21
1 “SolarBullet” Report of SSV: Part 1 Mei Lang Xiong Toran Chhantyal Sudip Khadka Vivek Varma Anand Swaroop Elnaz Ghavanlou 2 nd Bac. Group 223EM

Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 1  

 

 

 

 

 

“SolarBullet”  

 

Report  of  SSV:  Part  1    

 

 

 

 

 

                  Mei  Lang  Xiong    

Toran  Chhantyal  

Sudip  Khadka  

Vivek  Varma  

Anand  Swaroop  

Elnaz  Ghavanlou  

                         

                  2nd  Bac.  Group  223EM  

Page 2: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 2  

 

Table  of  Content  

INTRODUCTION   3  

DETERMINING  SOLAR  PANEL  CHARACTERISTIC   3  

DIODE  FACTOR   3  PROCEDURE   4  U-­‐I  CURVE   5  U-­‐P  CURVE   5  ERROR  ANALYSIS   7  

OPTIMAL  MASS   8  

CALCULATION  MASS   8  MAXIMAL  HEIGHT   9  

OPTIMAL  GEAR  RATIO   10  

SIMULATION  SSV  FOR  10  DIFFERENT  GEAR  RATIOS  &  10  DIFFERENT  MASSES  MATLAB   10  DISPLACEMENT  CURVE  &  SPEED  CURVE   10  MAXIMAL  HEIGHT   12  

THE  GRAPH  SHOWS  THE  DIFFERENT  HEIGHT  THAT  CAN  BE  ACHIEVED  BY  THE  BALL  WITH  RESPECT  TO  DIFFERENT  MASS  AND  GEAR  RATIO  COMBINATION  OF  THE  SSV.   13  

INTERSECTION  MOTOR  CHARACTERISTIS  AND  NONLINEAR  SOLAR  PANEL   14  

BISECTION  METHOD  TO  FIND  THE  INTERSECTION  OF  MOTOR  AND  SOLAR  CHARATERISTICS   15  TIME  INTERVAL  (T  =  0,1S)  -­‐  OPTIMAL  GEAR  RATIO(GR):  11   15  FIRST  SECOND  DISPLACEMENT  CURVE   16  FIRST  SECOND  VELOCITY  CURVE   17  FINDING  ZERO  USING  BISECTION  METHOD   18  

CASE  SIMULINK   19  

SIMULATION  SOLAR  PANEL  CONNECTED  TO  A  RESISTANCE  BETWEEN  10  Ω  AND  100  Ω   19  COMBINATION  MODEL  OF  YOUR  SOLAR  PANEL  WITH  THE  MODEL  OF  SSV  AND  SIMULATION  RACE   21    

   

   

Page 3: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 3  

 

Introduction    

Solar  panels  consume  light  energy,  which  is  delivered  by  the  sun  and  is  transformed  into  electrical   energy.   Solar   panels   are   applied   in   many   electronic   devices,   including   powering  individual  gadgets  and  vehicles.    

The   solar   panel   consists   of   solar   cells   and   is   also   defined   as   photovoltaic   cell.   Every  individual  photovoltaic  cell  participates  in  conversion  of  sunlight  into  electricity.  Arrangement  of  every   individual   cells   in  a  group   is   called  a   “panel”  and  collection  of   two  or  more  panels   is  called  an  array.  Another   important  component  of   the  small   solar  vehicle   is   the  DC  Motor.  The  basic   function   of   a   DC   motor   is   to   convert   electrical   energy   into   mechanical   work.   The  mechanical  energy  generated  by  the  DC  motor  is  transferred  to  wheels  through  gears.    In  order   to  build  and  design  our  vehicle  we   first  need  to  determine  designing   factors  and  this  will  be  discussed  in  part  I.  

Determining  solar  panel  characteristic          

Diode  Factor    

To   determine   the   diode   factor   of   the   solar   panel,   we   measured   the   voltage   and   the  current  with  varying  resistance  at  room  temperature.    Therefore  we  obtain  the  diode  factor  m  for  each  resistance  by  this  formula:    

 

 

   

Page 4: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 4  

 

Resistance  (Ohm)  

Current  (A)  

Voltage  (V)  

Diode  factor  (m)  

Power  (watt)  

Current  from  motor  

Power  (m)  

133,71   0,07   9,36   1,2986   0,66   0,0779   0,73  116,63   0,08   9,33   1,2962   0,75   0,0998   0,93  103,44   0,09   9,31   1,2953   0,84   0,1138   1,06  92,80   0,10   9,28   1,2931   0,93   0,1338   1,24  84,09   0,11   9,25   1,2909   1,02   0,1527   1,41  70,92   0,13   9,22   1,2908   1,20   0,1705   1,57  65,71   0,14   9,20   1,2901   1,29   0,1819   1,67  53,88   0,17   9,16   1,2914   1,56   0,2034   1,86  45,60   0,20   9,12   1,2934   1,82   0,2233   2,04  41,23   0,22   9,07   1,2919   2,00   0,2462   2,23  36,08   0,25   9,02   1,2941   2,26   0,2671   2,41  29,70   0,30   8,91   1,2970   2,67   0,3067   2,73  23,54   0,37   8,71   1,3064   3,22   0,3608   3,14  20,76   0,41   8,51   1,3130   3,49   0,3980   3,39  18,45   0,42   7,75   1,2076   3,26   0,4602   3,57  17,90   0,42   7,52   1,1718   3,16   0,4671   3,51  15,79   0,42   6,63   1,0331   2,78   0,4776   3,17  1,78   0,45   0,80   0,1304   0,36   0,4800   0,38  AVG       1,2047      

3,57    

 

Procedure    

We  started  adjusting  the  current  and  the  resistance  on  the  solar  panel.  Due  to  that  we  could  measure   the   corresponding   voltages.   By   applying   then   the   formula   above   we   let   excel  calculate  the  diode  factor  m.  The  adjusted  current  with  its  corresponding  voltage  gives  us  then  the  power  consumed.  On  the  other  hand,  if  we  take  the  current  calculated  from  the  diode  factor  equation  and  substitute   the  diode   factor  we  have,  we  obtain   the  current   from  the  motor.  This  resulting   current  mulitplied   by   the  measured   voltage   give   us   a   new   power   consumed   by   the  motor.  

 

Th  highlighted  data   corresponds   to   the  maximum  power  we   can  obtain   from   the   solar   panel.  This  power  is  the  ideal  power  meaning  that  in  reality  we  cannot  easily  obtain  this.  

   

Page 5: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 5  

 

U-­‐I  curve  

 

Figure  1  

The  number  of  rotations  decreases  when  we  take  the  results  from  the  calculated  m  factor.  

 

U-­‐P  curve  

 Figure  2  

   

0  

0,1  

0,2  

0,3  

0,4  

0,5  

0,6  

0,7  

0   2   4   6   8   10  

curren

t  

Voltage  

Current  vs  voltage  

I  vs  U  

I  vs  U  from  m  

motor  rpm  

Motor  rpm(frm  m)  

motor  rpm(n=0)  

n=0  n=7118.272    

n=8006.665  

0  

0,5  

1  

1,5  

2  

2,5  

3  

3,5  

4  

0   1   2   3   4   5   6   7   8   9   10  

Power  

Voltage  

Power  vs  Voltage  

Power  

Power(m)  

Page 6: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 6  

 

Determination  of  n  (rpm):          

 𝑈 = 𝑖 𝑅 +𝑛

1120      

with     Resistance  R  =  3.32  Voltage  U  =  8.51  Current  i  =  0.41  n  =  defines  number  of  revolutions  per  second  by  the  motor  

   

Page 7: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 7  

 

Error  analysis    Mean   Value   of  m   (we   left   out   the   last  measurement,   because   this   causes   a   big   change   in   the  average)  

 𝑋1 + 𝑋2 +⋯ . .𝑋𝑛

𝑛=  1.2986 + 1.2962 + 1.2953 + 1.2931 +⋯+ 1.0331

17= 1.2047  

 

Standard  Deviation  =  [!!

(𝑥! − 𝑥!"#$)!]!!    

D₁  =  1.2986  -­‐  1.2047  =  0.0939  

D₂  =  1.2962  -­‐  1.2047  =  0.0915  

D₃  =  1.2953  -­‐  1.2047  =  0.0906    

D₄  =  1,2931  -­‐  1.2047  =  0.0884  

D₅  =  1,2909  -­‐  1.2047    =  0.0862  

D6  =  1,2908  -­‐  1.2047    =  0.0861  

D7  =  1,2901  -­‐  1.2047      =  0.0854  

D8  =  1,2914  -­‐  1.2047      =  0.0867  

D9  =  1,2934  -­‐  1.2047      =  0.0887  

D10  =  1,2919  -­‐  1.2047    =  0.0872  

D11  =  1,2941  -­‐  1.2047    =  0.0894  

D12  =  1,2970  -­‐  1.2047    =  0.0923  

D13  =  1,3064  -­‐  1.2047    =  0.1017  

D14  =  1,3130  -­‐  1.2047    =  0.1083  

D15  =  1,2076  -­‐  1.2047    =  0.0029  

D16  =  1,1718  -­‐  1.2047    =    -­‐0.0329  

D17  =  1,0331  -­‐  1.2047    =    -­‐0.1716                                                                                                                                                                                                                                                    

!.!"#" ²!  !.!"#$ !! !.!"!# !! !.!""# !!  !.!"#$ ²! !.!"#$ ²!  !.!"#$ ²!  !.!"#$ ²

! !.!""# ²! !.!"#$ ²! !.!"#$ ²!  !.!"#$ ²! !.!"!# ²! !.!"#$ ²! !.!!"# ²! !!.!"#$ ²! !!.!"!# ²!"

12

=  0.0931  m  factor  =  1,2047  ±  0.0931  

Page 8: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 8  

 

Optimal  Mass  

Calculation  mass    

Power  supplied  to  wheel  is   P  =  𝜏w(𝜔w)  

=  F(rw)(𝜔w)  

            =  F(Vw)  

              =  M(a)(vw)     with  M  =  mass  of  the  car  

            =  M !"!"

(vw)  

 P  =  M !"!"

!"!"

 (vw)  

Considering  Vw  =  V,  we  integrate  the  equation  on  both  sides    

              𝑝!! 𝑑𝑠  =             𝑀!! 𝑣!dv  

                           P(s)  =   M !!

!!

!

 

                                       v  =    3P(!)!"  !!  

                                           =  vin,c     (*)  

Based  on  the  conservation  of  energy  and  conservation  of  momentum  we  obtain  that  

Vf,b  =    !"!(!!",!)Mc!!!   (**)     with  Vf,b  =  final  velocity  of  ball  

We  substitute  *  in  this  equation    

                                               =    !"!

!!!Mb      !"(!)!"

 !!  

       

                                                 =  !  !!"!! !  

!!

!"!𝑀𝑏  

To  optimize  to  get  the  ball  as  high  as  possible,  we  need  a  maximum  velocity.  That  velocity  can  be  determined  by  derivating  the  relation  between  the  velocity  of  the  car  and  the  velocity  of  the  ball.  

                           dvf,!      !"!

 =      2 3P s    !!!!! !

!!"!!"

(!!!!!)!    =  0  

Page 9: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 9  

 

                                                     =>        !!Mc(Mc+Mb)  =  Mc  

                                                     =>        2(Mc+Mb)      =  3Mc  

                                                     =>        Mc  =  2Mb  

 

Maximal  height      We   can   determine   the   maximal   height   with   potential   and   kenetic   energy   relation.  Therefore:    KEinitial  +  PEinitial  =  KEfinal  +  PEfinal      Mboule ∗ Vi!

2 + MBoule ∗ g ∗ height =  Mboule ∗ Vf !

2 + MBoule ∗ g ∗ height    As  the  initial  height  and  Vf(final  velocity)  are  equal  to  zero,  the  above  equation  become  :      Vi!

2 = g ∗ height    

ℎ𝑒𝑖𝑔ℎ𝑡 =  Vi!

g ∗ 2  

   We  assume  that  no  energy  is  lost  during  the  collision,  this  means  that  the  ball  will  reach  a  lower  height  than  expected.  Also  we  don’t  consider  that  we  will  have  an  issue  with  the  friction   force.  That  means   that   the  car  will  be  slower  at   the  end,  before   it   touches   the  ball.  This  also  causes  a  less  high  position  for  the  ball.    

Page 10: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 10  

 

Optimal  Gear  Ratio    

Simulation  SSV  for  10  different  gear  ratios  &  10  different  masses  MATLAB  

M  (kg)\G  ratio   2   3   4   5   6   7   8   9   10   11   12   13  0.735   1.717   2.345   2.837   3.256   3.626   3.952   4.190   4.227   4.076   3.831   3.567   3.317  1.100   1.361   2.092   2.626   3.069   3.456   3.802   4.111   4.352   4.438   4.351   4.154   3.915  1.300   -­‐   1.918   2.475   2.927   3.319   3.668   3.984   4.258   4.433   4.446   4.318   4.114  1.410   -­‐   1.817   2.387   2.845   3.239   3.590   3.907   4.189   4.397   4.458   4.372   4.193  1.420   -­‐   1.808   2.379   2.838   3.232   3.582   3.899   4.182   4.392   4.458   4.375   4.199  1.430   -­‐   1.798   2.371   2.830   3.224   3.575   3.892   4.175   4.387   4.458   4.379   4.205  1.440   -­‐   1.789   2.363   2.822   3.217   3.567   3.885   4.168   4.382   4.458   4.383   4.211  1.470   -­‐   1.761   2.339   2.800   3.195   3.546   3.864   4.148   4.368   4.456   4.393   4.227  1.480   -­‐   1.751   2.330   2.792   3.187   3.538   3.856   4.141   4.363   4.454   4.395   4.233  1.830   -­‐   -­‐   2.041   2.522   2.926   3.280   3.599   3.889   4.147   4.337   4.401   4.337  

Table  1  

 The  best  gear  ratio   is  11.  This   is  because  at   that   instant   the  speed   is  maximal  namely  4.458.  This  corresponds  then  with  a  mass  of  1.430  kg.    

Displacement  curve  &  Speed  curve  

 Figure  3:  Gear  ratio  11  &  1.42kg  

 Figure  4:  Gear  ratio  11  &  1.43kg  

Page 11: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 11  

 

 Figure  5:  Gear  ratio  11  &  1.44kg  

 Figure  6:  Gear  ratio  11  &  1.47kg  

 Figure  7:  Gear  ratio  11  &  1.48kg  

   

Page 12: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 12  

 

Maximal  height  

M  (kg)\G  ratio   2   3   4   5   6   7   8   9   10   11   12   13  

0.735  0.150184  

0.280269  

0.410354  

0.540405  

0.670051  

0.796115  

0.894934  

0.910852  

0.846627  

0.748141  

0.648334  

0.560683  

1.1  0.094419  

0.222987  

0.351543  

0.480068  

0.608635  

0.736669  

0.861328  

0.96518  

1.003998  

0.964777  

0.879546  

0.781176  

1.3   -­‐  0.187502  

0.312148  

0.436804  

0.561394  

0.685759  

0.808894  

0.923894  

1.001622  

1.007288  

0.950295  

0.862559  

1.41   -­‐  0.168288  

0.290434  

0.412554  

0.534732  

0.656716  

0.777928  

0.894166  

0.985197  

1.012801  

0.974093  

0.895885  

1.42   -­‐  0.166564  

0.288469  

0.410375  

0.532265  

0.654001  

0.775007  

0.891452  

0.983212  

1.012815  

0.975772  

0.898616  

1.43   -­‐  0.164841  

0.286528  

0.40822  

0.52981  

0.651315  

0.772117  

0.888588  

0.981043  

1.012823  

0.977415  

0.90131  

1.44   -­‐  0.16313  

0.284569   0.406  

0.527382  

0.64866  

0.769257  

0.885603  

0.978872  

1.012792  

0.979024  

0.903853  

1.47   -­‐  0.158002  

0.278736  

0.399478  

0.520173  

0.640805  

0.760857  

0.87684  

0.972476  

1.011831  

0.983527  

0.91087  

1.48   -­‐  0.156305  

0.276791  

0.397286  

0.517727  

0.6381  

0.757915  

0.873978  

0.970369  

1.011161  

0.98458  

0.91312  

1.83   -­‐   -­‐  0.212233  

0.32426  

0.43626  

0.548281  

0.660025  

0.770858  

0.876389  

0.958574  

0.98715  

0.958914  

Table  2  

 

From  the  table  above,  obtained  from  the  Matlab  simulation,  we  get  the  maximum  height  the  boule  can  reach  is  1.012823  m.  These  values  were  calculated  using  the  potential  and  kinetic  energy  equation  describe  in  the  above  analytic  part.  But  the  value  was  calculated  ignoring  the  energy  loss  in  the  collision  and  other  losses,  we  expect,  in  real  experiment  to  get  a  lower  value  than  this.  

   

Page 13: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 13  

 

The  table  above  will  also  be  illustrated  with  the  graph  below.  

 

 

The   graph   shows   the   different   height   that   can   be   achieved   by   the   ball   with  respect  to  different  mass  and  gear  ratio  combination  of  the  SSV.      

 

 

   

Page 14: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 14  

 

Intersection  motor  characteristis  and  nonlinear  solar  panel    

𝑦 =  12  +  sin(

!!)*𝑒sin  

𝑥3  

x   y    1.0000   1.1650    2.0000   2.0617    3.0000   2.8140    4.0000   2.9033    5.0000   2.1194    6.0000   0.8503   Average  7.0000   -­‐0.2229   6.5000  6.5000   0.2525   6.7500  6.7500   -­‐0.0036   6.6250  6.6250   0.1201   6.6875  6.6875   0.0572   6.7188  6.7188   0.0265   6.7344  6.7344   0.0114   6.7422  6.7422   0.0039   6.7461  6.7461   0.0001   6.7480  6.7480   -­‐0.0017   6.7471  6.7471   -­‐0.0008   6.7466  6.7466   -­‐0.0003   6.7463  6.7463   -­‐0.0001   6.7462  6.7462   0.0000    Table  3  

 

 

Figure  8  

-­‐0,5000  0,0000  0,5000  1,0000  1,5000  2,0000  2,5000  3,0000  3,5000  

0,0000   1,0000   2,0000   3,0000   4,0000   5,0000   6,0000   7,0000   8,0000  

y  

x  

y(x)  

Page 15: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 15  

 

Bisection  method  to  find  the  intersection  of  motor  and  solar  charateristics    

Solar  Car  parameters:  

M  =  1.43  kg  

α  =  0.1253  rad  

g  =  9.81  N/kg  Crr  =  0.012  Ce*Ф =  8.9285*10-­‐4  V/rpm  r  =  0.04  m  Cw  =  0.5  A  =  0.02  m2  𝜌(air)  =  1.293  kg/m3  (density)      

𝐼 𝑡 =  𝐼sc−𝑒! ! !! ! ∗ !!

!∗!∗!!!!

 

   Isc  =  0.48  A;  Is  =  10e-­‐8  A/m2  m  =  1.1  kg  N  =  16;    Thermal  Voltage  Ur  =  0.0257  V;  Ra  =  3.32  Ω        For  the  motor:    E(t)  =  Ke  ×  ω  =  CE.Ф  ×  60  ×  v(t)  x  !"#$  !"#$%  

!"!  

   

TIME  INTERVAL  (t  =  0,1s)  -­‐  Optimal  Gear  Ratio(GR):  11    Initial  conditions,  at  t  =  0  s:  

 s(0)  =  0;  v(0)  =  0;  I(0)  =  0.48  A    then,  

E(0)=  CE.Ф  ×  60  ×  v(0)  ×  !"#$  !"#$%!!"

 =  0    

a(0)  =  g  ×  Crr  +  60  x  Ce*𝐺𝑒𝑎𝑟  𝑟𝑎𝑡𝑖𝑜2𝜋𝑟

 x   !!  =  0.069m/s2  

 

   

Page 16: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 16  

 

 

Table  4  

 

First  second  displacement  curve  

 

Figure  9:  1st  second  displacement  curve  

   

0  

0,5  

1  

1,5  

2  

2,5  

0   0,2   0,4   0,6   0,8   1   1,2  

Displacemen

t[m]  

fme(s)  

Displacement  Vs  Time  

Time(s)          I(t)[A]                        s(t)[m]          v(t)[m/s]                                      E(t)[V]   a(t)[m/s2]  0   0.48   0   0   0   6.69E-­‐01  0.1   0.479995422   3.34E-­‐03   6.69E-­‐02   0.156792572   0.668959256  0.2   0.479993134   2.01E-­‐02   1.34E-­‐01   0.313578644   0.66889481  0.3   0.479990845   6.36E-­‐02   2.01E-­‐01   0.47034961   0.66878991  0.4   0.479987183   1.47E-­‐01   2.68E-­‐01   0.627095992   0.668642329  0.5   0.479981689   2.84E-­‐01   3.34E-­‐01   0.783807784   0.668451348  0.6   0.479972534   4.88E-­‐01   4.01E-­‐01   0.940474815   0.668214011  0.7   0.479961548   7.73E-­‐01   4.68E-­‐01   1.097086221   0.667933371  0.8   0.479945068   1.15E+00   5.35E-­‐01   1.253631852   0.667603489  0.9   0.479923096   1.64E+00   6.02E-­‐01   1.410100169   0.667224446  1   0.479891968   2.24E+00   6.68E-­‐01   1.566479647   0.666790327        

   

Page 17: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 17  

 

First  second  velocity  curve  

 

Figure  10:  1st  second  velocity  curve  

 

During  each  time  interval  of  0.1s  during  the  whole  process  of  1  second,  we  have  assumed  that  the  acceleration  remains  constant  for  that  interval.    The  influence  of  this  can  be  clearly  seen   in  our  graph.  Hence,   the  position  of   the  SSV   increases  exponentially  with   time  while  velocity  increases  linearly  with  time.  

   

0  

0,1  

0,2  

0,3  

0,4  

0,5  

0,6  

0,7  

0,8  

0   0,2   0,4   0,6   0,8   1   1,2  

velocity[m

/s]  

fme(s)  

Velocity  vs  fme  

Page 18: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 18  

 

Example  Calculation  for  Table1:  For  the  final  part  i.e  at  1  second.  

T   E(t)   I(t)                                f(I(t))  1.0000000000   1.5664796470   0.0000000000   -­‐0.4799969081           0.48   0.0001080799           0.24   -­‐0.2399815177           0.36   -­‐0.1199552644           0.42   -­‐0.0599304558           0.45   -­‐0.0299133008           0.465   -­‐0.0149031984           0.4725   -­‐0.0073977144           0.47625   -­‐0.0036448571           0.478125   -­‐0.0017683987           0.4790625   -­‐0.0008301620           0.47953125   -­‐0.0003610417           0.479765625   -­‐0.0001264811           0.479882813   -­‐0.0000092006           0.479941406   0.0000494396           0.479912109   0.0000201195           0.479897461   0.0000054594           0.479890137   -­‐0.0000018706           0.479893799   0.0000017944           0.479891968   -­‐0.0000000381  Table  5  

 

Finding  zero  using  bisection  method    

Finding  the  zero  of  the  function  F(I(t))  which  is  given  by  

 

 We   take   upto   6   decimal   places   to   increase   our   approximation.   For   the   last   value   of   I   i.e  I=0.479891968  A  in  table  2,  we  get  corresponding  value  of  f(I(t))  to  be  0.  Therefore,we  take  this  value  of  I  for  table  1.  

   

Page 19: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 19  

 

Case  Simulink  

Simulation  solar  panel  connected  to  a  resistance  between  10  Ω  and  100  Ω  With  simulation  of  behavior  of  solar  panel  connected  to  a  resistance  between  10  ohm  and  100   ohm   with   an   increment   in   5   ohm   in   Simulink,   we   have   drawn   the   following   graph

 

Figure  11:  voltage  VS  current  

 

 

Figure  1  

0  

0,1  

0,2  

0,3  

0,4  

0,5  

0,6  

0,7  

0   2   4   6   8   10  

curren

t  

Voltage  

Current  vs  voltage  

I  vs  U  

I  vs  U  from  m  

motor  rpm  

Motor  rpm(frm  m)  

motor  rpm(n=0)  

n=0  n=7118.272    

n=8006.665  

Page 20: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 20  

 

Comparing   voltage   versus   current   graph   from   Simulink   to   the   one   from   experimental  observation,  we  can  conclude  that  our  experimental  values  more  or   less  coincide  with  the  Simulink  values  we  get.  As  we  can  see  from  the  graph  the  open  circuit  voltage  for  both  cases  happens  to  be  about  9.45V.  

 

Figure  12:  voltage  VS  power  

 

 

Figure  2  

0  

0,5  

1  

1,5  

2  

2,5  

3  

3,5  

4  

0   1   2   3   4   5   6   7   8   9   10  

Power  

Voltage  

Power  vs  Voltage  

Power  

Power(m)  

Page 21: Report of SSV part 1...7!! Erroranalysis’! Mean!Value!of!m!(we!leftoutthe!lastmeasurement,!because!this!causes!abigchange!in!the! average)!!!1+!2+⋯..!"! =! 1.2986+1.2962+1.2953+1.2931

 21  

 

Comparing  two  graphs  of  power  versus  voltage,  we  can  see  that  the  maximum  power  from  the  solar  panel   is   not   the   same   for   Simulink   and   experimental   observation.   For   experimental   we   have  maximum  power  of  about  3.5  watt  whereas   for  Simulink  the  value   is  approximately  4  watt.  So  we  have  deviation  of  almost  0.5  watt  between  the  two  cases.  

 

Combination   model   of   your   solar   panel   with   the   model   of   SSV   and  simulation  race    

We  calculated  the  optimal  mass  and  optimal  gear  ratio  using  Matlab   file   in  Simulink.  We  obtained  optimal  mass  to  be  0.75  kg  and  gear  ratio  as  5,  which  contradict  our  analytical  calculations  where  we  obtained  optimal  mass  as  1.47kg  and  gear  ratio  of  11.  The  graph  below  is  from  Simulink  with  mass  of  0.75  kg  and  gear  ratio  of  5.  

 

 

 

Figure  13  &  14  

 

Importance  of  Simulink  simulation  

The  Simulink  allow  us  to  create  same  environment  where  our  SSV  would  run  in  reality.  This  helps  a  lot  to  tackle  real  time  obstacles  and  we  can  take  into  account  many  influencing  factors.  The  Simulink  interface  is  very  user  friendly  and  one  can  easily  observe  the  ongoing  phenomena.