29
Report1: Anemos Task 3.3.4 Andr´ e Galligo, Bernard Mourrain, Meng Wu 1,3 Laboratoire J.-A. Dieudonn´ e Universit´ e de Nice - Sophia Antipolis, France, 1,2,3 Galaad team, INRIA, Sophia Antipolis, France. January 31, 2013 Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 1 / 29

Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Report1: Anemos Task 3.3.4

Andre Galligo, Bernard Mourrain, Meng Wu

1,3Laboratoire J.-A. Dieudonne Universite de Nice - Sophia Antipolis, France,1,2,3Galaad team, INRIA, Sophia Antipolis, France.

January 31, 2013

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 1 / 29

Page 2: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Introduction

Representing the complex magnetic and material geometry.For the simulation of ELMs and control by pellets in ITER.

Geometric approximation by triangles lead to inaccuracy.B-splines reproduce the geometry of the domain exactly.

In JOREK, isoparametric formulation uses Bezier patches in 2D.A gain up to an order of magnitude is expected.Meshing need to be improved for ITER tokamak.

→ We propose a class of parameterizations to make a separate meshgeneration unnecessary.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 2 / 29

Page 3: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Tokamak Shape

The idea here is to rely on the geometric rigidity of the union ofisobaric curves, and approximate by algebraic data.

The shape of the plasma boundary is identifiable.

Usual control of the plasma shape during a plasma discharge, rely oncoils current, with a feedback loop.

The required shape is maintained, in a stationary manner, in order toavoid sudden termination of the plasma (when the plasma touchesthe first wall).

But with this procedure, it is difficult to compute the internalmagnetic flux configuration.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 3 / 29

Page 4: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

X shaped curve

Figure 1: Isobaric curves

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 4 / 29

Page 5: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Algebraic model

One observes a ”topological rigidity” of the picture of all the isobariccurves, illustrated in previous Figure 1.

The idea is to approximate it by algebraic data which are more ”rigid”than meshes.

We propose a special type of parameterizations by tensor productB-splines:A kind of PHT over what we call a S-mesh.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 5 / 29

Page 6: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Steps

1 Fix a rough (radial) quadrangular mesh. In each quadrangle,Construct the piecewise tensor product B(3, 3)-functionapproximating the solution of the PDE.

2 Detect the cell containing the X point. Then approximate thecorresponding level set.

3 Decompose the domain into curved quadrangle lined with level sets.

4 Parameterize these quadrangles.

5 Follow, via linearization, the deformed parameterization correspondingto the new solution for t +∆t.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 6 / 29

Page 7: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Level sets

The curves in Figure 1 are isobaric curves.

The important feature is that one of them has a node (X point).

The curves of Figure 1 roughly resemble the level sets of aparameterized curve shown in next Figure 2.

→ We first experiment with these level sets, which are easy tocompute.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 7 / 29

Page 8: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Figure 2: Parameterized curve

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 8 / 29

Page 9: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Segment of curve

We approximate a (small) segment of curve F = cst by a 3-Bezier.

We assume that the two extremal points A and B are given,with the first and second derivatives of F .

We compute the two tangents and their intersection C .

So the 4 points of the control polygon are A, C1, C2 and B .With AC1 := c1 ∗ AC and BC2 := c2 ∗ BC .

From the signs of the curvatures we choose a model without or withinflection.Then we estimate c1 and c2.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 9 / 29

Page 10: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Bcurves

Figure 3: 3Bezier without inflection

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 10 / 29

Page 11: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Figure 4: 3Bezier with inflection

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 11 / 29

Page 12: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Small surface

Figure 5: A surface and its borders

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 12 / 29

Page 13: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Parameterization of small surfaces

Given a (small) surface delimited by level sets and 4 pointsA, B , A′ and B ′.

We assume that we also have, as above, the 4 control polygons.

Then we can construct a bicubic plane (small) surface with theseborders. (Coons optimized)

→ A family of parameterized curves which interpolate the input(border) ones. → This defines refined quadrangular meshes.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 13 / 29

Page 14: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Parameterization of a small surface

Figure 6: A parameterized surface and its borders

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 14 / 29

Page 15: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Injectivity and Transverse cones

For refinements, we need that the curves of the parameterization donot intersect each other.

In a previous work, we studied the following Injectivity Criterion.

It uses the vectors defined by successive control points in eachdirection of the control net of (x , y).

The two cones spanned by the two families of vectors should bedisjoint.See Figure 7.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 15 / 29

Page 16: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Criterion

Figure 7: Transverse cones

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 16 / 29

Page 17: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Global view

With the X geometry of the tokamak, we decompose the globalsurface.

We consider a decomposition into n, e.g. n = 8, curved rectangles.We can subdivide the decomposition and increase n. See below.

We then get parameterizations, locally similar to the ones above.

→ Meshes which approximate the isobar curves.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 17 / 29

Page 18: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Decomposition in the physical domain

Figure 8: 8 curved rectangles

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 18 / 29

Page 19: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Parametric mesh

To get a global parameterization C 1, we need to generalize the notionof Bsplines over a T-mesh. We call it S-splines.

We allow an equivalence relation between points and also betweenedges.

The following Figure, made of two rows, organizes 8 squares.The equivalence classes of points are 2 pairs of points and also a setof 4 points. The equivalence classes of edges are 4 pairs of edges.Coherently.

→ They can be refined and will map to the physical domain.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 19 / 29

Page 20: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

a S-mesh over the plan

Figure 9: A S-mesh with n = 8 squares

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 20 / 29

Page 21: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Subdivision of the previous S-mesh

Figure 10: A S-mesh with n = 17 squares

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 21 / 29

Page 22: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Dimension formula

Proposition: The (3, 3)−splines spaces over the previous type of S-meshis a linear vector space E . Its dimension is equal to 4 times the number ofequivalent classes of vertices.

Example: For the previous S-mesh, with n = 8, the dimension of E is4 ∗ 14 = 56.In the 2 next slides we present the graphs of 2 function of E .Note that they take the same values on equivalent edges (resp. vertices).

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 22 / 29

Page 23: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

a base function C1

0 1 2 3 4 5 60

0.5

1

1.5

2X Point−[0,0,1,0]

−0.1

−0.05

0

0.05

0.1

Figure 11: Values by colors over a S-mesh

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 23 / 29

Page 24: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

0 1 2 3 4 5 60

0.5

1

1.5

2X Point−[0,1,0,0]

−0.1

−0.05

0

0.05

0.1

Figure 12: Values by colors over a S-mesh

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 24 / 29

Page 25: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Interpolation-Projection

• Given a set of conditions of values or tangency on the physical planesurface, we want to find a S-spline function which either satisfies orapproximate these conditions.• Since these conditions are linear, we end up solving a linear system.• If there are more conditions than the dimension of the spline space E ,we rely on usual techniques of approximate linear algebra.• Of course, all the art will be to choose “well tuned” conditions.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 25 / 29

Page 26: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Simple example

• We considered the simple case of a cubic curve given by its implicitequationy2 − x(x − 1)2.

• With the previous S-mesh, (n = 18) we considered the correspondingconditions, in order to interpolate two functions x and y defining an imageof the S-mesh.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 26 / 29

Page 27: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Interpolation

Figure 13: An interpolation with 18 squares

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 27 / 29

Page 28: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Parameterization

Figure 14: A parameterization with 18 squares

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 28 / 29

Page 29: Report1: Anemos Task 3.3 - unice.frnkonga/ANEMOS/Galligo_Janvier2013.pdf · Report1: AnemosTask3.3.4 Andr´e Galligo, Bernard Mourrain, Meng Wu 1,3Laboratoire J.-A. Dieudonn´e Universit´e

Conclusion, future developments

• We have presented a new model of splines that we called S-splines. It isadapted to represent isobaric curves in a Tokamak such that one curve hasa X-point.

• It resembles the techniques used in Jorek for defining isoparametric finiteelements.

• We made a good mathematical start and experimented with a simplealgebraic model.

→ Now, we need to tune it and apply it to data corresponding to aTokamak.

Galligo,Mourrain,Wu () Report1: Anemos Task 3.3.4 January 31, 2013 29 / 29