02 15 02

12 01 10 02

93 07 05 93 07 20 93 08 03 93 08 17 93 08 31 93 09 15

04 u 1 A~ u u 02

01 09 1 u u u

01 u n u bull gt

u u 01

02 01 nA u

01 04 01

01 01 n v 01 07 06

04 04 nL vu 01 02 02

u u 1 n1

01 01 01

04 01 bull L10

u u u

u u nu 14 07 13

u u u 01 05 03

Alpine Meadows 90 07 27 168 19 12 27 30 143 29

92 07 17 10 80 05 06 u 01 14 106

Lost Lake 90 09 03 90 09 17 90 09 25

01 01 01

u u u

u 01 u

u u 01

u 04 01

u u u

u 02 02

91 07 08 91 09 21 91 10 11

06 03

11 05 01

05 02 u

30 05 01

02 01 u

05 12 u

02 01 01

08 01 01

02 02 u

15 02 u

92 08 08 92 08 28 92 09 25 92 09 10

05 22 08 u

08 08 os 18

01 01 01 04

u 02 04 os

u u u u

u u u u

u os 04 os

u 01 01 05

08 os 01 01

01 18 02 06

75

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Lost Lake (cont) 93 06 27 u u u 03 u u 04 01 93 07 06 01 u u 06 05 08 05 01 u 05 93 07 12 03 u 01 05 06 04 03 02 u 01 93 07 20 u 03 01 02 01 u 03 u u u 93 08 11 01 02 01 02 01 u 01 u u u 93 08 18 u 03 01 03 02 u 03 u u u 93 09 06 02 04 02 03 01 04 04 02 u u 93 09 14 u 10 04 05 01 u 54 01 01 01

Mineral King 910624 14 04 02 02 01 u 02 02 05 01 910709 16 30 04 10 01 05 u 05 05 01 91 07 17 10 04 02 01 01 u 01 u 02 01 910723 910808

22 13

11 03

05 02

03 u

06 01

01 u

13 04

05 u

05 05

02 02

910821 910828

14 14

02 07

02 02

01 02

u 01

u u

02 02

02 05

05 08

05 08

92 07 08 02 34 10 11 13 u u 10 08 05 92 07 30 117 119 37 65 38 27 157 175 15 05 92 08 04 u 24 05 09 03 02 u 05 05 02 92 08 07 24 100 22 17 14 u 76 45 05 05 92 08 28 24 110 22 20 12 02 80 35 05 05 92 09 03 03 23 05 07 03 u 30 05 02 02 92 09 14 64 85 17 17 16 03 91 20 05 02 9210 06 01 56 06 05 03 u 24 10 05 02

Cl1 rv 71 VU 1T

93 07 06 gtA gtmiddot 235

nuv

120 77 59

105 29

247 145

84 30

460 01

470 90

10 20

u 05

93 07 15 65 80 43 22 11S 19 u 103 10 02 93 07 29 u 37 28 15 07 08 u 15 20 10 93 08 08 16 66 32 25 14 18 118 94 u u 93 08 18 u u 02 01 04 03 03 07 u u 93 08 24 01 u u u 01 01 02 03 02 u 93 09 02 02 u 02 03 04 05 14 13 u u 93 09 22 02 13 04 07 04 21 u 14 02 02

Emerald Lake 91 07 24 11 04 29 05 14 02 12 900 16S 91 08 13 07 05 03 03 01 02 02 01 345 70 910827 910924

14 14

03 10

02 04

02 10

01 07

02 02

01 u

01 02

82S 52S

130 15S

92 07 28 92 09 06

18 04

16 15

03 02

10 05

u u

03 04

22 u

12 08

02 55

02 18

93 07 OS 93 07 20

01 01

01 01

u u

u u

u u

u u

u u

01 01

02 03

03 02

93 08 23 u 01 u u u 01 u 01 01 04 93 09 07 u 01 u u u u u 01 02 02 n nn 7J V7 I-

93 10 07 n 1 v

u 01 u u u u

u u

u u

u 01

01 03

03 04

76

Table 6 Comparison of pH and major ion determinations between UCSB and CARB laboratories Five different subsamples each of lakewater snowmelt ~d rainwater were sent to the ARB laboratory in El Monte Ion levels are tabulated as microEq L-

MampSamp)e Lab Cl N01 Na K Ca cl~ Lakewater LL-I UCSB 71 02 63 170 39 so 272 618

EIMte 62 lt06 67 144 33 49 289 S99

TZ-61 UCSB 47 2S 9S 188 100 72 444 S66 EMte 4S lt06 8S 196 97 66 394 628

CR-119 UCSB 24 04 70 162 3S 43 237 620 El Mte 20 lt06 1S 16S 36 41 250 629

RB-107 UCSB 18 lt01 78 100 40 31 476 618 EIMte 23 lt06 104 126 40 33 574 633

EML-10 UCSB S6 07 1S 171 43 42 24S 627 EIMte S6 lt06 1S 161 33 41 344 629

Sno~elt lt bull lt ~ 06PR-7 UCSB 17 05 13 535

EIMte 2S 16 33 17 os 08 90 S87

SN-8 UCSB 10 13 11 os 02 02 08 S46 EIMte 11 10 33 04 03 08 60 S60

KW-9 UCSB 10 22 16 08 04 04 os S25 EIMte 14 11 42 04 03 08 60 S61

LL-2 UCSB 10 16 1S 08 01 03 os S3S EMte 14 1S 33 08 lt03 08 90 SSl

Rainwater TPlO 7-16 UCSB so 210 124 46 20 14 S6 449

EIMte 4S 187 131 3S 1S 16 140 S28

SL 7-18 UCSB 43 270 174 S1 26 1S 88 441 EMte 39 247 192 3S 1S 2S 8S 490

AM 9-24 UCSB 43 180 98 31 1S 23 168 463 EMte 31 179 104 30 10 2S 11S S39

SN 7-14 UCSB 48 274 167 29 13 16 72 464 EIMte 42 258 181 26 13 16 8S 479

MM7-16 UCSB 60 362 181 18 14 10 32 441 El Mte S6 331 182 26 1S 16 90 498

77

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 8: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 5 (Continued)

Site amp Date NH4 Ca Mg Na K Cl N03 S04 OAc OFm

Lost Lake (cont) 93 06 27 u u u 03 u u 04 01 93 07 06 01 u u 06 05 08 05 01 u 05 93 07 12 03 u 01 05 06 04 03 02 u 01 93 07 20 u 03 01 02 01 u 03 u u u 93 08 11 01 02 01 02 01 u 01 u u u 93 08 18 u 03 01 03 02 u 03 u u u 93 09 06 02 04 02 03 01 04 04 02 u u 93 09 14 u 10 04 05 01 u 54 01 01 01

Mineral King 910624 14 04 02 02 01 u 02 02 05 01 910709 16 30 04 10 01 05 u 05 05 01 91 07 17 10 04 02 01 01 u 01 u 02 01 910723 910808

22 13

11 03

05 02

03 u

06 01

01 u

13 04

05 u

05 05

02 02

910821 910828

14 14

02 07

02 02

01 02

u 01

u u

02 02

02 05

05 08

05 08

92 07 08 02 34 10 11 13 u u 10 08 05 92 07 30 117 119 37 65 38 27 157 175 15 05 92 08 04 u 24 05 09 03 02 u 05 05 02 92 08 07 24 100 22 17 14 u 76 45 05 05 92 08 28 24 110 22 20 12 02 80 35 05 05 92 09 03 03 23 05 07 03 u 30 05 02 02 92 09 14 64 85 17 17 16 03 91 20 05 02 9210 06 01 56 06 05 03 u 24 10 05 02

Cl1 rv 71 VU 1T

93 07 06 gtA gtmiddot 235

nuv

120 77 59

105 29

247 145

84 30

460 01

470 90

10 20

u 05

93 07 15 65 80 43 22 11S 19 u 103 10 02 93 07 29 u 37 28 15 07 08 u 15 20 10 93 08 08 16 66 32 25 14 18 118 94 u u 93 08 18 u u 02 01 04 03 03 07 u u 93 08 24 01 u u u 01 01 02 03 02 u 93 09 02 02 u 02 03 04 05 14 13 u u 93 09 22 02 13 04 07 04 21 u 14 02 02

Emerald Lake 91 07 24 11 04 29 05 14 02 12 900 16S 91 08 13 07 05 03 03 01 02 02 01 345 70 910827 910924

14 14

03 10

02 04

02 10

01 07

02 02

01 u

01 02

82S 52S

130 15S

92 07 28 92 09 06

18 04

16 15

03 02

10 05

u u

03 04

22 u

12 08

02 55

02 18

93 07 OS 93 07 20

01 01

01 01

u u

u u

u u

u u

u u

01 01

02 03

03 02

93 08 23 u 01 u u u 01 u 01 01 04 93 09 07 u 01 u u u u u 01 02 02 n nn 7J V7 I-

93 10 07 n 1 v

u 01 u u u u

u u

u u

u 01

01 03

03 04

76

Table 6 Comparison of pH and major ion determinations between UCSB and CARB laboratories Five different subsamples each of lakewater snowmelt ~d rainwater were sent to the ARB laboratory in El Monte Ion levels are tabulated as microEq L-

MampSamp)e Lab Cl N01 Na K Ca cl~ Lakewater LL-I UCSB 71 02 63 170 39 so 272 618

EIMte 62 lt06 67 144 33 49 289 S99

TZ-61 UCSB 47 2S 9S 188 100 72 444 S66 EMte 4S lt06 8S 196 97 66 394 628

CR-119 UCSB 24 04 70 162 3S 43 237 620 El Mte 20 lt06 1S 16S 36 41 250 629

RB-107 UCSB 18 lt01 78 100 40 31 476 618 EIMte 23 lt06 104 126 40 33 574 633

EML-10 UCSB S6 07 1S 171 43 42 24S 627 EIMte S6 lt06 1S 161 33 41 344 629

Sno~elt lt bull lt ~ 06PR-7 UCSB 17 05 13 535

EIMte 2S 16 33 17 os 08 90 S87

SN-8 UCSB 10 13 11 os 02 02 08 S46 EIMte 11 10 33 04 03 08 60 S60

KW-9 UCSB 10 22 16 08 04 04 os S25 EIMte 14 11 42 04 03 08 60 S61

LL-2 UCSB 10 16 1S 08 01 03 os S3S EMte 14 1S 33 08 lt03 08 90 SSl

Rainwater TPlO 7-16 UCSB so 210 124 46 20 14 S6 449

EIMte 4S 187 131 3S 1S 16 140 S28

SL 7-18 UCSB 43 270 174 S1 26 1S 88 441 EMte 39 247 192 3S 1S 2S 8S 490

AM 9-24 UCSB 43 180 98 31 1S 23 168 463 EMte 31 179 104 30 10 2S 11S S39

SN 7-14 UCSB 48 274 167 29 13 16 72 464 EIMte 42 258 181 26 13 16 8S 479

MM7-16 UCSB 60 362 181 18 14 10 32 441 El Mte S6 331 182 26 1S 16 90 498

77

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 9: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 6 Comparison of pH and major ion determinations between UCSB and CARB laboratories Five different subsamples each of lakewater snowmelt ~d rainwater were sent to the ARB laboratory in El Monte Ion levels are tabulated as microEq L-

MampSamp)e Lab Cl N01 Na K Ca cl~ Lakewater LL-I UCSB 71 02 63 170 39 so 272 618

EIMte 62 lt06 67 144 33 49 289 S99

TZ-61 UCSB 47 2S 9S 188 100 72 444 S66 EMte 4S lt06 8S 196 97 66 394 628

CR-119 UCSB 24 04 70 162 3S 43 237 620 El Mte 20 lt06 1S 16S 36 41 250 629

RB-107 UCSB 18 lt01 78 100 40 31 476 618 EIMte 23 lt06 104 126 40 33 574 633

EML-10 UCSB S6 07 1S 171 43 42 24S 627 EIMte S6 lt06 1S 161 33 41 344 629

Sno~elt lt bull lt ~ 06PR-7 UCSB 17 05 13 535

EIMte 2S 16 33 17 os 08 90 S87

SN-8 UCSB 10 13 11 os 02 02 08 S46 EIMte 11 10 33 04 03 08 60 S60

KW-9 UCSB 10 22 16 08 04 04 os S25 EIMte 14 11 42 04 03 08 60 S61

LL-2 UCSB 10 16 1S 08 01 03 os S3S EMte 14 1S 33 08 lt03 08 90 SSl

Rainwater TPlO 7-16 UCSB so 210 124 46 20 14 S6 449

EIMte 4S 187 131 3S 1S 16 140 S28

SL 7-18 UCSB 43 270 174 S1 26 1S 88 441 EMte 39 247 192 3S 1S 2S 8S 490

AM 9-24 UCSB 43 180 98 31 1S 23 168 463 EMte 31 179 104 30 10 2S 11S S39

SN 7-14 UCSB 48 274 167 29 13 16 72 464 EIMte 42 258 181 26 13 16 8S 479

MM7-16 UCSB 60 362 181 18 14 10 32 441 El Mte S6 331 182 26 1S 16 90 498

77

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 10: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 7 LRTAP COMPARISON OF LABORATORY PERFORMANCE (STUDY 0035) JANUARY 1994 UCSB is L122

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L002 1875 1304 L003 4615 3167 LOOS 2000 1333 L006 556 1278 L007 4444 3140 L0lO 2308 1846 LOll 2857 1077 L013 000 192 L013C llll 395 L014 833 1333 L021 2000 1277 L023 2353 1729 L024 2143 469 L025 1500 725 L029 2222 1598 L030 1429 714 L031 L032

4444 tVUV

1779 2174

L033 1667 673 L034 4000 2099 L047 5000 4853 L049 1765 2679 L057 8889 3889 L061 000 213 L063 1875 733 L073 1000 110 L078 000 000 L081 1538 769 L082 2000 719 L086 000 182 L088 3846 2308 L090 000 935 L090B 10000 5000 L091 667 284 L093 2667 1200 L094 3571 1643 T nnn LV77 5333 2015 L102 2500 1569 L104 000 000 L109 llll 116 Lll2 3333 3667 L114 2000 2195 L116 2308 1855 L119 2222 1067 L122 1000 1979

78

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 11: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 7 (continued)

BIAS FLAGS

NUMBER OF NUMBER OF LAB CODE PARAMETERS BIASED RESULTS FLAGGED

() ()

L126 1250 526 L127 1429 547 Ll2S 2222 2575 L07S 000 000 Ll04 000 000 LOS6 000 182 L013 000 192 L061 000 213 L090 000 935 L091 667 284 L073 1000 IIO L109 1111 116 L006 556 722 LOI3C 1111 395 Ll26 1250 526 L127 1429 547 L030 1429 714 L014 833 1333 L025 1500 725 LOSI 153S 769 T n- ~VJJ i66i 6i3 L063 1875 733 L024 2143 469 L082 2000 719 Ll22 1000 1979 L002 1875 1304 L021 2000 1277 L119 2222 1067 LOOS 2000 1333 L029 2222 1598 L093 2667 1200 L0ll 2857 1077 Ll02 2500 1569 L023 2353 1729 L0IO 2308 1846 L116 2308 1855 Lll4 2000 2195 L049 1765 2679 Ll2S 2222 2575 L094 3571 1643 L034 4000 2099 LOSS 3846 2308 L032 4000 2174

79

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 12: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 7 (continued)

BIAS FLAGS

LAB CODE

L031 L112 L099 L007 L003 L047 L057 L090B

NUMBER OF PARAMETERS BIASED

()

4444 3333 5333 4444 4615 5000 8889

10000

NUMBER OF RESULTS FLAGGED

()

1779 3667 2015 3140 3167 4853 3889 5000

80

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 13: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 8 Holding time test for major anions on eight filtered melted snow samples maintained at 4 degC in high density polypropylene bottles Data are in microequivalents per liter

Sample 2Jlm fum 33 days 4 months

Chloride EBL26 15 15 16 18 EBL27 09 11 12 09 OV37 04 06 09 05 OV38 09 11 12 09 OV42 06 08 10 07 ov 43 18 24 22 21 SL26 07 16 09 07 SL27 15 16 20 18

Nitrate EBL26 49 52 53 56 EBL27 44 46 47 49 OV37 28 29 30 30 OV38 41 44 46 47 ov 42 41 43 44 46 f1 Al-- ~ ~ 0

UoJ 0 7u 0 Q

U7 Q

SL26 26 27 27 27 SL27 43 46 47 49

Sulfate EBL26 37 38 38 42 EBL27 24 23 26 25 OV37 22 21 24 24 OV38 51 53 54 57 ov 42 28 28 30 32 ov 43 65 66 69 74 SL26 11 13 12 11 SL27 23 23 26 24

81

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 14: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 9 Holding time test for major anions on six replicates of a synthetic sample 20 microequivalents per liter each in er NO3- SOl- maintained at 4degC in high density polyethylene bottles

Sample 0 months 1 month 4 months 5 months 8 months

Chloride mean 17 19 19 22 26

SD 01 01 01 01 05

Nitrate mean 19 19 i9 2i 20

SD 00 00 00 00 01

Sulfate mean 19 20 21 25 27

SD 01 00 01 01 01

82

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 15: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows

Table 10 Standard deviation (SD) and method detection limit1 (MDL = 2 SD) of chemical methods at UCSB during 1990 Ammonium phosphate and silica were determined using colorimetric techniques and pH was measured with an electrode The remaining cations were analyzed using flame atomic absorption spectroscopy and the remaining anions were determined with ion chromatography Replicate determinations (N) of deionized water (DIW) or low concentration standards (levels tabulated are theoretical concentrations) were measured on separate days ex1ept where indicated () when a single trial on one day was used All units are microEq L- except for phosphate and silica which are microM

Constituent N Standard

Ammonium 10 DIW 015 030

Phosphate 10 DIW 003 006

Silica 7 DIW 020 040

Hydrogen (pH) 7 Snowmelt 002 004

Acetate 8 100 005 010

Formate 8 100 005 010

Nitrate 7 050 010 020

Chloride 7 050 019 038

Sulfate 7 075 022 044

Calcium 4 250 050 100

Magnesium 4 206 016 032

Sodium 6 109 025 050

Potassium 6 064 022 045

1 Limits of detection for major ions were established in accordance with the Scientific Apparatus Makers Association definition for detection limit that concentration which yields aJ1 absorbaTce equal to twice the standard deviation of a series of measurements of a solution whose concentration is detectable above but close to the blank absorbance Determination of method detection limits for ions by io~ chromatography (Dionex 2010i ion chromatograph 200-microliter sample loop 3 microS cm- attenuation) or atomic absorption spectrophotometry necessitated the use of a low-level standards as DIW gave no signal under our routine operating conditions

83

--

--

I

Table 11 Volume-weighted precipitation chemistry for Emerald Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snov chemisLry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Collected is the amount of precipitation caught in the rain collector relative to the amount which was measured in a nearby rain gauge (Precip) Acetate and formate were not determined in rain collected during 1990

Emerald Lake - bullbullmiddot c --- bull-bull-bullbullbull-bullmiddotbullbull--bull bull-bull bull- bull-bullbullbullbullbullbull ~ ~r( I bull-bull - --bull

-bullbull gt- bullbull--

529 512 544 -

516 533 549 555 529 bull 51 75 36 70 47 33 28 52

--I

88 104 68 54 28 22 36 29 -

middotmiddotmiddot-bullmiddotmiddot

120 411 103 126 46 29 34 22bull -

bullbull-bullmiddotmiddotmiddotmiddotmiddot 41 33 25 25 21 12 17 20

------

~ 00 ~ -ini78 225 10 oo ~V ~ I bull

7 r 18 131 152 98 81 26 12 19 24

102 101 32 24 13 11 25 09 ))

27 35 08 05 06 04 05 05bull-

bull

67 29 35 19 18 10 09 09 61 38 18 12 05 03 01 03

middotbullmiddotmiddotmiddot -bull NA 65 102 22 10 02 06 06

middotbullbull-

-bull-middot-bull

1--1 Ibull bullT bull-

NA 116 73 56 04 03 06 02 ---bull-bull--

-gtlt 126 142 239 89 553 916 591 2185

9lcent~ 76 88 96 91 na na na na bull

5-17 to 6-3 to 5-20 to 5-25 to 3-19 4-8 3-26 4-7 11-24 11-9 11-4 10-28

-bull-bull middotbullmiddotmiddot

ltI

---- bullmiddotbullmiddot

----- - ---- -- middotmiddot-middot middotmiddotmiddotmiddot-_- bull- --- -bull--- ------

bull---

-~

bull

-~ bull-bull

----- - -------- ---- ---- - ---- ---bull- ---- bull-bullbull ----

84

bull bull bull bull

Table 11 Continued

Emerald Lake middotdB tlt middotbullmiddotbullmiddotbull bullltbullbullbulltbullmiddot bullmiddot middotbullmiddotmiddotmiddot bullbullmiddotbullbull

~2sect~j

~l

Ir middotmiddotmiddotmiddotmiddotmiddotmiddot ~-bullmiddotbullbullmiddot Ilt lt bull ~rtlt iibullbullmiddotbullmiddotbull gtbull middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotbullbullmiddotbullmiddot L 533 554 547

47 29 34

bullbullmiddot 24 22 i 132

middotbullmiddotbullmiddot 153 35 18

bullmiddotbullbullmiddotbull

I 103 21 10

middotbullmiddotmiddotmiddotmiddotmiddotmiddot 175 27 21

107 15 14 gt

88 26 16

middotbullmiddotbull

ltbullbull 24 05 03

bullbullmiddotbull

85 14 07

41 06 04gt bullmiddot

bullmiddotmiddot

middotbullmiddotmiddot

r Y 23 00 00

gt

h bull 26 06 00 middotmiddotmiddotmiddotmiddotbullmiddotbull

100 835 2694 IImiddotmiddot~

88 na na

I

middotmiddotmiddotmiddotbullIgt middotmiddotbullmiddotbull bullmiddotmiddotmiddotmiddot 5-16 to 3-31 4-24

-4n -tn 1v-1ii middot-- middot lt

middot - ---bull middotbullmiddotmiddotbull

85

bull bullbullbull

bullbullbullbull

Table 12 Volume-weighted precipitation chemistry for Onion Valley Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coHected precipitation or snow-water equivalence in millimeters SnoV chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Rain chemistry and amount for 1992 and 1993 is the average from two coshylocated collectors Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Onion Valley middot

middotmiddotmiddotmiddotmiddotbull middotmiddotmiddotmiddotmiddot middotccia qc bullbull 11 - i1 middotmiddotbull gt middotmiddotbullmiddotbull bullbullbullbull middotmiddotmiddotmiddotmiddotbullmiddotmiddot

IU iFIairFu gtJ g i Ji gt middotmiddotmiddot middotbullmiddot ltgt lt ltgtmiddotbullmiddotmiddot 1r

5

r

~

--- bull middotmiddotmiddot_middotbull-bull ------middot- -- -middot-middot middotmiddot middotbullmiddotbullmiddotbullmiddot I 472

474 489 487 515

536 532 533I

bull 190 180 132 138 70 44 48 47

151 146 137 90 38 30 40 34

330 422 400 146 26 38 30 22

bullmiddotbull 49 59 56 31 14 13 08 09

1bull middotmiddotbull

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 228 294 326 201 23 40 50 24

201 240 289 159 20 21 43 16 middotbull

100 201 214 79 48 24 31 18 I

20 59 45 14 10 06 07 07 I

48 53 60 26 14 08 16 07 I

1 bullbull middotmiddotmiddotmiddotmiddot 13 18 21 12 20 04 07 06

_ 78 70 91 21 04 06 03 06

h 136 153 120 34 03 14 09 01lt middot middotmiddotbullmiddot

0) A~ Ai middotbullbullmiddotbullbull 0~ 38 226 617 487 817

bull 98 98 89 87 na na na na

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-30 4-13 10-19 10-23 10-27 10-13

bullbull

86

Table 13 Volume-weighted precipitation chemistry for South Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

South Lake

middot--~ ~II (L--~middot Ii llC Ibullmiddot-

middotmiddot middotmiddot middot

472 470 464 460 543 539 543 middotmiddotbullmiddotmiddot_middotmiddotbull

545

192 200 231 253 37 41 37 36

lt 129 119 145 88 26 20 34 25middot )

207 220 309 167 25 11 24 11

44 40 29 31 17 07 12 06gt

bull 185 247 306 218 30 14 39 18 bull-bullbull-bullmiddot middotbullmiddotbull

middot-middotmiddotbull middot-bull-bull middot

lt 135 188 241 138 16 17 17 19

middotmiddotbull

-

bullbullbullbull 81 104 108 72 12 15 18 12

19 34 28 20 03 04 05 04

34 31 45 32 06 06 09 05e

14 11 23 32 05 03 04 03 ) )

~ 66 57 92 42 07 07 04 06

110 65 92 30 07 02 08 08

gt _ 107 55 91 13 331 466 350 1026 --

89 97 93 92 na na na na - _

bullc 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10 4-6 3-31 10-19 10-23 10-27 10-13

-

87

bullbullbullbull

bullbull

Table 14 Volume-weighted precipitation chemistry for Eastern Brook Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddotl Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Eastern Brook Lake

473

bull 185I 147

225

52

237 ~ ) 153

middotmiddotbullmiddot middotbull

bull gt- gt~I 225

k middotcc 33

I middotbullbullmiddot gt

la 45 middotbullmiddotbullmiddot

middotbullbull

12

lt 45

middotmiddotmiddotmiddotmiddotmiddotbullbull

gt bull imiddotbullmiddotmiddotmiddot bullmiddotbullmiddotbull 1-J rdl 95

bullmiddotbullmiddotbull 76

j middotmiddot 86Ilt bullmiddotbull

7-08 to 10-19bullmiddotbullmiddotbullbull

middotmiddotbullmiddotbull middotmiddotmiddot middotmiddotmiddotmiddotmiddot

bullbullmiddotmiddot

middot middot

466

220

155

345

44

282

197

115

20

31

15

97

137

68

99

6-13 to 10-09

bull If _ltlt

467

215

144

257

33

267

226

120

26

44

19

84

91

93

80

5-12 to 10-23

_middotmiddot~ middotmiddot~ middotbullmiddotbullmiddotbull middotbull

516

69

50

82

18

91

78

71

11

16

11

25

41

33

95

5-27 to 10-18

bullC middot - ~middot

532

47

26

24

15

26

11

10

02

04

03

01

00

267

na

3-22

bullmiddotbull bullbullmiddotbull lt

middotbullmiddotmiddotmiddot middotmiddotbullmiddotbullmiddotbullmiddotbullbullmiddotmiddot 530

40

22

17

11

15

13

14

06

06

04

03

07

336

na

4-09

middotmiddotmiddotmiddotbullmiddotmiddot cmiddot

546

35

31

26

12

37

24

25

24

12

10

03

07

326

na

4-1

-middotmiddot_ ___

~~~middotmiddotbull L

)

549

33

27

10

13

16

19

21

07

05

13

03

02

485

na

3-30

88

Table 14 Continued Snow chemistry and amount for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake (Ruby Lake)

114

64

105

26

98

89

40

08

15

06

21

18

50

96

r bull-0-10 lO

10-19

24 62

26 23

36 17

09 06

38 25

25 17

24 15

06 03

12 07

06 03

04 02

01 02

278 1884

na na

3-28 5-9

89

Table 15 Volume-weighted precipitation chemistry for Mammoth Mountain Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq Lmiddot1bull Precip is the amount of coliected precipitation or snow-water equivalence in millimeters Snow chemist- is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mammoth Mountain

222 180 135 69 59 41 37 38

162 149 97 51 29 28 31 27

293 306 236 118 39 37 31 21

53 49 13 13 13 17 10 12

301 278 187 84 30 30 35 19

164 218 138 89 22 22 28 25

122 162 60 22 13 16 19 14

23 21 14 05 01 04 05 04

55 90 19 10 11 13 11 11

21 18 08 05 03 04 06 04

76 104 69 10 11 05 02 04

150 138 74 24 03 10 09 02

59 71 122 118 814 937 892 2173

62 86 95 57 na na na na

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

90

Table 15 Continued

Mammoth Mountain

69

48

82

17

73

61

36

09

17

05

07

16

154

67

A ll _--LL LU

10-18

36 63

37 28

58 32

18 12

44 30

29 26

22 14

12 05

23 13

06 04

05 01

16 01

621 2930

na na

~ gtn t A ~-poundJ

91

Table 16 Volume-weighted precipitation chemistry for Tioga Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of coiiected precipitation or snow-water equivalence in millimeters Snow chemisL-J is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Tioga Pass (Spuller Lake)

I

lt gt

middot

190

159

47

91

5-06 to 10-19

259

159

328

56

299

219

152

25

42

16

105

133

68

84

6-18 to 10-24

225

122

198

30

164

71

19

33

13

89

98

197

86

5-11 to 10-22

105

73

216

19

A- r 10U

112

31

09

19

12

25

41

33

76

6-23 to 10-20

525

56

23

16

13

13

09

03

07

04

03

02

685

na

3-26

541

39

25

22

11

17

20

04

10

07

05

07

909

na

4-19

545

35

32

27

10

22

18

06

09

10

05

05

698

na

4-2

-

550

31

23

17

11

17

19

05

09

03

08

01

1961

na

4-15

92

Table 16 Continued

Tioga Pass (Spuller Lake)

90

73

110

17

118

80

134

11

19

09

28

51

74

93

7-6 to 10-7

35 55

28 24

24 17

10 12

29 23

18 15

13 09

03 04

08 10

02 03

05 02

016 06

818 2800

na na

4-8 5-18

93

Table 17 Volume-weighted precipitation chemistry for Sonora Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snov chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Sonora Pass

166 348 206 135 64 33 29 30

157 229 122 88 24 27 26 23

289 336 199 200 13 20 19 13

51 64 16 32 10 18 07 10

233 412 192 224 16 19 21 15

160 285 166 155 10 37 15 18

128 193 82 56 13 33 22 18

25 50 22 22 04 14 10 09

46 51 37 44 07 31 08 08

17 49 13 17 06 10 18 04

76 244 93 45 05 03 04 03

165 311 98 35 01 10 08 03

104 83 103 23 462 519 456 1042

109 71 100 80 na na na na

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

94

Table 18 Volume-weighted precipitation chemistry for Alpine Meadows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Alpine Meadows

170

119

186

50

231 bullgt

bullbull 134

middotbullmiddotbullmiddot 237

bullmiddotbullbullmiddot 6-21 to 11-1 11-15 10-28 10-16

149

72

140

43

193

103

131

05

58

32

59

66

236

76

6-17 to

149

160

321

51

345

245

138

36

76

41

58

79

92

89

5-29 to

26

68

98

14

145

76

23

05

09

06

P6

06

98

100

6-28 to

524

57

23

20

15

17

15

06

03

10

02

08

02

786

na

4-01

540

39

25

29

23

29

18

14

05

14

06

03

04

1108

na

4-21

539

41

30

24

14

24

18

11

05

12

05

02

02

745

na

4-07

middot -

556

28

23

17

10

13

14

08

05

08

04

04

01

1892

na

4-08

95

bullbullbullbullbullbullbull

Table 18 Continued Rainfall was not collected at Alpine Meadows in 1994

Alpine Meadows _ - bullmiddotmiddotmiddot TI middotbull

~ middotbullbullbullbullbullbullbullbullmiddotbullbullbullmiddotbullbullbullbullbullbullbullbull

nr 1 )Smiddotbullmiddotbullmiddot gt

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbull

gt l middotmiddotmiddotmiddotmiddotmiddotmiddot 548

t middot bull 33

lt middotmiddotbullmiddotmiddotmiddot

bullbull~ 23 bullbullbull gti gt

19 middotmiddot

middotmiddot

bull (

13

19 bullmiddotmiddot

middotmiddotmiddotmiddotmiddotmiddot F middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

14

middotbullbullmiddotbull 10

middotmiddotmiddotmiddotbullmiddotbullmiddotbullmiddotmiddot 05

middotmiddotmiddotmiddotmiddotmiddot 08

04bull 05

bull

h2E ~o lt 00 ~

bull middotmiddotmiddot middotbullbull

726 bullbullbull

middotmiddotmiddotbullmiddotbull gt

Ibullbullmiddotbullmiddotbull ~ middotbull na i

bull

bullmiddotbullbullmiddot 3-31 middotmiddotmiddotbullmiddot

It middotmiddotmiddotmiddotlt

96

----

bullbullbullbull

bullbullbullbull

Table 19 Volume-weighted precipitation chemistry for Angora Lake Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount vf vll1vtdi 111~ipitativu u1 )uuw-watca ClJUivalcuC iu 1uilliunka) Suuw hcaui)tiy i) ftu1u samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Angora Lake (Lost Lake)

-

middotmiddotbullmiddot

lt

t middotmiddotmiddotmiddotmiddot

Ibull

bull-middot t

-bull-bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot bullmiddotbullmiddotbullmiddotmiddotmiddotbull(_ middot-bull-bull

u

--

bullbull-bull

-

Ibullmiddotbullbull middotbullbull-

(middotbullbullmiddot bullgtmiddot

-bullbullmiddotmiddot -

bull-bullbull bull-bull bull---bull

) C ~bull

-bullbull-middotmiddotmiddot

lt Ibull

--

-bull-bull-

484

143

120

215

59

265

182

132

41

62

32

176

40

nA Jo+

92

6-03 to

---bullbull )11[

1~~ ~middotbullbull~ff rt_middot ~-~ -middotbullmiddotmiddotmiddot

( 1~~~~6 lt gt middotmiddotmiddotmiddotmiddotmiddot -bull--

bull~middot bullbull-

-

~

$2(middot-middotbull bullbullce --umiddot

---

-----

487 486 521 537 548 543 553

135 137 62 43 33 37 29

95 109 111 26 38 31 25

202 104 237 24 33 17 33

47 36 28 21 21 12 21

192 179 288 29 25 16 23

132 150 192 21 19 13 23

71 80 67 11 14 13 22

25 19 29 05 07 06 03

70 48 33 17 14 13 16

19 17 68 04 03 05 03

120 48 01 08 06 05 07

94 61 01 01 10 06 05

~no IUO

~ t7

- ~A 16+

n~~

ntA JiJt

07A 0 t

ln-t7u I

94 99 89 na na na na

6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30 10-17 10-11 10-21 10-14

97

bullbullbullbullbullbull

bullbullbullbullbullbull

Table 19 Continued No snow surveys were conducted at Lost Lake or Angora Lake during 1994 or 1995

Angora Lake

bullmiddotbullmiddotmiddot

middotmiddotmiddotbullmiddot

496

110

98

92 bullgt

27

133

101

61

18

24

19

50

31

70

760

~IA_u-Lt LU

10-31

98

Table 20 Volume-weighted precipitation chemistry for Mineral King Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1bull Precip is the amount nf rnll11-tirrf nrir-n1tlt1nn nT cnnn_nrrif-o- on11lano --11_af11tbull Cn-nr 1-a+- +__-bull _-___I-- y1 -1y1114111VII V1 ~ampIV n - ffULWI oAj_ U1 YUJU- 111 lllllJllULJgtbull ~IIVyen 11111lgtU] 13 11 VIII

samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Mineral King

128 77 76 137 61 38 30 30

199 84 52 159 48 30 43 22

609 207 168 322 46 76 72 16

76 38 22 40 22 14 19 15

437 239 153 361 33 55 48 14

349 167 112 175 26 17 25 16

177 108 51 61 29 13 28 20

64 19 08 12 18 06 07 04

92 31 26 34 18 12 14 09

37 23 15 20 27 08 07 01

20 06 142 54 21 05 09 03

51 11 162 52 11 15 07 01

84 107 202 16 579 559 453 882

57 95 83 68 na na na na

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

99

Table 20 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 1995 are from surveys conducted at Topaz Lake A fire burned all vegetation within the immediate area of the rain collector during 1994 Dust cu1d ash vere common in samples after the fire and contributed calcium and acid neutralizing capacity to the samples

Mineral King (Topaz Lake)

middotbull t ~--f - -- -- lt ----

546 549

34 32

288 27

68 39

268 38

266 18

823 na

105 25

142 08

11

08

11 12

20 02

82 598

na

3-27bullmiddotbullbull 6-10 to 10-16

_ middot- middot

548

32

21

17

no vv

19

12

na

08

03

06

01

00

00

1738

na

4-25

100

Table 21 Volume-weighted precipitation chemistry for Kaiser Pass Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq L-1 Precip is the amount of collected precipiiation or snow-water equivaience in miilimeters Snow chemistry is from samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum Collected is the percentage of precipitation which was caught in the collector relative to the amount which was measured in a nearby rain gauge (Precip)

Kaiser Pass

I

na 551 536

na 117 74 53 na 31 44 32

na 99 86 159 na 26 33 24

na 272 159 118 na 42 28 15

na 26 21 38 na 10 12 13

na 126 229 170 na 29 23 11

na 127 178 97 na 15 13 16

na 78 89 258 na 22 12 34

na 26 22 26 na 04 05 04

28 29 35 na 11 11 10

50 28 24 na 05 07 03

52 24 39 na 04 05 01

87 37 38 na 17 01 003

88 173 36 na 873 705 1437

921 951 494 na na na na

na 6-25 to 5-26 to 6-27 to na 4-26 4-01 3-19 11-03 11-06 11-16

101

Table 21 Continued

Kaiser Pass

64

69

63

37

110

97

112

27

28

27

19

32

118

85

10-23

39 40

33 23

21 08

28 14

19 17

18 10

28 12

12 05

18 10

29 05

25 00

02 00

600 1564

na na

3-22 4-4

102

Table 22 Volume-weighted mean snow chemistry for snowoits du2 prior to and after maximum snow-pack accumulation Units for Specific Conductance (SC) are microS cm-1 All other concentrations are in microEq L-1 Precip is the amount of snow-water equivalence in millimeters

SiteYear Date pH sc NH4+ ctmiddot N03 somiddot ca2+ Mg2+ Na+ ic+ HCltI CH2CltI- Precip

AM-1990 24-Feb 532 30 24 1 7 24 21 12 03 18 03 12 o 1 718 AM-1991 16-Feb 518 55 64 34 83 36 43 18 27 25 06 02 239 AM-1992 16-Mar 545 31 30 12 25 18 13 04 1 1 07 04 03 752 AM-1993 10-Mar 540 29 18 19 19 20 09 06 16 02 04 00 1605

EML-1990 07middotFeb 542 3 1 35 34 16 23 2 1 14 31 09 13 os 550 EMLmiddot1991 25middotFeb 534 49 185 25 127 33 18 07 19 09 02 1 7 235 EML-1992 30middotJan 553 37 84 22 49 34 21 08 17 06 05 07 240 EMLmiddot1993 03bullFeb 5 70 29 19 43 22 27 62 08 26 08 08 03 1027 EML-1994 03middotMar 549 22 10 17 14 14 13 04 13 05 15 o 1 877 EML-1994 29-Apr 550 22 19 06 16 12 14 03 06 04 02 oo 826

MM-1990 MM-1991 MM-1991 MM-1992

19middotFeb 10-Feb 07-May03middotMar

534 536 543 545

31 36 29 36

28 56 48 48

20 12 15 1o

31 55 42 37

21 29 21 27

1 7 43 20 23

02 07 1 bull 1 05

13 12 11 12

05 09 12 08

06 05 06 05

05 07 06

720 84

702 720

MM-1993 08middotMar 540 26 13 16 14 20 10 04 09 04 03 03 1664 MM-1994 10-Mar 552 26 24 13 28 21 22 09 20 05 03 02 589

OV i991 20-Feb 504 59 87 i 7 78 30 56 15 13 23 06 04 151

TG-1995 12middotJul 550 17 04 05 09 05 07 03 04 02 07 oo 886

103

Table 23 Volume-weighted precipitation chemistry for Kirkwood Merdows Units for Specific Conductance (SC) are microSiem All other concentrations are in microEq e Precip is the amount of ullcttcd y1taiJJib1tiuu u1 tuuw-watc1 cyuivalcuic iu 111illiuutc1 Suvw h11u1it1y frvua samples collected from snowpits dug in late March or early April when the snowpack was at or near maximum

Kirkwood Meadows

na na na na 64 na na na

na na na na 32 na na na

na na na 21 na na na

na na na na 14 na na na

na na na na 18 na na na

na na na na 14 na na na

na na na na 10 na na na

na na na na 07 na na na

na na na na 09 na na na

na na na na 08 na na na

na na na na 08 na na na

na na na na 03 na na na

na na na na 737 na na na

na na na na 3-31 na na na

104

Table 24 Summary of statistical analyses of snow chemistry from 1990 through 1993 Data used in the tests were volume-weighted mean concentration for snowpits For each station data from all years were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among stations Data from 1994 and 1995 was not included because of changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among stations

1 SULFATE

a MM gt KP b MM gt AM c MM gt SN d MM gt EBL e MM gt TG f MM gt SL g MM gt ANG h ov gt KP

2 SPECIFIC CONDUCTANCE

a ov gt AM L J bull ov gt SN c ov gt TG

3 FORMATE

a ov gt KP

4 ACETATE

a ANG gt EBL b MK gt EBL c TG gt EBL

5 NITRATE

a MK gt SN b MK gt SL c MK gt EBL d MK gt TG middotamiddot1 gt SN f MM gt SL h EML gt SN h EML gt SL i ov gt SN

6 AMMONIUM

a ov gt SN b ov gt TG c MK gt SN

105d MK gt TG

Table 24 (continued)

7 MAGNESIUM

a SN gt SL b SN gt MM c SN gt TG d ov gt SL e ov gt MM

8 SODIUM

a EBL lt MM b EBL lt ANG c EBL lt MK d ANG gt TG e SL lt MM f SL lt AM g SL lt EML h SL lt KP i SL lt ov j SL lt SN _ I SL lt ANG 1 SL lt MK

9 POTASSIUM

a ov gt EML b SN gt EML c MK gt EML

10 HYDROGEN (pH)

NONE

11 CHLORIDE

a MK gt SL b MK gt SN c ANGgt SL d EML gt SL

12 CALCIUM

a ov gt AM b OV gt EML c ov gt ANG d OV gt SL e SN gt -AM f MK gt AM

106

Table 24 (continued)

B Summary of ranks

GREATER THAN OCCURENCES ov 15 MK 11 MM 8 SN 5 EML 3 ANG 3

LESS THAN OCCURANCES SL 18 SN 10 EBL 8 AM 6 MM 6 EML 5 KP 4 ANG 3 MK 2 ov 1

NET OCCURANCES ov +14 MK +9 MM +2 ANG 0 EML -2 KP -4 SN -5 AM -6 EBL -8 SN -10 SL -18

107

Table 25 Summarv of statistical analvses of snow chemistrv from 1990 throueh 1993 Data used in the tests were volume-weighted mean concentration for snowpits - For each year data from all stations were combined for the analyses The Kruskal-Wallis one-way ANOV A and Dunns multiple-comparsion tests were used to detect significant differences (P lt005 and P lt010 when indicated) among years Data from 1994 and 1995 was not included due to changes in the number and location of snow survey sites

1 Snow Chemistry 1990-1993

A Tests for differences in snow chemistry among years

1 SULFATE

NONE

2 SPECIFIC CONDUCTANCE

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993

3 FORMATE

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1992 gt 1990 b 1992 gt 1991 c 1992 gt 1993 d 1993 lt 1990 e 1993 lt 1991 f 1993 lt 1992

108

Table 25 (continued)

8 MAGNESIUM

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

9 POTASSIUM

a 1992 gt 1993

10 HYDROGEN

a 1990 gt 1991 b 1990 gt 1992 c 1990 gt 1993

11 CHLORIDE

a 1990 gt 1992 b 1990 gt 1993 c 1990 gt 1991 AT 90 CONFIDENCE LEVEL

1 T rTTnlJ~ bull tLlL Ul1

a 1992 gt 1990 b 1992 gt 1993 c 1992 gt 1991 AT 90 CONFIDENCE LEVEL

109

Table 26 Solute loading for Emerald Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from sn01)its dug in late tyfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Emerald Lake was calculated from depth and density measurements made throughout the watershed Acetate and formate were not determined in rain collected during 1990 Duration is the number of days the rain collector was operated during each year

Emerald Lake

J -

bull

bullmiddotmiddot 151

51

224

165

bullbullbull 128

34

126

584

46

319

215

143

50

41

53

93

164

160

142

5-17 to 6-3 to

246

60

301

234

77

18

84

43

245

176

169

239

5-20 to

112

22

78

72

21

05

17

11

19

49

157

89

254

119

142

143

70

32

101

26

57

24

na

553

i 10

264

106

156

106

101

34

91

25

20

27

na

916

48

203

100

177

115

147

28

55

08

35

33

na

591

479

426

384

513

188

112

201

58

130

50

na

2185

4-7 11-24 11-9 11-4 10-28

llO

Table 26 Continued

Emerald Lake

152

102

174

106

88

24

85

41

23

26

157

100

5-16 to 10-19

296

172

223

125

221

43

115

54

00

48 middot

na

835

3-31

480

277

578

376

433

67

198

105

00

00

na

2694

4-24

111

Table 27 Solute loading for Onion Valley All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemistrJ is from samples collected from snowpits dug in late viarch or early April when the snowpack was at or near maximum Rain chemistry for 1992 and 1993 is the average from two co-located collectors Duration is the number of days the rain collector was operated during each year

Onion Valley

274 171 178 55 59 233 147 176

40 24 25 11 32 80 41 76

189 119 145 75 53 247 243 198

167 98 129 60 46 128 207 134

83 82 95 29 108 146 152 149

17 24 20 05 21 37 35 56

40 21 27 10 32 49 76 57

11 07 09 05 45 26 33 50

65 28 40 08- 09 36 13 48

113 62 53 13 07 89 43 09

122 153 180 141 na na na na

83 41 45 38 226 617 487 817

6-20 to 5-24 to 5-1 to 5-26 to 3-20 4-8 3-26 4-7 1 n~1-i10-19 1023 10=27 IJ- I J

112

bullbullbullbull

I

Table 28 Solute loading for South Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrJ is from samples collected from snow-pits dug in late lviarch or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

South Lake middot-middotbullmiddotbull bullbullmiddot

bullqII middot cbulluICmiddot--bull --middotmiddot --___ bullbull -----middotmiddotbull---middot---middotmiddotmiddot middotmiddotbullmiddotmiddot bullbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotbullbullmiddotbullbullmiddotbullmiddotmiddotmiddotbullmiddotbullmiddotbullmiddot

206 110 210 33 122 191

222 121 280 22 82 53

~middotmiddot 47 22 26 04 56 35

middotmiddotmiddotmiddotmiddot ti I middot 199 136 277 28 100 67middotC

Ilt middotbullbullmiddot

145 103 218 18 54 80

87 57 98 09 40 69

21 19 25 03 10 21 bull bullmiddotbullmiddot

middotmiddot

36 17 41 04 20 27

ltmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot 15 06 21 04 15 13 _bullmiddot

middotmiddotmiddotmiddotmiddotmiddotmiddot

~ _ ) 71 32 84 06 24 30

~ a~gtIbull

bullbullbullbull

II l

bullmiddotmiddotmiddotbull

middotbullbull

r 118 36 83 04 23 11

middotbullmiddotbullJ )bullbullbullmiddot

middotbullmiddotbull 122 135 152 122 na na

- middot-- lt 107 55 91 130 331 466

gtlt I 6-20 to 6-11 to 5-29 to 6-14 to 3-21 4-10) -1 ~middot

10-19 10-23 10-27 10-13

middotbullmiddotbullmiddot

middotbullbullmiddotmiddotmiddotmiddotmiddot

bull -middot

i -middotbullbullmiddotbullmiddotbull

)(bull ) gt

middotii middotbullmiddotbull

130

82

42

134

59

64

17

32

15

13

26

na

350

4-6

365

111

61

188

198

122

38

50

27

56

77

na

1026

3-31

113

Table 29 Solute loading for Eastern Brook Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snov chemist~ is from samples collected from sno~vpits dug in late ~farch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Eastern Brook Lake

2middot

middot~11 middotmiddotmiddot middot middot middotbull bullmiddotmiddotbullmiddotbullmiddot bullmiddot

~5 bullmiddotbullmiddot 1 bullmiddotbullmiddotbullmiddotbull~ 91middot~ ~~ ~ I bullbullmiddotbull middotmiddotmiddotmiddotmiddotmiddotmiddotbullgt-i

141 149 199 23 126 167 113 158

172 234 239 27 64 57 86 51

40 30 31 06 40 36 38 62

181 191 248 30 69 50 121 75 )

bullbullbull 117 134 210 26 30 44 79 90

172 78 112 23 27 48 82 99 I

I bull bullbull 25 14 25 04 06 19 77 35

j 35 21 41 05 12 20 40 26

ltlt 09 10 18 04 08 13 33 62

Imiddot 35 66 78 08 02 09 10 12

73 93 85 13 00 22 23 11middotmiddotbullmiddot

~

~

middotbullbullmiddot

I 104 119 165 145 na na na na

1bull 1 bull Xi

lt 76 68 93 33 267 336 326 485

bullmiddotbull -J 7-08 to 6-13 to 5-12 to 5-27 to 3-22 4-09 4-1 3-30 10-19 10-09 10-23 10-18) middotbullmiddotbullmiddot

114

Table 29 Continued Snow loading for 1995 are from Ruby Lake Samples from Eastern Brook Lake were lost due to a freezer malfunction

Eastern Brook Lake

54

14

51

46

21

04

08

03

11

11

130

50

5-31 to 10-7

100

25

106

69

66

16

34

17

10

03

na

278

3-28

316

113

462

315

281

61

139

63

38

38

na

1884

5-9

115

Table 30 Solute loading for Mammoth Mountain All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in miiiimeters Snow chemistry is from sampies coilected from snow-pits dug in late March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mammoth Mountain

172 218 296 139 317 345 275 463

31 35 16 15 109 159 91 270

176 198 227 98 247 281 312 405

96 155 169 105 179 207 250 535

71 115 71 26 106 149 169 309

14 15 16 06 09 39 49 86

32 64 24 12 87 120 102 243

12 13 10 05 26 34 57 88

45 74 82 12 87 47 21 84

88 99 86 28 27 96 77 48

128 165 159 163 na na na na

59 71 122 118 814 937 892 2173

6-14 to 5-14 to 5-28 to 5-23 to 3-23 4-06 4-8 4-03 10-19 10-25 11-02 11-01

116

Table 30 Continued

Mammoth Mountain

190

40

170

141

84

20

40

12

16

37

180

154

4-22 to 10-18

359

115

274

180

136

75

143

40

32

99

na

621

3-29

950

344

878

754

410

141

372

119

29

29

na

2930

5-4

117

Table 31 Solute loading for Tioga Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is fiom samples collected from snow-pits dug in late fvfarch or early April when the snowpack was at or near maximum Snow-water equivalence at Tioga Pass was caculated from depth and density measurements made throughout the Spuller Lake watershed Duration is the number of days the rain collector was operated during each year

Tioga Pass (Spuller Lake)

299 224 389 71 107 210 192 325

80 38 59 06 89 103 70 218

324 204 381 53 104 196 210 273

198 149 323 37 87 161 152 336

147 103 140 10 64 188 125 377

35 17 38 03 23 42 39 89

141 29 65 06 47 95 61 173

49 11 25 04 30 71 72 63

207 72 175 08 22 46 35 153

130 91 193 13 16 70 35 19

167 129 165 120 na na na na

104 68 197 330 685 909 698 1961

6-18 to 5-11 to 6-23 to 3-26 4-19 4-2 4-15 1fL10 1 fl gtA 1n gtgt 1 n gtfliv- 1v-v1v-1 v I v-L-Y

118

Table 31 Continued

Tioga Pass (Spuller Lake)

--

I

ltbull

14

93

63

106

09

15

07

94

74

7-6 to 10-7

85

234

145

106

26

67

20

17

06

na

818

4-8

323

637

412

244

104

268

85

56

168

na

2800

5-18

119

Table 32 Solute loading for Sonora Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrj is from samples colleeted from snow-pits dug in late lvlarch or early April when tile snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Sonora Pass

301 278 205 45 61 104 89 137

53 53 16 07 48 92 30 109

242 342 198 51 73 101 97 158

166 236 172 35 48 191 69 189

133 160 85 13 58 170 99 183

26 41 22 05 20 73 46 89

47 43 38 10 30 160 37 80

18 40 14 04 25 54 81 40

79 202 96 10 24 16 17 30

171 258 101 08 04 54 37 33

120 119 176 120 na na na na

104 83 103 230 462 519 456 1042

6-22 to 6-28 to 5-04 to 6-23 to 3-24 4-12 4-07 4-06 10-19 10-24 10-26 10-20

120

Table 33 Solute loading for Alpine Meadows All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistrf is from samples collected from snow-pits dug in late fvlarch or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Alpine Meadows

82 351 13 7 26 448 437

I

I middot

24

y 112

115

20

16

134

middotmiddot 48 i

330

100

457

242

308

12

137

75

138

157

152

236

294

47

316

224

126

33

70

38

53

72

153

92

96

14

141

75

22

05

09

06

06

06

111

98

153

120

133

120

44

24

81

18

64

19

na

786

middotmiddotmiddotbullmiddot 6-21 to 6-17 to 5-29 to 6-28 to 4-01 middotbullmiddotbull 11-1 11-15 10-28 10-16

317

256

316

198

157

59

152

68

36

41

na

1108

4-21

306

178

102

178

132

83

38

91

36

18

17

na

745

4-07

520

313

192

252

263

153

90

158

73

68

26

na

1892

4-08

121

Table 33 Continued

Alpine Meadows

)middotmiddotmiddotmiddotmiddotmiddot~~iiimiddotmiddotmiddotmiddotmiddotmiddotmiddot

238

bullbullbull 135

96

141

99

75

34

56

31

0 38

lI 00

gt na rbull middotmiddotmiddotmiddotmiddotmiddot

middotbullmiddotmiddot middot ltltmiddotbullmiddotmiddotmiddot 726

3-31

122

bullbull

Table 34 Solute loading for Angora Lake All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples colleeted from snowpits dug in late March or early April when the snowpack was at or near maximum Snow chemistry and quantity are from the Lost Lake watershed Duration is the number of days the rain collector was operated during each year

Angora Lake (Lost Lake) middotmiddotbullmiddotmiddotmiddot middotbullmiddotbullmiddot bullmiddotmiddotmiddotmiddotmiddotbullmiddotmiddot middotmiddotmiddotmiddotbull middotbullmiddot middotbullmiddotmiddotbullmiddotbullmiddotbullbullmiddotbullmiddot middotmiddotmiddotmiddotmiddotmiddotmiddot middotmiddotmiddotmiddotmiddotmiddot irmiddotmiddotbull

1 middotmiddotmiddotmiddotmiddotbullmiddot~ 1 ~111 C i ~ cmiddot ~- 31 middotbullmiddotmiddotbullbull middotmiddotmiddot middot -gt - middot -bullmiddotbull bullbull-middot =middot -------middot ---middot - -middot---bull--- bullmiddotbullbullbullmiddot

128 146 215

21 399 319 324 885

bullbull 202 218 163 79 220 315 152 998

55 51 56 09 195 203 101 629

249 207 280 97 266 238 140 683

171 142 235 65 194 182 112 686

lt 124 77 125 23 106 135 114 660 middotbullmiddotmiddot

middoti 39 27 29 10 43 70 49 88 ktlt 58 75 76 11 155 134 116 490

30 21 26 23 38 25 40 100middotbullmiddotbullmiddot

H 165 130 76 003 72 62 41 224

middotbullmiddotbullmiddotbull 38 101 96 003 11 97 52 140 bullmiddotbull

bullbull 137 107 173 117 na na na na

bullr

I

bullmiddotmiddotmiddot

c

I )~)( 94 108 157 34 933 954 874 3017 ~bullmiddot bullmiddot middotmiddotbullmiddot 6-03 to 6-27 to 5-02 to 6-20 to 4-05 4-22 4-06 3-30

bullmiddotmiddotmiddotbull middotmiddot

123

Table 34 Continued

Angora Lake

middotbullmiddotbull 65

19

- 71

43

13

17

C 13

bullbullbullbull 35

22

gt 112

70

6-24 to 10-31

124

Table 35 Solute loading for Mineral King All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or eariy Aprii when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Mineral King

31

17

~Jfgt - middot-lt-bull

lt ~ middotmiddotmiddotbull ~ jlt lt bull ~ ~

512 223 339 52 266 425 327 139

64 40 45 06 129 81 88 133

367 257 308 58 192 307 219 120

I 293 179 226 28 151 98 111 144

bullmiddotbullmiddotmiddotbull 148 116 103 10 168 72 126 179

54 21 16 02 102 34 31

78 34 53 05 103 70 61 81

24 31 03 155 47 29 08

07 285 09 122 26 39 25

11 327 08 66 83 31 09

101 153 144 154 na na na na

84 107 202 16 579 559 453 882

7-12 to 6-13 to 6-14 to 6-08 to 3-18 4-15 3-17 3-23 10-20 11-12 11-04 11-08

125

Table 35 Continued No snow survey was conducted in Mineral King during 1995 Snow data for 199 5 are from surveys conducted at Topaz Lake

Mineral King (Topaz Lake)

56

53

116

88

81

09

16

129

82

233

82

228

107

na

147

50

67

47

74

12

na

621

3-29

295

142

327

211

na

142

54

108

21

00

00

na

1738

4-25

126

Table 36 Solute loading for Kaiser Pass All loadings are in Equivalents per hectare Precip is the amount of measured precipitation or snow-water equivalence in millimeters Snow chemistry is from samples collected from snowpits dug in iate March or early April when the snowpack was at or near maximum Duration is the number of days the rain collector was operated during each year

Kaiser Pass

na

na

na

na

na

240

23

112

112

69

23

25

44

46

77

132

88

6-25 to 11-03

275

36

397

309

154

38

50

48

41

64

165

173

5-26 to 11-06

43

14

61

35

93

09

12

09

14

14

143

36

6-27 to 11-16

na

na

na

na

na

na

na

na

na

na

na

na

na

366

88

251

129

190

34

96

40

35

150

na

873

4-26

198

85

160

92

82

35

77

47

38

05

na

705

4-01

462

222

188

152

224

483

59

142

47

17

05

na

1437

3-19

127

Table 36 Continued

Kaiser Pass

74

43

130

115

132

31

33

32

22

37

136

118

6-10 to 10-23

125 133

170 211

113 265

109 164

170 183

70 74

105 150

176 81

150 00

09 00

na na

600 1564

3-22 4-4

128

Table 37 Annual solute loadiM bv site for the neriod of 1990 thro111gth 1994 E~ch vears total is the sum of snowpack loading and loadfng by precipitation ir-0111 latespring through late autumnmiddot Units are equivalents per hectare (eq ha- ) Also shown is the average annual deposition for each site Precip is the amount of annual precipitation (snow and rain) in millimeters For 1994 data are only presented for stations where both winter and non-winter precipitation were measured

SiteYear ic+

A11middot90 530 243 144 245 185 159 45 10 1 141 31 833 All-91 784 644 354 769 438 464 70 288 174 197 1333 AM-92 435 467 147 489 353 207 69 158 70 89 819 AMmiddot93 501 382 189 371 315 162 88 153 69 30 1827 M4MYgt t5Abull3 4~~ gt 29i~ ~r9bull middotmiddot 32t bull 2i~bull middot Ai~Y lt 17Sgt uirmiddot liq lQ~ ANGmiddot90 527 411 248 503 356 224 79 210 66 229 47 1022 ANGmiddot91 465 534 254 445 325 211 96 209 46 191 198 1061 ANGmiddot92 539 315 157 421 347 238 78 191 67 117 147 1031 ANGmiddot93 906 1078 638 780 751 682 98 501 123 225 140 3051 lMhVii bull~Ol r ~llift +s~ 53J A4Sgt qscgt2 i88 ltt 7~ltbullbull t4 13il 4~M EBLmiddot90 268 235 80 249 147 198 31 46 17 36 73 343 EBLmiddot91 316 291 66 241 177 126 33 41 24 75 115 403 ESL-92 313 325 69 369 288 193 101 81 50 88 107 419 EBLmiddot93 181 78 68 105 115 123 39 3 1 66 20 25 518 EBLmiddot94 126 154 39 157 115 87 20 42 20 21 12 328 ~~~tlVi bull middotfV Jf(gt 64 2z4r 1((9 l4IA JES ltbull ltMhgt 35 (lt 4bull~ c~t c I402

EHLmiddot90 324 405 170 366 308 199 66 185 104 NA NA 679 EHLmiddot91 409 848 153 475 321 245 84 132 78 113 191 1058 EHLmiddot92 254 449 160 478 349 224 46 139 50 280 208 830 EMLmiddot93 1189 591 448 462 585 209 116 218 68 149 100 2273 EMLmiddot94 289 447 274 398 231 309 67 200 95 22 74 935 ~LflVi ) 49l ~~iFi 24i1 43-(H ) 359 zg7 7IA ltJ~) )1~9 lt ~ ]IA U~5

KPmiddot91 373 606 110 363 241 259 57 120 84 80 227 961 KPmiddot92 438 473 121 557 401 236 73 127 95 79 69 878 KPmiddot93 481 264 201 213 259 576 68 154 55 31 18 1473 KPmiddot94 310 199 214 243 224 302 102 138 208 172 46 718 (l)flV~ gt4lil J~bull~ MA2 frac34bull+ c~H 3~3 ns f 43q AlHM f iflf liiV H99 HKmiddot90 46 1 778 193 559 444 317 155 181 187 139 109 663 MKmiddot91 295 648 121 563 277 188 54 104 71 33 95 666 MKmiddot92 288 665 132 527 337 230 48 114 60 324 358 655 MKmiddot93 282 191 140 178 172 189 37 87 11 33 17 898 MKmiddot94 221 289 136 447 325 1007 166 154 128 83 28 680 -~tbullW~ bull J9i gt middot 5h4cc 1~bull~gt 455 bull JVlgt 73~~ lt bull9g t ilcgt il1 122 Ud bull middot nz MHmiddot90 614 488 140 424 276 178 23 119 39 132 115 873 MM-91 515 563 194 479 362 264 54 184 47 122 194 1008 MM-92 494 565 107 540 419 239 65 125 67 103 164 1014 MMmiddot93 899 602 284 503 640 335 92 255 93 96 76 2291 MMmiddot94 385 549 155 444 321 220 95 183 52 48 136 776 ~lvqr r s~1 ~5fgt A76 lt middot418 494 bullmiddot 24t lt 66 J7I4 ~Il t A9At bull J3H bulln~ OVmiddot90 316 333 72 242 213 191 38 72 74 OV-91 342 404 104 36 7 226 228 61 70 65 OV-92 293 325 66 388 336 24 7 55 102 54 OVmiddot93 434 231 87 269 193 178 61 67 55 PVMV~ gt middotmiddotmiddotmiddot 346 ~l~ bullcllZc slt1middotmiddotmiddot 24~2 21r gt A 64 Slmiddot90 3211 304 29 199 1211 30 56 30 SLmiddot91 301 174 202 183 126 39 44 19 SLmiddot92 339 362 412 278 162 42 74 36 SL-93 397 133 216 216 132 41 54 31 ~-~wrn r s4J z4s r 28p 219 J37 lt 38 ~Vr j

129

Table 37 Continued

SiteYear Cl - ca2bull HCOz- CH2c0z- Precip

SN-90 471 362 101 316 214 19 1 47 78 43 104 175 566 SN-91 461 382 144 442 427 330 114 202 94 219 313 602 SN-92 346 294 46 295 241 184 69 75 95 112 138 559 SN-93 ~~ ~~

342 r rPitr

182 JObull~)

116 middot 1Qg (

209 qJft )

224 p~

195 V~

94middotuim 90 U4 r

44 M~

41 r bullmiddotnni r 41

~w lt 1064 ~

TG-90 579 405 169 428 285 212 58 188 79 228 147 789 TG-91 546 434 142 399 310 291 59 123 82 118 161 977 TG-92 68 7 580 129 590 475 265 76 126 97 210 228 895 TG-93 TG-94 rg~y9

651 355lt~~ middotmiddot

396 280

lt4Jr 224 99

middot 15$ t

326 327 414

373 208

)331)

387 21274

92 179 35 82 ~if Jd

67 2 7 ZQ

161 39

J~1

32 46

g~gt 1994 891

MW

130

Table 3 8 Percent of annual solute loading contributed by non-winter precipitation by site for the period of 1990 through 1994 Also shown is the average loading fraction for all sites by year Data from the Lake Comparison watersheds is also included Precip is the ratio of non-winter precipitation to annual precipitation

SiteYear Cl ca2+

AM-90 15X 37 17 46X 35X 72X 47 20X 46X SSX 39 6X ANG-90 24X 47 21X 47 46X 53X 46X 26X 43X 69 76X 9 CRmiddot90 37 54X 25X 53X 4SX 41X 31X 22 20X 41X 65X 11X EBL-90 53X 73X SOX 72X 79 87 BOX 74X 53X 95X 1OOX 22 EMLmiddot90 20X 37 30X 61X 53X 65X 51X 46X 74X NA NA 19 MK-90 23X 66X 33X 66X 66X 47 34X 43X 17 12X 40X 13X MMmiddot90 21X 35X 22X 42X 35X 40X 60X 27 32 34X 76X 7 OVmiddot90 SOX 82X 56X 78X 78X 43X 44X 55X 20X 87 94X 27 PR-90 18 35X 26X 60X 48X 65X 49 42 79 NA NA 16X RB-90 38 67 48X 59 54X 66X 53X 42X 38X 43X 69 14X SL-90 63X 73X 46X 67 73X 6BX 68X 64X 49 75X 84X 25X SNmiddot90 37 83X 53X 77 7BX 70X 56X 61X 41X 76X 98X 18X TG-90 34X 74X 47 76X 69 70X 60X 75X 62X 91X 89 13X TZ-90 1~9AYli

16X (g1l11

36X rn1ir

24X 35SX

53X 61JX

46X J76lll

68X 51X 6J9X gt ~2311

40X 45 6Xgt

66X ts+s

NA NA 61gty ~bull4X

13X JSdXlt

AM-91 45X 51X 28X 59 ssx 66X 17 48 53X SOX 79 18X ANGmiddot91 31X 41X 20X 47 44X 36X 28X 36X 46X 68X 51X 10X CR-91 36X 36X 20X 38X 48X 28X 19 31X 15 57 60 9 EBLmiddot91 47 BOX 45X 79 75X 62X 42X SOX 44X 88X 81X 17 EMLmiddot91 26X 69 30X 67 67 59 60X 31X 68 82X 86X 13X KP-91 28X 40X 21X 31X 47 27 40X 20X 53X 57 34X 9 MKmiddot91 28X 34X 33X 46X 65X 62X 38X 33X 34X 20X 12X 16X MM-91 25X 39 1BX 41X 43X 44X 2BX 35X 28X 61X 51X 7 OV-91 21X 42X 23X 33X 43X 36X 39 30X 22 44X 41X 6X PR-91 26X 63X 34X 59 59 SSX 57 33X 71X 70X 64X 14X RB-91 SLmiddot91 SN-91

53X 37 L-WUJ_

64X 70XJ

49 39 -J

69 67 Tri

65X 56Xn

39 45X 48X

46X 48X 36X

44X 39 21X

SSX ~~ ~

77 51X 934

57 77 831

12X 11X i 41

TG-91 32X 52X 27 51X 48X 35X 29 23X 13X 61X 57 7 TZ-91 199hAVG

25X 34IIXf

78X SOX 55i5X gt 3J~6X

70X 556X

68X middot560X

36X 452 middot

64X bull3114x

36X middotbullbull34middot0Xtmiddot

79 4311X

66X 6411

71X Mllx

15X Ui--

AM-92 31X 63X 32 65X 64X 61X 47 44X 52 75X 81X 11X ANGmiddot92 40X 52 36X rn 68 m m ~ 39 ~x m 1~ CRmiddot92 37 SOX 16X 49 43X 20X 14X 23X 6X 71X 61X 14X EBL middot92 64X 74X 44X rn m m m ~ m ~ m m EML middot92 34X SSX 37 ~ rn ~ ffl ~ ~ ~ ~ m KP-92 29 58X 30X nx m m m ffl ~ m ~x ~ MKmiddot92 53X 51X 34X SBX 67 45X 34X 47 51X 88 91X 31X MM-92 33X 51X 15X 42X 40X 30X 25X 1IX 15X BOX 53X 12 OV-92 20X SSX 3BX m ~ ~ m ~ m m m sx PRmiddot92 32X 54X 4BX 65X 69 SOX 45X sex 83X 94X 81X 30X RB-92 51X 6BX 47 67 68X 52 55X 42X 61X BOX 79 15X SLmiddot92 62X 77 39 67 79 60X 59 56X 57 86X 76X 21X SN-92 61X 70X 35X 67 71X 46X 32 51X 14X 85X 73X 1BX TGmiddot92 64X 67 46X 64X 68X 53X 49 51X 26X 83X 85X 22X TZ middot92 32X 64X 44X 69 72X 51X 44X 74X 41X 96X 91X 31X 1~2AIIG middot J3IOX_ t 60SX ~6IX gt 6h3X t 644ll 477X Jn6Xt 4S~xr 42~5X ll(IJ bull 6I5X t 9QX

AM-93 SX 25X 7 3BX 24X 14X 6X 6X 8 9 20X sx ANGmiddot93 2X 7 1X 12X 9 n ox zx 19 ox OX 1X CR-93 11X 31X 10X 27 24X 9 7 7 11X 15X 49 6X EBL middot93 13X 35X 9 2BX 22 19 10X 17 6X 42 54X 6X EML middot93 SX 19 SX 17 12 10X 4X 8 15X 13X SOX 4X KP-93 4X 16X 7 29 13X 16X 14X 8 16X 45X 75X 2 MKmiddot93 BX 27 5X 33X 16X SX SX 6X 28 26X 48X 2X MM-93 9 23X 5X 19 ~ 8 7 ~ 6X 12X 37 sx OVmiddot93 12X 24X 13X 28X 31X 16X 8 14X 8 14X 60X 4X PRmiddot93 9 22 6X 20X 15X 9 SX 6X 15X 13X SSX 4X RB-93 SLmiddot93

4X BX

14X 16X

SX 6X

121n

9 sx

x n

9 ~

sx sx

11X 13X

11X 9

35X SX

2 1X

SNmiddot93 9 25X 6X 24X 16X 7 SX 11X 9 25X 20X 2X TGmiddot93 SX 1BX 3X 16X 10X 3X 3X 3X 6X SX 42X 2X TZ-93 17 31X 9 30X 22X 3X 9 7 22X 26X ssx 7 1993-AVG 8i1Xi t222X (4ll 3iX i 16SX X~i4Xt Xi bull ]sect 1~lf gllX middotbull 403x 37

131

Table 38 Continued

SiteYear Cl ca2bull

CR-94 43X 40X 17 45X 53X 38X 34X 36X 16X sax 82 16X EBL-94 47 35X 36X 32 4OX 24X 20X 19X 15X 53X 76X 15X EML-94 16X 34X 37 44X 46X 28X 35X 42 43X 1OOX 35X 11X KPmiddot 94 24X 37 20X 53X 51X 44X 31X 24X 16X 13X 81X 16X MK-94 13X 19X 39X 49X 67 85X 70X 57 63X 11X sax 12 MM-94 42X 35X 26X 38X 44X 38X 21X 22 23X 33X 27 2OX RB-94 47 46X 39X 48X 54X 42X 45X 41X 33X 2OX 95X 22X TG-94 2OX 31X 14X 28X 3OX SOX 25X 1ax 26X 57 86X BX TZ-94 14AYL r

17 ~-~

64X 58X ~ll~Qcr ~1~gt

57 4~~lt

SOX 4114r

43X ~)

45X saxyen~ L ~5IJt

ssx ~v~c i

38X 1OOX 12X to~ gt11g Mfr

132

Table 39 1990 WATER YEAR SNOW WATER EQUIVALENCE PFAK ACCUMULATION FROM CCSS SNOI COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 50 71 NA OsWE (cm) 198 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 41 45 NA ampsWE (cm) 160 149 NA n 25 3 0

38deg00-38deg30 SWE(cm) 37 39 52 NA ampsWE (cm) 230223 248 NA n 3534 13 0

37deg00-38deg00 SWE(cm) 3436 3637 33

crsWE (cm) n

156 140 6663

150 142 47 46

101 1-

36deg00-37deg00 SWE(cm) 22 23 21

OsWE (cm) 141 151 118 n 34 28 13

35deg15-36deg00 SWE(cm) 16 25 NA OsWE (cm) 128 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 22 23 NA ampsWE (cm) 139 148 NA n 36 29 0

second value represents statistic with snow courses that have no snow during Stlvey period removed from sample population

133

Table 40 1991 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 63 73 NA OsWE (cm) 210 NA NA n 25 1 0

38deg30-39deg00 SWE(cm) 63 81 NA OsWE (cm) 186 188 NA n 24 3 0

38deg00-38deg30 SWE(cm) 59 61 NA 8-sWE (cm) 176 238 NA n 33 13 0

37deg00-38deg00 SWE(cm) 58 58 55 OsWE (cm) 155 157 129 n 63 46 13

36deg00-37deg00 SWE(cm) 49 51 49 OsWE (cm) 151 151 123 n 37 30 14

35deg15-36deg00 SWE(cm) 55 62 NA ampsWE (cm) 95 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 49 51 NA ampsWE (cm) 148 150 NA n 39 31 0

134

Table 41 1992 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00-40deg00 SWE(cm) 47 60 NA ampsWE (cm) 216 NA NA n 24 1 0

38deg30-39deg00 SWE(cm) 50 67 NA ampsWE (cm) 211 214 NA n 22 3 0

38deg00-38deg30 SWE(cm) 47 56 NA ampsWE (cm) 197 245 NA n 32 12 0

37deg00-38deg00 SWE(cm) 45 45 43 ampsWE (cm) 155 144 115 n 63 46 13

36deg00-37deg00 SWE(cm) 33 36 34 ampsWE (cm) 125 118 84 n 36 29 13

35deg15-36deg00 SWE(cm) 34 52 NA ampsWE (cm) 251 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 33 36 NA ampsWE (cm) 128 120 NA n 38 30 0

135

Table 42 1993 WATER YEAR SNOW WATER EQUIVALENCE PEAK ACCUMULATION FROM CCSS SNOW COURSES

Elevation Range

Latitude Interval gt2000m gt2500m gt3000m

39deg00---40deg00 SWE(cm) 142 168 NA ampsWE (cm) 390 NA NA n 26 1 0

38deg30-39deg00 SWE(cm) 127 166 NA ampsWE (cm) 413 381 NA n 24 3 0

38deg00-38deg30 SWE(cm) 122 127 NA ampsWE (cm) 422 538 NA n 33 13 0

37deg00-38deg00 SWE(cm) 119 117 105 ampsWE (cm) 340 344 276 n 63 46 13

36deg00-37deg00 SWE(cm) 83 86 81 ampsWE (cm) 334 345 316 n 34 27 12

35deg15-36deg00 SWE(cm) 79 104 NA ampsWE (cm) 359 NA NA n 2 1 0

35deg15-37deg00 SWE(cm) 83 87 NA ampsWE (cm) 330 340 NA n 36 28 0

136

Table 43

Snow courses used in snow water equivalence analysis Latitude interval 39deg00 to 40deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

359 GRIZZLY FEATHER 6900 3955 120387 388 PILOT PEAK FEATHER 6800 39472 121523 279 EUREKA BOWL FEATHER 6800 39453 120432 75 CHURCH MDWS FEATHER 6700 39409 120374 74 YUBA PASS YUBA 6700 3937 120295 72 HAYPRESS VALLEY YUBA 6800 39326 120312 91 INDEPENDENCE CREEK 1RUCKEE 6500 39295 120169 89 WEBBER LAKE 1RUCKEE 7000 39291 120255 64 WEBBER PEAK 1RUCKEE 7800 3929 120264 78 FINDLEY PEAK YUBA 6500 39282 120343 88 INDEPENDENCE CAMP 1RUCKEE 7000 3927 120175 68 ENGLISH M1N YUBA 7100 39262 120315 86 INDEPENDENCE LAKE 1RUCKEE 8450 39255 12019 66 MDW LAKE YUBA 7200 3925 120305 90 SAGE HEN CREEK 1RUCKEE 6500 39225 12014 77 LAKF FOROYCR YUBA 6500 39216 12030 76 FURNACE FLAT YUBA 6700 39213 120302 65 CASTLE CREEK 5 YUBA 7400 39212 120212 70 LAKE STERLING YUBA 7100 3921 120295 67 RED M1N YUBA 7200 39206 120305 71 SAWMILL FLAT YUBA 7100 39205 120301 73 SODA SPRINGS YUBA 6750 3919 12023 69 DONNER SUMMIT YUBA 6900 39186 120203

115 HUYSINK AMERICAN 6600 39169 120316 385 BROCKWAY SUMMIT LAKE TAHOE 7100 39157 120043 318 SQUAW VALLEY 2 1RUCKEE 7700 39113 120149 317 SQUAW VALLEY 1 1RUCKEE 7500 3911l 120147 400 TAHOE CITY CROSS LAKE TAHOE 6750 39101 120092 332 MARLETTE LAKE LAKE TAHOE 8000 39095 11954 101 WARD CREEK LAKE TAHOE 7000 39085 120135 376 WARD CREEK 3 LAKE TAHOE 6750 3908 12014 338 LOST CORNER M1N AMERICAN 7500 3901 120129 102 RUBICON PEAK NO 3 LAKE TAHOE 6700 39005 12008 99 RUBICON PEAK 2 LAKE TAHOE 7500 3900 12008

137

Table 44 Snow courses used in snow water equivalence analysis Latitude interval 38deg30 to 39deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

97 RUBICON PEAK I LAKE TAHOE 8100 38595 120085 337 DAGGETTS PASS LAKE TAHOE 7350 3859 11953 375 HEAVENLY VALLEY LAKE TAHOE 8850 3856 11914 103 RICHARDSONS 2 LAKE TAHOE 6500 3855 12003 96 LAKE LUCILLE LAKE TAHOE 8200 38516 120067 98 HAGANS MOW LAKE TAHOE 8000 3851 119558

405 ECHO PEAK (NEVADA) 5 LAKE TAHOE 7800 3851 12004 100 FREEL BENCH LAKE TAHOE 7300 3851 11957 316 WRIGHTS LAKE AMERICAN 6900 38508 12014 108 ECHO SUMMIT AMERICAN 7450 38497 120022 Ill DARRINGTON AMERICAN 7100 38495 120032 110 LAKE AUDRAIN AMERICAN 7300 38492 120022 113 PHILLIPS AMERICAN 6800 38491 120043 320 LYONS CREEK AMERICAN 6700 38487 120146 289 TAMARACK FLAT AMERICAN 6550 38484 120062 365 ALPHA AMERICAN 7600 38483 120129 107 CAPLES LAKE AMERICAN 8000 38426 120025 106 UPPER CARSON PASS AMERICAN 8500 38417 11959 331 LOWER CARSON PASS AMERICAN 8400 38416 119599 109 SILVER LAKE AMERICAN 7100 38407 12071 297 EMIGRANT VALLEY AMERICAN 8400 38403 120028 130 lRAGEDY SPRINGS MOKELUMNE 7900 38383 12009 364 lRAGEDY CREEK MOKELUMNE 8150 38375 12038 133 CORRAL FLAT MOKELUMNE 7200 38375 120131 134 BEAR VALLEY RIDGE 1 MOKELUMNE 6700 38371 120137 403 WET MOWS LAKE CARSON 8100 38366 119517 129 BLUE LAKES MOKELUMNE 8000 38365 119553 363 PODESTA MOKELUMNE 7200 38363 120137 135 LUMBERYARD MOKELUMNE 6500 38327 120183 339 BEAR VALLEY RIDGE 2 MOKELUMNE 6600 38316 120137 131 WHEELER LAKE MOKELUMNE 7800 3831l I 19591 132 PACIFIC VALLEY MOKELUMNE 7500 3831 11954 330 POISON FLAT CARSON 7900 3830S 119375 384 STANISLAUS MOW STANISLAUS 7750 3830 119562

138

Table 45

Snow courses used in snow water equivalence analysis Latitude interval 38deg00 to 38deg30 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

323 lilGlilAND MDW MOKELUMNE 8800 38294 119481 141 LAKE ALPINE STANISLAUS 7550 38288 120008 416 BLOODS CREEK STANISLAUS 7200 3827 12002 373 HELLS KITCHEN STANISLAUS 6550 3825 12006 146 BIG MDW STANISLAUS 6550 3825 120067 415 GARDNER MDW STANISLAUS 6800 38245 120022 144 SPICERS STANISLAUS 6600 38241 119596 430 CORRAL MDW STANISLAUS 6650 38239 120024 386 BLACK SPRING STANISLAUS 6500 38225 120122 344 CLARK FORK MDW STANISLAUS 8900 38217 119408 406 EBBETTS PASS CARSON 8700 38204 119457 345 DEADMAN CREEK STANISLAUS 9250 38199 119392 156 LEAVITT MDW WALKER 7200 38197 119335 145 NIAGARA FLAT STANISLAUS 6500 38196 119547 152 SONORA PASS WALKER 8800 38188 119364 140 EAGLE MDW STANTST ATTS 7500 38173 119499 143 RELIEF DAM STANISLAUS 7250 38168 119438 154 WILLOW FLAT WALKER 8250 38165 11927 139 SODA CREEK FLAT STANISLAUS 7800 38162 119407 421 LEAVITT LAKE WALKER 9400 3816 11917 138 LOWER RELIEF VALLEY STANISLAUS 8100 38146 119455 142 HERRING CREEK STANISLAUS 7300 38145 119565 427 GIANELLI MDW STANISLAUS 8400 38124 119535 379 DODGE RIDGE TUOLUMNE 8150 38114 119556 155 BUCKEYE ROUGHS WALKER 7900 38113 119265 422 SAWMlLL RIDGE WALKER 8750 3811 11921 159 BOND PASS TUOLUMNE 9300 38107 119374 348 KERRICK CORRAL TUOLUMNE 7000 38106 119576 153 BUCKEYE FORKS WALKER 8500 38102 11929 172 BELL MDW TUOLUMNE 6500 3810 119565 162 HORSE MDW TUOLUMNE 8400 38095 119397 368 NEW GRACE MDW TUOLUMNE 8900 3809 11937 160 GRACE MDW TUOLUMNE 8900 3809 11937 151 CENTER MTN WALKER 9400 3809 11928 166 HUCKLEBERRY LAKE TUOLUMNE 7800 38061 119447 164 SPOTTED FAWN TUOLUMNE 7800 38055 119455 165 SACHSE SPRINGS TUOLUMNE 7900 38051 119502 377 VIRGINIA LAKES RIDGE WALKER 9200 3805 11914 163 WILMER LAKE TUOLUMNE 8000 3805 11938 150 VIRGINIA LAKES WALKER 9500 3805 11915 167 PARADISE TUOLUMNE 7700 38028 11940 173 LOWER KIBBIE RIDGE TUOLUMNE 6700 38027 119528 168 UPPER KIBBIE RIDGE TUOLUMNE 6700 38026 119532 169 VERNON LAKE TUOLUMNE 6700 3801 11943

139

Table 46 Snow courses used in snow water equivalence analysis Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

171 BEEHIVE MOW TUOLUMNE 6500 37597 119468 287 SADDLEBAG LAKE MONO LAKE 9750 37574 11916 286 ELLERY LAKE MONO LAKE 9600 37563 119149 181 TIOGA PASS MONO LAKE 9800 3755 119152 170 SMITH MOWS TUOLUMNE 6600 3755 11945 157 DANA MOWS TUOLUMNE 9850 37539 119154 161 TUOLUMNE MOWS TUOLUMNE 8600 37524 11921 178 LAKE 1ENAYA MERCED 8150 37503 119269 158 RAFFERTY MOWS TUOLUMNE 9400 37502 119195 176 SNOW FLAT MERCED 8700 37496 119298 175 FLETCHER LAKE MERCED 10300 37478 119206 281 GEM PASS MONO LAKE 10400 37468 119102 179 GIN FLAT MERCED 7000 37459 119464 282 GEM LAKE MONO LAKE 9150 37451 119097 189 AGNEW PASS SAN JOAQUIN 9450 37436 119085 180 PEREGOY MOWS MERCED 7000 3740 119375 206 MINARETS 2 OWENS 9000 37398 11901 367 MINARETS 3 OWENS 8200 37392 118595 207 MINARETS NO 1 OWENS 8300 3739 118597 424 LONG VALLEY NORTH OWENS 7200 37382 118487 177 OSTRANDER LAKE MERCED 8200 37382 11933 208 MAMMOTH OWENS 8300 37372 118595 205 MAMMOTH PASS OWENS 9500 37366 il902 193 CORA LAKES SAN JOAQUIN 8400 37359 11916 425 LONG VALLEY SOUTH OWENS 7300 37344 118401 381 JOHNSON LAKE MERCED 8500 37341 11931 200 CLOVER MOW SAN JOAQUIN 7000 37317 119165 202 CIDQUITO CREEK SAN JOAQUIN 6800 37299 119245 407 CAMPITO M1N OWENS 10200 37298 118104 201 JACKASS MOW SAN JOAQUIN 69SQ 37298 119198 211 ROCK CREEK 1 OWENS 8700 37295 11843 210 ROCK CREEK 2 OWENS 9050 37284 11843 276 PIONEER BASIN SAN JOAQUIN 10400 37274 118477 209 ROCK CREEK 3 OWENS 10000 3727 118445 203 BEASORE MOWS SAN JOAQUIN 6800 37265 119288 182 MONO PASS SAN JOAQUIN 11450 37263 118464 197 CJilLKOOT MOW SAN JOAQUIN 7150 37246 119294 196 CJilLKOOT LAKE SAN JOAQUIN 7450 37245 119288 204 POISON MOW SAN JOAQUIN 6800 37238 119311 186 VOLCANIC KNOB SAN JOAQUIN 10100 37233 118542 195 VERMILLION VALLEY SAN JOAQUIN 7500 37231 118583 324 LAKE Tt-iOMAS A EDISON SAN jQAQlJIN 7800

_ n 1111nn1

J lfUJ~

(continued next page)

140

Table 46

CONTINUED- Latitude interval 37deg00 to 38deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (fl) Latitude Longitude

357 NUCLEAR I OWENS 7800 37224 11842 358 NUCLEAR 2 OWENS 9500 37222 118429 187 ROSE MARIE SAN JOAQUIN 10000 37192 118523 190 KAISER PASS SAN JOAQUIN 9100 37177 119061 198 FLORENCE LAKE SAN JOAQUIN 7200 37166 118577 185 HEART LAKE SAN JOAQUIN 10100 37163 118526 346 BADGER FLAT SAN JOAQUIN 8300 37159 119065 191 DUTCH LAKE SAN JOAQUIN 9100 37155 118598 194 NELLIE LAKE SAN JOAQUIN 8000 37154 119135 183 PIUTE PASS SAN JOAQUIN 11300 37144 118412 216 BISHOP PARK OWENS 8400 37143 118358 212 EAST PIUTE PASS OWENS 10800 37141 118412 214 NORTH LAKE OWENS 9300 37137 118372 199 HUNTINGTON LAKE SAN JOAQUIN 7000 37137 119133 192 COYOTE LAKE SAN JOAQUIN 8850 37125 119044 215 SOUTH FORK OWENS 8850 37123 118342 224 UPPER BURNT CORRAL MDW KINGS 9700 3711 118562 184 EMERALD LAKE SAN JOAQUIN 10600 3711 118457 347 TAMARACK CREEK SAN JOAQUIN 7250 37107 119123 188 COLBY MDW SAN JOAQUIN 9700 37107 118432 213 SAWMILL OWENS 10300 37095 118337 228 SWAMP MDW KINGS 9000 37081 119045 232 LONG MDW KINGS 8500 37078 118552 218 BIG PINE CREEK 3 OWENS 9800 37077 118285 219 BIG PINE CREEK 2 OWENS 9700 37076 118282 217 BIG PINE CREEK 1 OWENS 10000 37075 11829 284 BISHOP LAKE OWENS 11300 37074 118326 234 POST CORRAL MDW KINGS 8200 37073 118537 230 HELMS MDW KINGS 8250 37073 119003 225 BEARD MDW KINGS 9800 37068 118502 222 BISHOP PASS KINGS 11200 3706 118334 235 SAND MDW KINGS 8050 37059 11858 308 OODSONS MDW KINGS 8050 37055 118575 426 COURTRIGHT KINGS 8350 37043 118579 223 BLACKCAP BASIN KINGS 10300 3704 118462 341 UPPER WOODCHUCK MDW KINGS 9100 37023 118542 238 BEAR RIDGE KINGS 7400 37022 119052 227 WOODCHUCK MDW KINGS 8800 37015 118545 239 FRED MDW KINGS 6950 37014 119048

141

Table 47

Snow courses used in snow water equivalence analysis Latitude interval 36deg00 to 37deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

229 ROUND CORRAL KINGS 9000 36596 118541 396 RATTLESNAKE CREEK BASIN KINGS 9900 36589 118432 398 BENCH LAKE KINGS 10000 36575 118267 233 STATUM MDW KINGS 8300 36566 118548 408 FLOWER LAKE 2 OWENS 10660 36462 118216 307 BULLFROG LAKE KINGS 10650 36462 118239 299 CHARLOTTE RIDGE KINGS 10700 36462 118249 380 KENNEDY MOWS KINGS 7600 36461 11850 309 VIDETTE MOW KINGS 9500 36455 118246 231 JUNCTION MOW KINGS 8250 36453 118263 237 HORSE CORRAL MOW KINGS 7600 36451 11845 240 GRANT GROVE KINGS 6600 36445 118578 382 MORAINE MOWS KINGS 8400 36432 118343 226 ROWELL MOW KINGS 8850 3643 118442 236 BIG MOWS KINGS 7600 36429 118505 397 SCENIC MOW KINGS 9650 36411 118358 255 TYNDALL CREEK KERN 10650 36379 118235 250 BIGHORN PLATEAU KERN 11350 36369 118226 243 PANTHER MOW KAWEAH 8600 36353 11843 275 SANDY MOWS KERN 10650 36343 11822 253 CRABTREE MOW KERN 10700 36338 118207 254 GUYOT FLAT KERN 10650 36314 118209 256 ROCK CREEK KERN 9600 36298 i i820 221 COTTONWOOD LAKES 1 OWENS 10200 36295 11811 220 COTTONWOOD LAKES 2 OWENS 11100 3629 11813 252 SIBERIAN PASS KERN 10900 36284 11816 251 COTTONWOOD PASS KERN 11050 3627 11813 257 BIG WHI1NEY MDW KERN 9750 36264 118153 245 MINERAL KING KAWEAH 8000 36262 118352 374 WlilTE CHIEF KAWEAH 9200 36253 118355 292 FAREWELL GAP KAWEAH 9500 36247 11835 244 HOCKETT MOWS KAWEAH 8500 36229 118393 260 LITTLE WHI1NEY MOW KERN 8500 36227 118208 259 RAMSHAW MOWS KERN 8700 36211 118159 423 1RAILHEAD OWENS 9100 36202 118093 264 QUINN RANGER STATION KERN 8350 36197 118344 248 OLD ENTERPRISE MILL 1ULE 6600 36146 118407 263 MONACHE MOWS KERN 8000 3612 118103 262 CASA VIEJA MOWS KERN 8400 3612 118163 265 BEACH MOWS KERN 7650 36073 118176 247 QUAKING ASPEN 1ULE 7000 36073 118327 261 lIUNUA MLJWS KERN 8300 - lVI II

)OU-bull- I 10tn11011

142

Table 48 Snow courses used in snow water equivalence analysis Latitude interval 35deg15 to 36deg00 and base elevation of 6500 feet (-2000 m) Listed by decreasing latitude

Snow Course Elevation Number Course Name Drainage Basin (ft) Latitude Longitude

258 ROUND MOW KERN 9000 35579 118216 249 DEAD HORSE MOW DEER CREEK 7300 35524 118352 383 CANNELL MOW KERN 7500 3550 118223

143

Table 49 Snownack solute-loadine bv reeion for 1990 Loadines were calculated using snow-water equivalence (SWE) data from the Califom1a Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake To_paz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - N03- sol- ca2bull Mg2+ Na+ i+ HCOz- CH2COz- Precip

40deg00deg- gt2000 M 285 98 76 84 76 28 15 5 1 12 41 12 so 39deg00deg gt2500 M 405 139 108 120 108 40 22 73 17 58 17 71

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 220 92 72 95 72 44 25 52 24 3 1 09 41

38deg30 gt2500 M 241 101 79 104 79 48 27 57 26 34 10 45

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 - gt2000 M 251 52 41 62 40 49 17 26 2 1 2 1 04 39

38deg00 1 gt2500 M 335 69 54 83 54 65 23 34 29 27 05 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 179 92 53 97 66 52 13 37 17 27 18 36

37deg00 1 gt2500 M 184 94 54 100 67 53 13 38 18 28 18 37

gt3000 M 164 84 48 89 60 47 12 34 16 25 16 33

37deg00- gt2000 M 115 84 44 57 54 47 19 36 26 24 14 22

36deg00 1 gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M 11 o 80 42 54 s 1 45 18 35 25 23 13 21

36deg00deg- gt2000 M 83 6 1 32 4 1 39 34 13 26 19 17 1o 16

35deg15 1 gt2500 M 130 96 49 64 61 54middot 21 4 1 30 27 16 25

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 _ gt2000 M 115 84 44 s7 54 47 19 36 26 24 14 22 TC04CIJJ - gt2500 M 120 88 46 59 56 49 19 38 27 25 14 23

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

144

Table 50 Snowpack solute-loading bv region for 1991 Loadinls were calculated usinl snow-water equivalence (SWE) data from the Califorrna Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- solmiddot ca2+ Mg2+ Na+ rt He~middot cH2~- Precip

40deg00 1 bull gt2000 M 249 180 145 180 112 89 33 86 39 20 23 63

39deg00 1 gt2500 M 288 209 169 208 130 104 39 100 45 24 27 73

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00middot gt2000 M 211 208 134 15 7 120 89 46 88 16 41 64 63

38deg30 gt2500 M 271 268 173 202 155 114 59 114 21 52 82 81

gt3000 M NA NA NA NA NA NA NA NA NA NA NA flA

38deg30middot gt2000 M 196 118 104 115 21 7 194 83 182 62 18 62 59

38deg00 1 gt2500 M 202 122 108 119 224 200 85 188 64 19 64 61

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 bull gt2000 M 217 175 68 141 101 126 29 59 28 29 55 58

37deg00 gt2500 M 21 7 175 68 141 101 126 29 59 28 29 55 58

gt3000 M 205 166 65 134 96 120 27 56 27 28 52 55

37deg00 bull gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00 gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M 186 198 54 152 78 90 23 48 19 23 50 49

36deg00middot gt2000 M 208 222 6 1 170 87 101 26 54 2 1 26 56 55

35deg15 1 gt2500 M 235 251 69 192 99 114 29 6 1 24 29 64 62

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00 middot gt2000 M 186 198 54 152 78 90 23 48 19 23 50 49

35bull15bull gt2500 M 193 206 57 158 81 94 24 50 20 24 52 51

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

145

Table 51 Snowoack solute-loadin2 bv re2ion for 1992 Loadin2s were calculated usin2 snow-water equivalence (SWE) data from the Calfforma Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl - NOJ- sol- ca2+ Mg2+ Na+ Kdeg HC~- CH2c~- Precip

40deg00 1 - gt2000 M 193 112 64 112 83 52 24 57 23 11 11 47

39deg00 gt2500 M 246 143 82 143 106 67 30 73 29 15 1-4 60

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 - gt2000 M 185 87 58 80 64 65 28 66 23 2-4 29 50

38deg30deg gt2500 M 248 11 7 77 107 86 87 38 89 31 32 39 67

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg3D- gt2000 M 138 91 31 100 71 103 48 38 84 1 7 38 47

38deg00deg gt2500 M 164 109 37 119 85 122 57 45 100 20 46 56

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg00 1 - gt2000 M 168 127 47 140 99 97 40 48 40 18 26 45

37deg00 1 gt2500 M 168 127 47 140 99 97 40 48 40 18 26 45

gt3000 M 161 121 45 134 94 93 38 46 38 17 25 43

37deg00 1 bull gt2000 M 115 133 46 120 81 74 18 36 18 15 21 33

36deg00 1 gt2500 M 125 145 51 131 88 80 19 39 20 16 23 36

gt3000 M 118 137 48 124 83 76 18 37 19 15 22 34

36deg00deg- gt2000 M 118 137 48 124 83 76 18 37 19 15 22 34

35deg15 gt2500 M 181 209 73 189 127 116 28 57 29 23 33 52

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00deg- gt2000 M 115 133 46 120 81 74 18 36 18 15 2 1 33

35deg15 1 gt2500 M 125 145 5bull 1 13 1 ee eo 19 39 20 16 23 36

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

146

Table 52 Snowpack solute-loading by region for 1993 Loadings were calculated using snow-water equivalence (SWE) data from the California Cooperative Snow Survey Snow chemistry used in the estimates was from the 12 study sites plus snow chemistry from Pear Lake Topaz Lake Ruby Lake and Crystal Lake The regions used in the analysis were constrained by elevation and latitude The data for snow chemistry and SWE are from the Sierra snowpack on or near April 1 Units are equivalents per hectare (eq ha-1) Precip is the amount of SWE in centimeters Elevations are meters

Region Elevation H+ NH4+ Cl N~- s042middot ca2bull Mg2+ Na+ r HCOz CH2COzmiddot Precip

40deg00middot gt2000 M 390 235 144 189 197 115 68 119 55 51 20 142

39deg00 1 gt2500 M 462 278 171 223 234 136 80 141 65 6 1 23 168

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

39deg00 1 bull gt2000 M 373 420 265 288 289 278 37 206 42 94 59 127

3a~30= gt2500 M 487 549 346 376 378 363 49 270 55 123 77 166

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

38deg30 1 bull gt2000 M 365 160 127 185 221 214 105 94 47 35 38 122

38deg00 gt2500 M 380 167 133 193 230 223 109 98 49 37 40 127

gt3000 M NA NA HA NA NA NA iiA NA iiA NA NA NA

38deg00bull- gt2000 M 411 176 121 18 1 223 218 53 95 52 50 28 119

37deg00 gt2500 M 404 173 119 178 219 214 52 93 51 49 28 117

gt3000 M 363 155 107 160 197 192 47 84 46 44 25 105

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

36deg00 gt2500 M 318 172 154 149 169 186 41 109 27 43 1 7 86

gt3000 M 300 162 145 140 159 175 39 102 26 41 16 81

36deg00middot gt2000 M 293 158 141 137 155 171 38 100 25 40 15 79

35deg15 gt2500 M 385 207 186 180 204 225 50 131 33 53 20 104

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

37deg00middot gt2000 M 307 166 149 143 163 180 40 105 26 42 16 83

35deg15 gt2500 M 322 174 156 150 171 188 42 110 28 44 17 117

gt3000 M NA NA NA NA NA NA NA NA NA NA NA NA

147

Table 53 Average chemistry ofno-orecioitation bucket-rinses bv site for the oeriod of 1990 through 1993 Bucket rinses were collected when no precipitation occurred during the weekly or biweekly installation interval Bucket rinses were done with 250 ml of deionized water Duration is the ave~age number of days the bucket was installed prior to being rinsed All concentrations are in microEq L- MM2 and OV2 were co-located rain collectors installed at Mammoth Mountain and Onion Valley respectively No bucket rinses were obtained in 1994

SiteYear Cl

AM-90 NA 30 143 29 168 19 12 27 NA NA NA

ANG-90 NA 02 00 01 01 00 00 00 NA NA 80 ANG-91 05 06 01 03 06 02 12 0 7 o 1 06 100 ANG-92 09 00 04 02 1o 02 03 oo 04 o7 103 ANG-93 01 02 10 01 03 01 04 02 00 01 74 NGtAIIG os bullmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotbulltQ1lt 94bullmiddotbullmiddotmiddotmiddotmiddotbullmiddotmiddot qi2middot 05middotmiddot middotmiddot01gt ro5y middot~Mbbullmiddotgt 92 middot bullbullQw bull middotrWiL EBL-90 NA 00 01 oo 02 01 03 01 NA NA 125 EBL middot91 07 1o 03 02 06 02 02 01 04 oo 130 EBL-92 30 03 42 25 66 11 17 15 04 02 143 EBL-93 04 05 04 02 06 o 1 02 02 1o 21 139 ~BljJllL middotmiddotbullmiddotbull 13) middot04 12 t PP 2or o3 gtWtlt ps middotbullo6 W~ 41iffr bull EMLmiddot91 13 06 01 05 08 03 14 04 750 150 127 EMLmiddot92 ii 04 ii iO iO 09 06 03 29 iO i70 EML-93 00 01 00 00 00 00 00 O 1 02 03 170 ~lP0AVGrbullbullmiddotmiddot middotmiddotmiddotbull 0bull8 94 t middot 4N Ptbull li15 bull tmiddot 94bullr rgttgt bullmiddotlML middot ~I ~ bullbullbullbullbullbull45~middotmiddot KP-91 20 10 29 22 36 09 14 12 08 01 88 KPmiddot92 28 0 7 10 18 39 13 12 16 05 02 62 ~fAVG gt 214 08 bull zrnt middot 20 bullr1a middottA middotmiddot middot Mlgt htr 9-1middot r t Pdt middot rsr MK-91 15 00 04 02 05 03 0 1 02 05 04 68 MICmiddot92 29 04 57 38 69 14 19 13 00 00 85 MIC-93 12 09 03 25 13 05 05 21 06 02 108 ~JIIL middotbullbullmiddot h9 liff bull 2i2gt 2g lt gt29 - Pi Q-V Jf tPf AML r bullf1f

MH2middot92 12 02 0 1 0 1 07 0 1 0 1 0 1 04 00 150 HM2middot93 15 0 7 24 10 18 03 06 05 04 01 142 AVG middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1i4) middot middot94 42 95middot Jg t Qi2t rmiddotbullP4 rbullbulldMt bullCgt44 JMt rt44irr HM1middot90 NA 39 MM1middot91 10 02 MM1 middot92 23 02 MM1middot93 03 22 MMkAVG bull 12- bull 47middot

OV2middot92 OV2middot93 QVrAVG

OV1middot90 NA 05 16 06 21 03 04 01 NA OV1 middot91 30 11 36 19 89 13 17 19 06 OV1middot92 5 9 10 78 28 140 23 2 1 26 06 OV1middot93 03 06 01 02 18 02 02 02 03 QMVW 3l middotmiddotmiddotmiddotmiddot rornmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddot 33lt( y14middotmiddot t 6Tgt gg Ft hiL Qftgt

SL-90 NA 00 15 12 17 03 05 07 NA NA 123 SLmiddot91 2 1 1o 42 25 54 o 7 08 09 15 06 135 SL-92 17 01 05 04 12 02 05 04 03 02 143 SL-93 04 08 01 03 09 02 03 02 04 04 123 ~IfAvwmiddotmiddotmiddot h4 J15middotmiddotmiddot Ft r Jamiddotmiddot middotmiddotmiddotmiddotmiddotmiddot 2l Wl 9t Mfsect t Mt 9 J~lt SN-90 NA 08 23 09 22 08 05 07 NA NA 100 SNmiddot91 20 05 14 09 25 07 03 05 04 02 140 SNmiddot92 20 o 1 02 o 1 1 1 02 o 1 oo 09 05 120 SN-93 0 1 03 o 1 o 1 02 00 02 03 o7 02 144 SNAVG 14 94p UQ l5 P5f gt04 lt pqx bullQV gt (lii~t Jg~ A~I~t TG-90 NA 08 42 25 44 08 09 05 NA TG-92 02 01 06 03 14 03 04 06 00 TG-93 12 04 04 03 11 01 02 03 09 TGIAVG (0li middotlt94y middot 41 middottOJ bullbulllt 23 Q4 t ll5 QI4i middotO~

148

Table 54 Summary of statistical analyses of No-Precipitation Bucket Rinse (NPBR) samples from 1990 through 1993 For each station data from the entire study were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multipleshycomparsion tests were used to detect significant differences (P lt005) among stations No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among sites

1 SULFATE

a MK gt ANG

3 FORMATE

NONE

4 ACETATE

a ANG lt EML b ANG lt TG

5 NITRATE

NONE

6 AMMONIUM

NONE

7 MAGNESIUM

a KP gt ANG b OV2 gt ANG

8 SODIUM

NONE

9 POTASSIUM

NONE

10 CHLORIDE

NONE

149

Table 54 (continued)

11 CALCIUM

a OV2 gt EML b OV2 gt ANG c OV2 gt EBL d OVl gt EML e OVl gt ANG

12 BUCKET DURATION

a ANG lt MMl b ANG lt MM2 c ANG lt EML d ANG lt TG e ANG lt OV2 f ANG lt OVl

a KP lt MMl b KP lt MM2 c KP lt EML d KP lt TG e KP lt OV2 f KP lt OVl

a MK lt MMl b MK lt MM2 c MK lt EML d MK lt TG e MK lt OV2 f MK lt OVl

150

Table 55 Summary of statistical analvses of No-Precioitation Bucket Rinse lNPBR) samoles from 1990 through middot1993_ For each station data from all station were combined for the analyses The Kruskal-Wallis one-way ANOVA and Dunns multiple-comparsion tests were used to detect significant differences (P lt005) among years No bucket rinses were obtained in 1994

1 NO-PRECIPITATION BUCKET RINSE CHEMISTRY 1990-1993

A Tests for differences in chemistry among years

1 SULFATE

a 1992 gt 1993

3 FORMATE

a 1991 gt 1993

4 ACETATE

NONE

5 NITRATE

a 1993 lt 1990 b 1993 lt 1992

6 SODIUM

a 1992 gt 1993

7 AMMONIUM

a 1993 lt 1991 b 1993 lt 1992 NOTE NO NH4+ IN 1990

8 MAGNESIUM

a 1993 lt 1990 b 1993 lt 1991 c 1993 lt 1992

9 POTASSIUM

NONE

lTT TITrriTI1 LUbull -01JVZiUL

a 1993 gt 1992

11 CALCIUM

a 1992 lt 1993

12 BUCKET DURATION

NONE 151

Table 56 Average contamination rate of buckets by site for the period of 1990 through 1993 The contamination rate was calculated from no-precipitation bucket-rinse chemistry and bu1ket duration Units are expressed in milliequivalents per hectare per

1day (mEq ha- d- ) These units were chosen to simplify comparisons between bucketshycontamination rates and solute-loading rates No bucket rinses were collected in 1994

SiteYear Cl ca2+ ic+ HCOz

ANG-90 NA 08 00 06 05 00 02 00 00 00 ANGmiddot91 18 22 05 13 22 09 46 27 05 22 ANG-92 32 00 13 06 36 06 10 00 14 25 ANG-93 ANGbullAG r

05 J8

10 middot10

5 0 17

05 O

14 06 4lrmiddotmiddot Ql gt

19 ht

11 Q~9

01 Q

05 h7

EBL-90 NA 00 03 00 06 02 09 03 oo oo EBL-91 19 28 09 06 16 04 06 03 10 00 EBL-92 79 07 110 65 174 28 44 39 1 bull 1 06 EBL-93 ~~~fAVG

11 3 6

14 HZ)

11 J3

06 15 h9 middotmiddotbullbull5 3

03 99

06 tltt

05 h2

26 J(gt

57 2t

MK-91 MK-92 MK-93 MKfAYi

82 131 41

ltltgtlS MH2middot92 30 05 01 03 16 01 01 01 10 00 HH2middot93 41 20 64 26 48 07 15 12 12 02 ltMAVG gt q(gt gt Jigt middot gt 33I bullbullmiddotbullbullbullbull 1bull4gt t 32 t Q4 t 9iI Qi t 14 lt gt 9il MM1middot90 NA 92 572 286 357 96 133 87 MM1 middot91 20 05 04 05 16 04 03 01 MM1 middot92 58 06 15 17 27 06 07 02 MM1 middot93 08 59 06 11 18 07 16 351-hAVG bull8) IM9L bullJl+9r JgQ bull105 2bull1 middot t39rmiddot bull3~1

OV2middot92 138 22 123 10 1 199 33 49 27 16 24 OV2middot93 34 26 26 34 148 17 25 17 17 16 oy2-Avct ca6 tbull rt2-t middot gtgtgt75 gt middot gt6middot8 q73 middotmiddotg5rbullbullmiddotmiddotbullmiddot 3A 22middotmiddot middot middot middotJI6bull 2f11 middot

OV1middot90 NA 16 48 18 65 10 12 04 oo oo OV1middot91 79 29 93 48 231 35 43 48 16 10 OV1middot92 151 25 200 7 1 358 60 54 68 16 17 OV1middot93 10 16 02 0 7 50 04 04 04 08 01 ClVJtAYG i 410 22 86 middotmiddotmiddot 36 V6 gt2-T t 2i9t 31 13 09

SL-90 NA 01 45 36 51 09 15 22 oo oo SL-91 58 27 117 70 151 18 23 25 4 1 15 SL-92 45 03 12 11 31 05 13 11 08 06 SL-93 13 24 03 09 26 05 10 07 13 12 lLbullAYGt bull bullbull39rbullbullmiddotmiddotmiddotmiddot middotmiddott$middot 4A c 3i2t (gt5lt t0y bullttit middot16 zbulllgt Jt

SN-90 NA 29 86 32 84 29 20 26 00 00 SN-91 54 14 37 24 68 20 09 14 1o 05 SN-92 64 04 05 03 36 o 7 04 00 27 16 SN-93 03 07 02 03 05 01 05 08 1 05 lgt~iAG rmiddotmiddotmiddotbullmiddotmiddot 4qgt r1r lt 33 r 16 4amp bullbullr 14 J-9gt 12middotbull middoti9 9li TG-90 NA 28 141 84 148 26 31 16 00 00 TGmiddot92 05 03 15 08 35 08 10 14 00 00 TG-93 32 10 10 09 28 03 04 08 24 11 tGtAYG ltl9 lilt Jii 33 y7Q bull 1pound2 middot Ji Jo3 middotbullmiddotbullmiddot J~2middotmiddot gtQflll

152

Table 57 Contamination loadinj bv site for the non-winter oeriods of 1990 throueh 1993 This loading was calculated from the average contamination rate at each site and the number of days buckets were installed when there was a rain event sampled

Contamination Rate+ 1000 x Installation Interval= Contamination Loading(mEq ha-1 day-1) (days) (Eq ha-1)

SiteYear Me2+

ANG-1990 NA 007 000 006 004 000 001 000 ooo ooo ANG-1991 056 000 022 011 063 011 018 000 024 043 ANG-1991 007 009 002 005 009 004 019 011 002 009 ANG-1993 001 003 015 001 004 002 006 003 000 001 ~libullAV9gt gtltgtgtmiddotQ2bullbull bull ltV0t tbullbullmiddotmiddotmiddotbull01Q bullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotmiddotbullmiddotmiddotbullmiddotbull006 bullbullbullmiddotbullmiddotbullbullbullmiddotltPbull2Qbullmiddotmiddotmiddotbullmiddot middotmiddotmiddotmiddotmiddotbullmiddotOo4bull ttmiddotbullPmiddotImiddot bullbullmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotbullbull9bullbullmiddotQbullmiddotbullmiddotbull QsQ7 Oi1( middotbull

EBL-1990 NA 000 002 000 003 001 005 002 000 ooo EBL-1991 020 029 009 006 017 005 006 0-03 011 000 EBL-1992 130 012 182 108 287 047 0 73 064 017 010 EBL-1993 003 003 003 002 004 001 001 001 007 014 ~Jl~tAVlii tt(051bullbullbullbullbullbull 04t Q49gt gt029 ltQi78 o3 bullbullQ2 bullOAll ()9 bull006

EML-1991 034 016 003 013 021 009 036 012 2003 401 EML-1992 042 013 042 038 038 034 023 009 108 038 EML-1993 ~lkAVlit

000 pg~

001 lt010 gt

000 middotmiddot 015

000 Jl17

000 020

000 000 middotmiddotbullQ14t 020

001 bullbullbullP p7 bullgtbull

002 middotmiddot middot 41Agt

003 bullJIAbull

MK-1991 067 001 020 011 025 012 006 008 023 016 MK-1992 189 027 369 245 443 092 122 082 000 ooo MK-1993 tAV~rmiddotmiddot

016 middotbullmiddotbullbullmiddotmiddot091

012 Jl43

004 J31 middott

033 097

017 1)(2

006 0061137 bullbullbull tQi45

028Mi4P

008(MQ

003941gt i

MM1-1990 NA 058 361 180 225 061 084 055 000 000 MM1 -1991 021 005 004 005 018 004 003 001 013 006 MM1-1992 092 009 024 028 043 009 011 003 021 009 MM1-1993 003 019 002 004 006 002 005 o 11 004 002 lkAVli dh39J 9~r lt Olgt Q54 QiJL middot QW i O( t QJ~ bullmiddot 99t 904

OV1-1990 NA 008 023 009 031 005 006 002 000 000 OV1-1991 043 016 051 027 127 019 024 027 009 006 OV1-1992 2n 045 360 128 645 108 098 122 030 031 OV1-1993 DVkAVlibull

002 106bull

004 QJI

000 109

00204t

013 middotmiddotbullbullc204bull

001 001 001 i 033bullmiddot gtltgt932bull bullbullbullbullbull bull+9bullbull31l bullbull

002 Q49gt

000 99t

OV2-1992 249 040 221 182 358 060 089 049 029 043 OV2-1993 9V2AVf

009 J29

007 f023

007 lt1Pfr

009 oysy

039 Hilf

004 li~2

006 Pl4~I

004 004 927y 947 middotmiddotmiddotmiddot

004 li2M

SL-1990 NA 000 027 022 031 006 009 013 000 000 SL-1991 034 016 069 042 089 011 013 015 024 009 SL-1992 069 004 019 016 047 008 020 016 012 009 SL-1993 SLbullAV9f middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot

006 Q36

011ltoo~middotbullmiddotbullmiddotmiddotmiddotmiddotmiddot 001 Q29

004 0l)

012 945

002 poz

005 Q12

003 PRf

006 QlF

005 QI06

SP-1990 NA 019 056 021 054 019 013 017 000 ooo SP-1991 028 007 019 013 035 010 005 007 005 002 SP-1992 SP-1993

113 001

007 003

C09 001

006 001

o63 002

013 000

001 002

ooo 003

oa 007

02a 002

SP~AVG p4z QbullP9t rog1r onor o39 QUJt gtQf07lt gtQI Q1r QA~gt TG-1990 NA 023 118 070 124 022 026 013 ooo 000 TG-1991 NA NA NA NA NA NA NA NA NA NA TG-1992 008 004 025 013 059 013 017 023 000 ooo TG-1993 rnAVGgtbullbull

010 fpo9ymiddotmiddotmiddot

003 wwmiddotmiddot 003 049

003 02 )

009 064

001 Q12

001 915 t

003 op~

008 middot Alll~

004 middot11~1l

153

Table 58 Percent of non-winter solute loading contributed bv contamination loadinit bv site for the period of 1990 through 1993 Also shown is the average loading fraction for-alf sites by year

SiteYear NH4+ Cl N05 s042middot ca2+ Mg2+ Na+ ic+ HCOz CH2COz

ANGmiddot1991 ANGmiddot1991 ANG-1993

26X 05X 02

oo 16X 34X

11 01 16X

08X 0202

81X 07X 20

42 13X 20

23X 25X 52

00 42 15X

19 03X 59

43X 09

416X

EBLmiddot1990 EBLmiddot1991 EBLmiddot1992 EBL-1993

08X 54X 10X

oox 96X 38X 58X

01 05X 73X 09

oo 05X 52 06X

0221

257X 16X

03X 33X

190X 21

15X 29

178X 27X

19 29

362 32

00 16X 22 78

00 oox 12

107

EMLbull1991 EMLmiddot1992 EMLmiddot1993

06X 17X oox

35X 22X osx

01X 14X oox

06X 16X oox

15 49 oox

18X 18BX os

90X 27X oox

22 22 06X

44X 11X

22 24X

KP-1991 KPmiddot1992

24X 102X

132X 190X

77X 26X

58 59

157X 25SX

111 359

174X 253X

82 348

ox 123X

o x 35X

MK-1991 MKmiddot1992 MKmiddot1993

30X S6X 30

02X 61X

188X

08 120X 07X

06X 109 11 8X

21X 429 173X

58 567X 322X

19 228 11 1

34X 266X 875X

352 00 87

144X 00 37

MM1middot1991 MM1middot1992 MM1middot1993

ox 25X 02

14X 47X

117X

02X 08X 02X

03X 13X 03X

1sx 56X 22

29 47X 41X

04X 36X 41X

11 20

209

1n 22 22

on 10 osx

MM2middot1992 MM2middot1993

17X 1 ox

48X 48X

o x 21x

02 08X

31X 59

11X 34X

08 42

20 76X

17 67

0003X

OV1middot1990 OV1middot1991 01-1992OV1middot1993

25X 134X osx

20 67X

16 x34X

12X 43X

22SX o x

05X 27X 93X 03X

37X 155X 624X 43X

29 79

48li 23X

15X 111X 32li 12

18 360

114IIX 27X

0030 59X 27

oo09 48 02

OV2middot1992 163X 184X 171X 153X 412X 337X 387X 623X 94X 10 IX OV2middot1993 1SX 6SX 09 1SX 134X 88 66X 92 5SX 31X

Slmiddot1990 Slmiddot1991 Slmiddot1992

28X 24X

01X 71X 1SX

14X 51X 07X

15X 40 on

3SX 155X 48

27X 58X 32X

25X 78X 49

89 243X 79

00 76X 14X

oo 25x 1 IX

SLmiddot1993 28X 268 05X 24X 129 82 113X 81X 107 14IX

SPmiddot1990 SPmiddot1991 SPmiddot1992 SPmiddot 1993

10 5SX 03X

36X 13X 46X 37X

23X 06X 05X 01X

13X 05X 03X 03X

41X 22 7SX 16X

73X 25X 58 09

27X 1 1 19X 19

95X 18 oo 89

oo 03X 5070X

00 01X 28 24X

TGmiddot1990 TGmiddot 1992 TGmiddot1993

02X 14X

29 07X 53X

37X 07X 06X

36X 04X 07X

84X 42 8SX

62 33X 33X

19X 26X 21X

27X 91X 67

00 oo 93X

oo00 27X

I9tlY1 middotmiddot middot middot middot 29 gtJ iIgt r25 W3gt J~ rq ~ 4ftlt bull 3Ic 1~JbullAV(i ) 1s rzxymiddot W9Xi q5xy 56X X 4)1 65 13 6IUgt middot ittmiddotmiddotmiddotmiddot 1zybull11(i )S9 middotrs )60X gt461f Q7 210 J41 H~t Ph1lgt g4bull

193middotIV(i middotmiddotmiddotmiddotmiddotmiddotmiddot qqx bullbullbullbull 82X Pi h gt ~3 tbull t61 4i~lk Jffr3X 61t gt7~(

154

CJ C Cl)S 100 er Cl) LL 50

0 0 4 8 12 16 20 24 28+

Rain 1990-94 250 -------------------~

200 ~ CJ Mean= 13C 150 Cl) er 100e LL

50

0 0 1 2 3 4 5 6 7 8 9 10+

Delay Before Sample Collection days

Rain 1990-94 200 ----------------------

~ 150 Mean= 47

Bucket Age Prior to Sample (days)

Figure 1 Frequency diagrams of delay before sample collection and bucket age prior to precipitation event

155

Potassium 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean = 1045

Acetate 1990-93 6 10 C 8 CD 6 er 4

LL 2

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Formate 1990-93 14---------------------

gt- 12 g 10 CD 8

5- 4

6

LL 2 o~-shy

s5deg 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 1070

Figure 2 Accuracy for assays of potassium acetate and formate during 1990-93 Accuracy was not determined during 1994-95

156

Potassium 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 31

Acetate 1990-9314---------------------

gt 12 g 10 Cl) B

6- 6 e 4 u 2

0 0 5 10 15 20 25 30 35 40 45 ii50

Percent Relative Standard Deviation (RSD) Mean= 58

Formate 1990-93

O 0 5 10 15 20 25 30 35 40 45250

Percent Relative Standard Deviation (RSD) Mean= 35

Figure 3 Precision for assays of potassium acetate and formate during 1990-93 Precision was not determined during 1994-95

157

Chloride 1990-93

O 550 80 70 80 90 100 110 120 130 140it150

Percent Recovery After Known Addition Mean= 985

Nitrate 1990-9335~-------------------

gtii 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After Known Addition Mean = 1019

Sulfate 1990-9335----------------------

gti 30 g 25 CD 20

5 15 e 10 u 5

0 -----------------L_-L 550 80 70 80 90 100 110 120 130 140 it150

Percent Recovery After K11own Addition Mean = 1058

Figure 4 Accuracy for assays of chloride nitrate and sulfate during 1990-93 Accuracy was not determined during 1994-95

158

Chloride 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 59

Nitrate 1990-93 100---------------------

t i

80

60 er 40 e

LI 20

0 0 5 10 15 20 25 30 35 40 45 250

Percent Relative Standard Deviation (RSD) Mean= 15

Sulfate 1990-93 100-------------------

~ 80 C Cl) 60 er 40 eLI 20

O 0 5 10 15 - 20 25 - 30 35 - 40 45 250

Percent Relative Standard Deviation (RSD) middotmiddot---IYIVGII -- ampVft 78

Figure 5 Precision for assays of chloride nitrate and sulfate during 1990-93 Precision was not determined during 1994-95

159

14r--------------------

100 110 120 130 140~150

Calcium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 _________ S50 80 70

Percent Recovery After Known Addition Mean = 1010

14r---------------------

______ 80 90 100 110 120 130 140~150

Magnesium 1990-93 -1

uC Cl)

5- 6 e 4 LL 2

~~ 8

O S50 80 70 80 90 100 110 120 130 140~150

Percent Recovery After Known Addition Mean= 1041

Sodium 1990-93 gt-12 g 10 Cl) 8

5- 6 e 4 LL 2

0 ______ _______J---___- S50 80 70 80 90

Percent Recovery After Known Addition Mean = 1104

Figure 6 Accuracy for assays of calcium magnesium and sodium during 1990-93 Accuracy was not determined during 1994-95

160

calcium 1990-93 35--------------------

gt 30 g 25 Cl) 20

5 15 10 ~ 5

O 0 5 10 15 20 25 30 35 40 45 i50

Percent Relative Standard Deviation (RSD) Mean = 32

Magnesium 1990-93 14------------------------

gt 12 c 10 Cl) 8

5- 6 4 ~ 2

0 - 0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Mean= 39

Sodium 1990-93

0 5 10 15 20 25 30 35 40 45i50

Percent Relative Standard Deviation (RSD) Ifgt~ OLUaan -- vbullbull _

Figure 7 Precision for assays of calcium magnesium and sodium during 1990-93 Precision was not determined during 1994-95

16-------------------- gt 14 U 12i 10 8 C 6 4 ~ 2

0

161

Program LRTAP ~tudy 0035 Laboratory L 122

Comparison of Results Reported versus the lnterlaboratory Median values

10 28 4amp 14 82 100 452 5t II 73 8 lnlerlab Median Values lnlerlab Median Values

NOl mg NL D D 9 9r=7gt gtD D v 0 - Median 1930 0-I) 4 Value 1863 os-I) 0 00 Median 4180 0lC CValue 4092omiddotI)

-4 l 0 -4 0 4 a 12 11

lnlerlab Median Values

No mgL Ug mgL D 2 D 2

99 u J- uJ- u

0 Median 293 0 -I) Value 222 -I) o9 00 05 Median 276 04QC

I) Value 210 I) 0 00 0 0 05 u 2 0 o o8 12 u 2

lnterlob Median Values lnterlob Median Values

Study Date 21-JAN-94 Lab Codemiddot L122

~]

0 030S0t U U lnlerlob Median Values

Nate arrows Indicate data off scale

plllllmbull LR~A D I bullu-Jmiddotymiddotmiddot nunu ~i I I V~I YI I bull 11r - - bull --

Laboratory L122 Comparison of Results Reported versus

the lnterlaboratory Median values S04-IC mg

-8 s J gt-D 3 ~

~ z g_ amp oar-----

0123 s lnterlob Median Values

IC mgI Co mg CoI D D 10 9 9 IS gt- os gtmiddotmiddotmiddot1 sD D

- OAL i 0 02 -ii 0 Median 1340C Q 2 II Value 1240

0 oo amp 0 00 02 04 0S 0IS 0 Z I IS 10lnterlob Median Values lnterlab Median Values

Study Date 21-JAN-94 Lab Code l122 Note arrows Indicate data off scale

- FiQHre 8 - (continued)

0

500

300

200

100

Mean= 083

SNOW 1990-95 500 -------------------~

gt 400

Z 300w C 200 w a U 100

0 -------------30 20 10

Ion Difference

SNOW 1990-95

Mean= 236

o 10 20 30 40 so eo 10 eo+

600---------------------

0Z 400 w

C W a U

~ ~ bull ~ ~ ~ ~ ~ 0 ~ ~ ~ bull ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~o~middot

Theoretical SC divided by Measured SC

Figure 9 Charge and conductance balances for snow samples during 1990-95 SC=speclflc conductance

164

i40 ---------------------

120

80

40

20

Mean = 101

Rain 1990-94 120 -------------------~

~ C G) er LL

~100

i er 60

LL

100

80

60

40

20

Mean= 01

-30 -25 bull20 -15 bull1C -5 C 5 10 15 20 25 ampG+

Ion Difference

Rain 1990-94

05 06 07 08 09 10 11 12 13 14 15+

Thonroti~AI ~ ~ rliuirlorl hu IAolcu bullbullorl ~ I _ _ bullbull bull _ -1111i1 7 IWlwW__WI 1iiiiirW bull

Figure 1 o Charge and conductance balances for rain

samples during 1990-94 SC=speclflc conductance

165

SNOW 1990-95 800 ---------------------

700

gt 600 () Mean= 39 C soo Ci)I 400 er G) 300 LL 200

100

0 -----------------

Cations minus Anions

Figure 11 Frequency diagram for the difference between

measured cations and anions In snow samples during 1990-95

166

0 Snow 1990-95

ti) 25 r-------~-----------~------~ C

2 Overestimated Anion u ca CD E 15

C Overestimated Catio~ a____ 0 e

CJ C1 0 ~i

=r O~ 0 0~ a

0 u

4 1 1--~---~--~U 0 Ou

ii 0 08 05 ~o

csectDO On Unmeasured Cation ured Anion

0 OL---1----J--_---iJ_J~__-L---J

I- -40 -20 0 20 40 60 80 100

Ion Difference

Rain 1990-94

0

Overestimated Anion Overestimated Cation

0 0 0

0 (b u

Q 0 0

0 0

Unmeasured Anion

0

0

70

Ion Difference

Figure 12 Relationship between charge and conductance balance in rain and snow samples

167

Snow 1992 4) 64 4)

62c Q 11 Lineen 6 0 E 58

i 56 0

54 middot-ltC 524)

5C )

48 I Q 46

48 5 52 54 56 58 6 62 64

pH Under Argon Atmosphere

Behavior of Calibration Curves at Low Concentrations

-0013 0012

cu 0011

C 0010 2) 0009 en 0008

0007C 4) 0006 E 0005 0004 en 0003 C- 0002

OOOi

0 0

Extrapolated Standard Curve Omiddotmiddotmiddotmiddotmiddot

True Callbratlon Curve ---G---middot

Standard Curve ---True value = 10

0 ------ ------ ------0 02 04 06 08 1 12 14 16 18 2 22 24 26

Concentration Figure 13 Comparison of pH measured under air and argon atmospheres

Second panel behavior of callbratlon curves below the method detection llmlt

168

80 ----------------------

40

20

Mean= 539

Snow 1990-95

gti 80

CJ C Cl) tT e

LL

~ C 80 Cl) O 40Cl)

LL 20

0 __----

0 1 2 3 4 5

48 49 50 51 52 53 54 55 58 57 58

pH

~nnw 1 aanasV 100----------------------

80

Mean= 271

8 7 8 9 10

Ammonium microEq J-i)

Figure 14 Frequency diagrams of pH and ammonium In snowplts 1990-1995

169

140

120

~100

C a 80 C 60 a

LL 40

20

0

C a

a LL

Snow 1990-95

Mean= 138

0 1 2 3 4 5 8

Chloride (microEq 1-1)

~ -bullr-1 1 nnn_tu-11 IUV I -1JUbullJ~

100

80

~ Mean= 250

80

C 40

20

0 0 1 2 3 4 5 8 7

Nitrate (microEq 1-1)

Figure 15 Frequency diagrams of chloride and nitrate In snowplts 1990-1995

170

-----

Snow 1990-95 160

140

gt 120 () c 100 G) 80 er G) 60

LL 40

20

ftV - - 7- --

0

Mean= 190

I-~-

1 2 3 4 5 8 7

Sulfate (microEq l-1)

Snow 1990-95 120

100

gta () 80 C G) 60 erG)

40 LL

20

0

Mean= 405

1 3 5 7 9 11 13 15

Sum of Base Cations (microEq l-1)

Figure 16 Frequency diagrams ofsulfate and base cations (calcium magnesium sodium and potassium) In snowplts 1990-1995

171

Snow 1990-95 140 ---------------------

120

~100 Mean= 100 5i 80 er so eLL 40

20

0 0 i 2 3 4 5 8

Acetate plus Formate (microEq l-1)

Snow 1990-95 200 ---------------------

Figure 17 Frequency diagrams of acetate plus formate and specific conductance In snowplts 1990-1995

gt 150 () C CP 100 er e LL 50

0 L_________

1 2 3

Mean= 283

4 5 8 7

172

120

100

~ () 80 C Cl) l 60 tr Cl) 40 u

20

0

Snow 1990-95

Mean= 870

0 400 800 1200 1800 2000 2400 2600 3200

Snow Water Equivalence (mm)

Snow 1990-95 300------------------~

0Z w )

C Wa U

250

200

150

100

50

Mean= 398

bD~lhlHIIHllll$llltl Snow Density (kg m-3)

Figure 18 Frequency diagrams of snow water equivalence and snow density In snowplts 1990-1995

173

40

t eo

IOz w

s

a 20 u

13 t 10

z 10 w 40 s o

ff 20

10 0

IO

t 10

z 40w o C

20 aw

10u 0

t 140 120

100z w IO s 10

a 40

u 20 0

o

t 25

z 20w 11 C

10 aw

Iu 0

11 0

12z w IC wa 4 u

1990 Mean= 384

1991 Mean= 400

1992 Mean= 365

1993 Mean= 428

Mean= 365

Mean= 464

0 100 121150 171 200 225 250 275 JOO 21 S50 375 400 421 450 475 500 121150 1175 IOO

Snow Density (kg m-a)

Figure 19 Frequency diagrams for snow density 1990-95

174

25 (gt 20

i 15 I er 10 Cl)

LL 5

0 1

pr1ng 1orms

a

5 10 20 40 60 80 100+

Storm Size (milIImeters)

Summer Storms 160

II -umiddot120 bC

Cl) I 80 er Cl)

40 II- 0

1 5 10 20 40 60 80 100+ Storm Size (mllllmeters)

Autumn Storms 30

( 25 C 20 Cl) I 15 2deg 10

5LL 0

1 5 10 20 40 60 80 100+

Storm Size (millimeters)

Figure 20 Histograms of storm size for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

175

C

- Ral n 1990-94p _ __

I lUU C

a[ 80 a

C 2

ramp

Cl) iPt a cP C

C

cn C e ~ ~ C

C gt- l cP-gcaii~ s~ 0

c 00 20 40

60 80

100 Storm Size (mllllmeters)

-I

E u Rain 1990-94 u 100 a

80

C ca ts

C C

C 0 0 cftP

u C Q

C Im

ia 0 60 80 100 Cl) C Storm Size (mllllmeters)u

Rain 1990-94 ~200

I a[ 150

a 8

E 100 c 0 E -i ID

80 100 Ctftbull1111 C Ibulla I 11 II A lllolIVI Ill Vlamp1iiiiJ IIIIIIIIIIVIVIOJ

Figure 21 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

176

Rain 1990-94 - 60 _ 50

a[ 40

g Clgt

20 0

aC 10 ()

00 C

40 60 80 Storm Size (mllllmeters)

Rain 1990-94

a

330 a

a a a

200 -- 150 er w

C a

Clgt

= z Ill

d 00 20 40 60 80 100

Storm Size (mllllmeters)

Rain 1990-94

3100

160----------------------------i 0

-e 120 a er w 3 Clgt

ati t 40 C en a

cPlb

20 40 60 80 100 Storm Size (mllllmeters)

Figure 22 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

177

100

Rain 1990-94 _1oor0----------------------~

i

--[ 3

E u ii 0

a a

a

40 60 80 100 Storm Size (millimeters)

Rain 1990-94 -- so------------------------

I

--[ 40

3 30 E I 20

i a a a

C 10 r-E 80 100

Storm Size (millimeters)

00 40 60

Rain 1990-94 70--------------------------- a60

0 50--~40 B a

E 30 a

2 20 -c 0 en 10 a a a

00 40 60 a

80 100 Storm Size (millimeters)

Figure 23 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

178

Rain 1990-94 -30

I

- 25 er LLI 20 s

e 15

i 10 D D

5 D0 =

0 00 40 60 80

Storm Size (millimeters)

Rain 1990-94 80-

D

D

60LLI S 40

D

a 5 rP

~ 20 - D

if 00 20

D

40 D

60 80

100 Storm Size (millimeters)

Rain 1990-94 100- D

I 80-

iB s a 40 D D5 t

~ 20

D

D D D

40 60 80 100 Storm Size (mllllmeters)

Figure 24 Scatterplots of the relationship between storm size and solute concentrations In non-winter precipitation 1990-1994

179

100

Spring Storms 20---------------------

gtshyg 15

10 O e 5 u

400 420 440 480 480 500 520 540 580 580 800

pH

Summer Storms 100------------------------

~ 80

ii 60 O 40 e

20o_______ 400 420 440 460 480 500 520 540 560 580 600

pH

Autumn Storms 25-----------------------

~20 ii 15 O 10

uG)

5 0----~----

400 420 440 480 480 500 520 540 580 580 800

pH

Figure 25 Histograms of pH for non-winter precipitation 1990-94 Letters Indicate significant (plt001 difference among storm types Storms with the same letter are not slgnlflcantly different

180

25

~20

i 15

gI

10 5LL 0

0

Spring storms

b

5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Summer Storms 160

gt u 120C aG) I 80 C G) 40

LL

0 0 5 10 20 40 60 80 100120140160

Ammonium (microEq 1-1)

Autumn Storms 20

gt u 15C G) I 10 C G)

5 LL

0 0 5 10 20 40 60 80 100 120 140 160

Ammonium (microEq 1-1)

Figure 26 Histograms of ammonium for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

181

Spring Storms 40

gt-c 30 C bG) l 20 C 10 u

0 0 15 20 25 30

Chloride (microEq l-1)

Summer Storms

1 5 10

120 gt u C 80G) l C 40G) u

0 0 1 5 10 15 20 25 30

Chloride (microEq l-1)

Autumn Storms

b

15 20 25 30 Chloride (microEq l-1)

Figure 27 Histograms of chloride for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

40 gt-c 30 C G) l 20 C 10 u

0 0 1 5 10

182

25

~20 i 15 2deg 10

5LL ~

0 0

~ ~amp ~ t11111y LUI Ill~

b

5 10 20 40 60 80 100 120 140 160 Nitrate (microEq 1-1)

Summer Storms 140

~ 120 c 100

aa 806- 60 a 40 ~

LL 20 0

0 5 10 20 40 60 80 100120140160 Nitrate (microEq J-1)

Autumn Storms 20

gt u 15C a 10 CT a ~ 5

LL 0

0 20 40 60 80 100 120 140 160

Niiraie (microEq J-1)

Figure 28 Histograms of nitrate for non-winter precipitation 1990-94 Letters Indicate significant plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

183

b

Spring Storms 25------------------~

~20 b 15

2deg 10 at 5

0 _____ 0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Summer Storms 140~--------------~

~ 120 c 100 ~ ~ a6- 60 e 40

U 20O-------------0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq l-1)

Autumn Storms 25~----------------

~20 15 b tT 10 eu 5

o____-0 5 10 20 40 60 80 100 120 140 160

Sulfate (microEq 1-1)

Figure 29 Histograms of sulfate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) difference among storm types Storms with the same letter are not slgnlflcantly different

184

Spring Storms 20--------------------

gta g 15 bG) 10

5 LL

o_____-0 5 10 20 40 60 80 100120140160200

120 ~ 100 c 80G) 60 0 G) 40 LL 20

0

Sum of Base Cations (microEq l-1)

Summer Storms

0 5 10 20 40 60 80 100120140160200 Sum of Base Cations (microEq l-1)

Autumn Storms

0 5 10 20 40 60 80 100120140160200 ~ bullbull-- -a n--- -abull--- 1--~- 1t~UIII UI 0iUn iILIUn ucq JfbullJ

Figure 30 Histograms of the sum of base cations (calclum magnesium sodium potassium) for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not slgnlflcantly different

185

25

( 20

m15 C 10 G) 5LL

0

Spring Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Summer Storms 100

Iiu- 80 C G) 60 C 40 G) 20

0

35 ( 30 C 25 a 20 6-15 10 LL 5

0

a

0 5 10 20 40 60 80 100120140160

Acetate plus Formate (microEq l-1)

Autumn Storms

b

0 5 10 20 40 60 80 100 120 140 160

Acetate plus Formate (microEq J-1)

Figure 31 Histograms of the sum acetate and formate for non-winter precipitation 1990-94 Letters Indicate significant (plt001) differences among storm types Storms with the same letter are not significantly different

186

Rain 1990=94 1100r--------------------

B 80

fC 60 a

a40

20 40

a

60

rP a

8 a

~ 80 100 lGI

Hydrogen Ion (microEq 1-1) y =049(x) + 62 r2 =050

-i Rain 1990-94 ~ 200r-----------------------

a a

er a ai 150

E 100 I middot2 50 0 Ea 00 20 40 60 80 100

Hydrogen Ion (microEq J-1)

y = 064(x) + 210 r2 = 011

Rain 1990-94 200r---------------------~

Nitrate (microEq l-1)

y = 085x) + 543 r2 = 066

a[ 150 3i E 100

1 50 E

10050 150 200

Figure 32 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

187

Rain 1990-94 - 180r--------------------~ ~

B 135 3 90

J-Cl)

5 u 100

45

a

40 60

80 Hydrogen Ion (microEq 11)

y = 061 (x) + 126 r2 = 021

- Rain 1990-94 i 100e---------------------- ~

er so w

3 40

20

20 40

60 E

middotcs 0

~ 60 80 100 Hydrogen Ion (microEq 11)

y = 014(x) + 139 r2 = 001

- Rain 1990-94 so----------------------- er 40 0 deg w

3 30 8

deg

E 20 middot-

0S 10

en oo 20 40 60 80 100 Hydrogen Ion (microEq J-1)

y = 0037(x) + 586 r2 = 0004

Figure 33 Scatterplots of the relatlonshlp among solute concentrations In non-winter precipitation The best-flt linear regression Is also shown

188

0

a

0

00 20 30 40 50 60

Rain 1990-94 r-2oor--------------------- er 150 w 3 100

la

50 = Z 10

Chloride microEq e1) y =361 (x + 127 r2 =060

Rain 1990-94

10 20 30 40 Chloride microEq l-1)

50 60

y =270(x + 924 r2 =062

- Rain 1990-94 - 60 $so 3 40 E 30 20 middot- 10 -g -UJ uo

10---------------------

0

rP a

10 20 30 40 50 60 Chloride microEq l-1)

y =101 (x + 121 r2 =053

Figure 34 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

189

10050 150

80

40

0

0

0

10050 150 200

- i Rain 1990-94 _ 200--------------------~ er ~ 150

E 100 = i 50 0 E

-i 200

y =085(x) +543 r2 =066

Rain 1990-94

Nitrate (microEq J-1)

~ 160------------------------- a[ 120

S

jCD

u = Nitrate (microEq J-1)

y = 068(x) + 180 r2 = 086

- Rain 1990-94 ~ 80r--------------=----~---- 0

a[ 60 0

S 40 CD-ca 20e

u uo 20 40 60 80 100

y =100(x) + 117 r2 =077

0

Ii 0

Acetate (microEq J-1)

Figure 35 Scatterplots of the relationship among solute concentrations In non-winter precipitation The best-flt llnear regression Is also shown

190

Regional Snow Water Equivalence Elevation gt 2500 meters

e 2 CD 150 u i 1 i 100E

ii 10

~ C u

--

0 ____________1__________LJ

3700-3ro04000-3900 H00-3130 3130-3100 3100-3700

LATITUDE ZONE

Regional Hydrogen Loading llauatln ~ann abullabullbull --1vwMbull VII ~ AoVVV IIIVloVI

-cdi 10

~ g40 ---------

-------- ------ -

---- CCI -9 30

[3---------shyi en bullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot - e 20 gt-c

10 ______________________________----

4000-3900 H00-3130 3130-3100 3100-3700 3700-3ro0

LATITUDE ZONE

Figure 36 Regional distribution of SWE and hydrogen loading In the Sierra Nevada above 2500 m elevation 1990-1993

191

ID )I

_1_ff~- -~-~shyV

Fiegionai Ammonium Loading Elevatlon gt 2500 meters

-_-El_ ----- middot-

middot- -------0 middotmiddot- II- - - - - - - - - _a-o - - --

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddot ~~~~~~-~~-~-~-_--middot -middotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbull 10

C __ J

4000-3800 3900-3130 3130-3100 3100-3700 3700-3ro0 LATITUDE ZONE

n--bull---1 -11bullbull-bull- I ---11-shynVIJIVIHII 1i111111bull 1ucnu11v

Elevatlon gt 2500 meters

30

I 1121

If20

J 11

i 10

I

o________________________________~ 4000-3800 3900-3130 3130-3100

LATITUDE ZONE 3100-3700 3700-3ro0

Figure 37 Regional distribution ot ammonium and nitrate loading In the Sierra Nevada above 2500 m elevation 1990-1993

192

----

A1aglnnAI ~hlnrlttA I nbullttlng

Elevatlon gt 2500 meters

_ g

middotmiddotmiddotmiddot-bullbullbullG ----------------~ 10 L~-- c () Ii

4deg0049deg00

LATITUDE ZONE

Regional Sulfate Loading Eevaton gt 2500 meters

0 LL---------------------------------

tff -~-~shyI

0 _________--______________________

4ClOD-SllOO 3100-3130 3130-3100 3100-3700 3700-SlOO

L4TITU01 ZONI

Figure 38 Regional distribution of chloride and sulfate loading In the Sierra Nevada above 2500 m elevatlon 1990-1993

-311 -di C 30 [ -25 Cl C i5 20 CCI middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotG _ -_ 9 15 middot-

tff -~vii I

193

rt--middot---1 ~--- -ampI-- I __ _ __nv111u11a1 gan wauu11 LUau111y

Elevation gt 2500 meters

-d 70 c

ldeg g 10

=ti

9Ill

S 30

i () CII I 10 m

40

20 middotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotmiddotbullmiddotmiddotmiddotmiddot

o______________________________

40w-3~ s-aomiddots-ucr sUOmiddotsrucr s100-11roo LATITUDE ZONE

Regional Organic Acid Loading Elevationgt 2500 meters

-dr C 20

I[ cn 5 15

10

~ C IIll ~ 0

_1_ff~-tF V

0 _______________________________

4000-3800 31deg00-3130 3130-3100 3100-3700 3700-SlOO

LATITUDE ZONE

Figure 39 Regional distribution of base cation and organic anion loading In the Sierra Nevada above 2500 m elevation 1990-1993

194

- Vinier Loading 1990-95 i 80 -------------------------- ~ 0

0Cl 60

01 5 40

l - 20

I GI

~ 00 500 1000 1500 2000 2500 3000 3500 Snow Water Equlvalence (mm)

y =0019(x) bull 015 r2 =083

i Winter Loading 1990-95 ~ 200----------------------------

0B a-150

01 C

j 100

9 C 50

e G

ts 00 500 1000 1500 2000 2500 3000 3500 ~ Snow Water Equlvalence (mm) y = 0042(x) middot 308 r2 = 081

500 lUUU lDUU 2000 2500

a

3000 3500 Snow Water Equlvalence (mm)

y = 0011 (x) + 039 r2 = 073

Figure 40 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

195

-bull Winter Loading 1990-95 c 70-------------------------

a

a a

er a 60 i 50

e 40 ca 30 _9 20

ig 10L~~~~~~__--~-~~-----------_J0o 500 1000 1500 2000 2500 3000 3500 cCJ Snow Water Equivalence (mm) y = 0013(x) + 034 r2 = 070

-- Winter Loading 1990-95 c 25------------------------- er a

l1J

----~ g 15 aa

bullL_-c-~a~~ C-~_o~~a_-a__l---~~~--7 m _ a 1i uo------=-5-oo-------ee---______1-soo__e---2-oo-o---2-so-o---3-oo-o----3soo ~ Snow Water Equlvalence (mm) y = 00025(x) + 204 r2 = 018

- --___W_in_te_r_Lo_a_d_i_n_g-1_9_9_0_-9_5_____~ 100

a[ 80

i 60C

] 40

20

Cl)

500 1000 1500 2000 2500 3000 3500= z Snow Water Equivalence (mm)

Figure 41 Scatterplots of the relationship between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

196

-bull Winter Loading 1990-95 ~16r-------------------------~ICI

0l14 en 12 5 10i 8 9 6 sect 4

1 25i 00-----=---5-00____1_00_0___1~5_oo---2-oo-o---2-5-oo---3-oo-o---3-500

0 0

0 0

0 0 a 0

la amp Snow Water Equlvalence (mm) y =00030(x) + 189 r2 =050

~ Winter Loading 1990-95 - 120----------------------------

~ 100 0

f 80 1 60 9sect 40

C 20l-~~~ra0 aJt

E O O 500 1000 1500 2000 2500 3000 3500Ecs Snow Water Equlvalence (mm) y = 0020(x) + 507 r2 = 059

i -------W_i_nt_e_r_L_o_a_d1_middotn_g_1_9_9_0_-9_5________70

0

ICI 60 I 50 en middot= 40i 30 9 20 sect 10

0

00

0

0 0

D

i 00____5_00____1_00_0___1_5_00___2_00_0___2_5_00___3_00_0___3~500 0

Snow Water Equlvalence (mm) y =0013(x) + 374 r1 =050

Figure 42 Scatterplots of the relatlonshlp between SWE and solute loadlng In winter precipitation 1990-1995 The best-flt llnear regression Is shown

197

C

C

Winter Loading 1990-95 C

C C

a C

2500

C

C C

3000 3500

Figure 43 Scatterplots of the relatlonshlp between SWE and solute loading In winter precipitation 1990-1995 The best-flt linear regression Is shown

198

Page 16: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 17: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 18: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 19: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 20: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 21: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 22: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 23: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 24: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 25: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 26: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 27: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 28: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 29: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 30: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 31: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 32: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 33: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 34: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 35: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 36: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 37: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 38: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 39: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 40: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 41: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 42: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 43: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 44: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 45: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 46: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 47: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 48: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 49: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 50: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 51: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 52: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 53: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 54: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 55: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 56: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 57: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 58: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 59: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 60: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 61: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 62: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 63: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 64: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 65: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 66: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 67: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 68: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 69: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 70: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 71: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 72: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 73: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 74: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 75: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 76: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 77: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 78: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 79: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 80: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 81: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 82: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 83: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 84: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 85: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 86: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 87: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 88: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 89: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 90: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 91: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 92: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 93: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 94: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 95: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 96: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 97: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 98: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 99: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 100: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 101: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 102: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 103: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 104: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 105: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 106: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 107: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 108: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 109: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 110: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 111: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 112: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 113: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 114: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 115: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 116: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 117: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 118: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 119: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 120: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 121: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 122: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 123: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 124: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 125: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 126: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 127: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 128: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 129: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows
Page 130: Report: 1997-01-00 (Part B) Monitoring of Wet Deposition in … · 2020. 8. 24. · Alpine Meadows Angora Lake Crystal Lake Eastern Brook Lake Emerald Lake Kaiser Pass Kirkwood Meadows