4
1 Preparation of Potassium Formate & Micromax Completion & Drilling Fluids Introduction We received a request to formulate a Potassium Formate/Micromax completion fluid at 16 ppg & 425 0 f. This fluid was intended to replace Cesium Formate brine used on HPHT completions. The successful results of this testing by Elkem have been completed. Subsequent to this the customer asked Elkem to formulate a Potassium Formate/Micromax drilling fluid, again at 16 ppg & 425 0 f. The testing for this has also been successfully completed. The results of the successful formulations are part of this report. Also included are descriptions of the process by which we obtained our results, the problems we had & our recommendations (in the attached appendix) for successfully testing of potassium formate fluids at high temperatures. Completion Fluid The requirements for this were for a 16 ppg fluid stable to 425 0 f for 14 days & with minimal sag. The resultant formulation is simple, using minimum additives to produce a completion fluid with no requirement for fluid loss, but with minimal sag. A sepiolite, Pangel HV, was used to provide extra suspension & a dispersant, ESM D2, was used as a deflocculant to prevent flocculation or agglomeration during sustained high temperature aging. The results with minimal sag, even after 14 days static at 424 0 f, are shown below in Table 1: Table 1 – 16 ppg Potassium Formate/Micromax Completion Fluid Additives in order of addition Mixing Time Conc in gram Conc in gram Conc in gram Potassium Formate Brine (SG1.57) 650 650 650 Soda Ash 5 0.35 0.35 0,35 Pangel HV Viscosifier 5 8 8 8 ESM D2 Dispersant 5 4 4 4 Micromax 10 268 268 268 Mud Weight, ppg 16.0 16.0 16.0 Heat Aged at ( 424 0 f ) BSHA ASHA 7 days 424 0 f BSHA ASHA 10 days 424 0 f BSHA ASHA 14 days 424 0 f 600 rpm 62 93 62 124 62 130 300 rpm 39 68 39 94 39 92 200 rpm 31 58 31 81 31 79 100 rpm 23 45 23 67 23 63 6 rpm 12 25 12 45 12 37 3 rpm 11 23 11 40 11 34 PV @ 120˚F, cP ( 50 C ) 23 25 23 30 23 38 YP, lb/100ft2 16 43 16 64 16 54 10 sec Gel, lb/100ft2 18 20 18 25 18 26 10 min Gel, lb/100ft2 21 21 21 26 21 26 pH 9 12.88 9 13.0 9 12,2 Supernatant liquid ( ml ) 0 0 0 Density Top 2.15 1.91 1,98 Density Bottom 2.20 1.95 2,08 Sag Factor 0.506 0.505 0,512

Report Potassium Formate & Micromax Fluids to 424 Deg F

  • Upload
    izzyguy

  • View
    32

  • Download
    4

Embed Size (px)

DESCRIPTION

report

Citation preview

  • 1

    PreparationofPotassiumFormate&MicromaxCompletion&DrillingFluids

    Introduction

    WereceivedarequesttoformulateaPotassiumFormate/Micromaxcompletionfluidat16ppg&4250f.ThisfluidwasintendedtoreplaceCesiumFormatebrineusedonHPHTcompletions.

    ThesuccessfulresultsofthistestingbyElkemhavebeencompleted.SubsequenttothisthecustomeraskedElkemtoformulateaPotassiumFormate/Micromaxdrillingfluid,againat16ppg&4250f.Thetestingforthishasalsobeensuccessfullycompleted.

    Theresultsofthesuccessfulformulationsarepartofthisreport.Alsoincludedaredescriptionsoftheprocessbywhichweobtainedourresults,theproblemswehad&ourrecommendations(intheattachedappendix)forsuccessfullytestingofpotassiumformatefluidsathightemperatures.

    CompletionFluid

    Therequirementsforthiswerefora16ppgfluidstableto4250ffor14days&withminimalsag.Theresultantformulationissimple,usingminimumadditivestoproduceacompletionfluidwithnorequirementforfluidloss,butwithminimalsag.

    Asepiolite,PangelHV,wasusedtoprovideextrasuspension&adispersant,ESMD2,wasusedasadeflocculanttopreventflocculationoragglomerationduringsustainedhightemperatureaging.Theresultswithminimalsag,evenafter14daysstaticat4240f,areshownbelowinTable1:

    Table116ppgPotassiumFormate/MicromaxCompletionFluid

    Additives in order of addition Mixing Time Conc in gram Conc in gram Conc in gram Potassium Formate Brine (SG1.57) 650 650 650 Soda Ash 5 0.35 0.35 0,35 Pangel HV Viscosifier 5 8 8 8 ESM D2 Dispersant 5 4 4 4 Micromax 10 268 268 268 Mud Weight, ppg 16.0 16.0 16.0

    Heat Aged at ( 4240f ) BSHA

    ASHA 7 days 4240f BSHA

    ASHA 10 days

    4240f BSHA

    ASHA 14 days

    4240f 600 rpm 62 93 62 124 62 130 300 rpm 39 68 39 94 39 92 200 rpm 31 58 31 81 31 79 100 rpm 23 45 23 67 23 63 6 rpm 12 25 12 45 12 37 3 rpm 11 23 11 40 11 34 PV @ 120F, cP ( 50 C ) 23 25 23 30 23 38 YP, lb/100ft2 16 43 16 64 16 54 10 sec Gel, lb/100ft2 18 20 18 25 18 26 10 min Gel, lb/100ft2 21 21 21 26 21 26 pH 9 12.88 9 13.0 9 12,2 Supernatant liquid ( ml ) 0 0 0 Density Top 2.15 1.91 1,98 Density Bottom 2.20 1.95 2,08 Sag Factor 0.506 0.505 0,512

  • 2

    DrillingFluid

    Therequirementsforthepotassiumformate/Micromaxdrillingfluidwerefor16ppg@4250fwithlow,upperendrheologytoprovidelowECDs,minimalsag&anHPHTfluidlossof

  • 3

    Descriptionof&RecommendationsforTestingaPotassiumFormateFluidatHighTemperature

    Formulating&testingsaturatedpotassiumformatefluids,especiallyatultrahightemperatures,presentcertainissuesnotseeninotherwaterbasefluids:

    a) Potassiumformateisextremelysolubleinwateratupto77%w/w.Thisresultsinleavinglittlefreewatertodissolveadditives.Accordingly,whenaddingaproductrequiringsolubilisation,suchasafluidlosscontrolpolymer(Dristemp,Kemsealetc),sufficienttime&energyisneededtoallowdissolutiontotakeplace.Oneoftheconsequencesofagingathightemperaturemaybethatthesepolymerssaltout,evenifproperlydissolvedpriortoaging.Therefore,theuseofcertainpolymersmayprovetobeimpossibleabovecertainconcentrationsathightemperature.Whenintendingtouseasaturatedpotassiumformatefluiditisrecommendedto:

    I. PrehydratepolymersinwaterII. AddsaturatedpotassiumformatebrineIII. Addpowderedpotassiumformatetobringtheresultingfluiduptosaturationwrtpotassium

    formate

    Nondissolvingadditivessuchassepiolite(PangelHV),Micromax,CaCO3etcdonotrequireprehydration,butdoneedsufficientsheartoproperlydisperse.

    b) ThenaturalpHofsaturatedpotassiumformatebrineisalkaline.Thebrineusedinthisstudywasaround10.Thepotassiumformatepowderwasstronglyalkalinewhenaddedtothefluidtosaturateit.WithouttreatmentthiswouldresultinpHvaluesof>11bothbefore&afteraging.TopreventhydrolysisofadditivesitisrecommendedtoreducethepHusingformicacid,beforeaging,toca9.5.Furthertreatmentafteragingmaybenecessary

    c) DespitereducingthepHbeforeagingitisrecommendedtobufferthefluidwithNa2CO3orNaHCO3.Thereasonforthisistomaintainanequilibriumawayfromdecompositionoftheformate

    d) Formatesdodecomposeathightemperature,butthereisamuchgreaterdegreeofdecompositionunderlabtestingthanoccursinthefield.CabotinboththeirFormateManuals&inconversationhaveexplainedthelargedifferencebetweenresultsachievedinlabtesting&thoseachievedinthefield.Essentially,labresultsshowmoredecomposition&corrosion,whichtheyhavenotseenoccurringinthefield.Theyattributethistothefollowing:

    I. FormatedecompositiontoCO,CO2orH2isanequilibriumprocessII. TestcellscontainheadspacegassuchasN2,CO2orairinamuchhigherproportiontothat

    experiencedinawell.Thislargeramountofgasleadstomoredecompositionbecausethereactiongasesescapeintotheheadspace&delayequilibriumbeingreached

    III. Labtestingisconductedatlowpressure(100sofPSI).HPHTwellsareathighpressure(thousandsofPSI)&equilibriumisreachedearlier.Higherpressurerestrictsdecomposition

    IV. Labtestcellsaremadeofstainlesssteelalloyscontaininge.g.nickel,whichactascatalystsinthepotassiumformatedecompositionreaction

    V. Wellscontaintubularscoveredincorrosionproductssuchasmillscale,whichpoisonsuchcatalyticactivity

    Insummary,labderivedfiguresformaximumoperatingtemperaturesaresignificantlyexceededinthefield&thetemperaturelimitsofusingpotassiumformatesshouldnotbebasedonmostofthelabworkpreviouslyconducted.TestsdonebytheWoodsHoleInstusingspecialequipmentdeterminedthat:

  • 4

    Thedecompositionofformatebrineswill,underrealistichydrothermalconditions,reachequilibriumrelativelysoon.

    Themajorproductofformatedecompositionisbicarbonate,whichisalreadypresentinformatebrineasacomponentofthepHbuffer.Somecarbonateisalsoformed,whichisthesecondpHbuffercomponent.

    Byaddingextracarbonate/bicarbonatebuffertothebrine,itshouldbepossibletoformulateathermallystableformatefluid.Suchafluidreachesequilibriumafterjustaveryminordegreeofdecomposition.

    e) Becausemoredecompositionoccurswhilsttestinginlabconditions,manytestscanbedifficulttorunaccurately.AtthehightemperaturesappliedheretheproductionofH2&CO2resultedinsignificantfoamingofthemudinthetestcell.Suchfoamingcancompromisetestssuchasthesagfactor.Forrheologyorfluidtestingitisbettertoallowthesampletobegentlystirredbeforerunningtheteststopermittheremovaloftheentrainedgases

    f) Agingcellsusedtotestformatebrinesaresubjecttocorrosionfromthedecompositionproducts.Therefore,itisrecommendedtouseTeflonlinersuptoca3900f&glasslinersabovethat

    Conclusions

    Thetestingofwaterbasefluidsathightemperaturesisadifficultprocess.Manychemicalreactionsareaccelerated&additivesmaydegradefrome.g.oxidationorhydrolysis.However,itiswellknownthattheuseofformatesextendsthetemperaturerangeofmanypolymers,primarilythroughtheantioxidativenatureoftheformates.However,athightemperaturesunderlabconditions,formatefluidsdecomposeatlowertemperaturesthanoccurinthefield.Thiscausesproblemsineffectivelyformulating&testingsuchfluids.Despitethesedifficultieswehavesuccessfullyformulated&testedbothacompletion&adrillingfluidto16ppg&4200f.Todothiswediscovered:

    Astrictprocess(asdetailedabove)needstobefollowedtosuccessfullytestformatesathightemperature Althoughmanypolymershavetheirtemperatureoperatinglimitssignificantlyextendedinformates,high

    concentrationsofsuchpolymersmayresultinthemsaltingoutathightemperature.Therefore,thechoiceofpolymeradditiveisnotobviousfromitschemistry&requirestestingtodetermineitssuitabilityforsuchanapplication

    Dristemp,PACLV,&CaCO3(20)weretheonlyfluidlossadditivestosuccessfullywork(together)undertheprescribedconditions

    Adeflocculant,ESMD2,isneededtoensurerheologicalstabilityundertheseconditions Asuccessfulformulationhasbeenachievedmeetingthecustomersrequirements