10
Research Article Correlation of Global Solar Radiation of Eight Synoptic Stations in Burkina Faso Based on Linear and Multiple Linear Regression Methods Ousmane Coulibaly 1 and Abdoulaye Ouedraogo 2 1 Laboratoire de Physique et Chimie de l’Environnement (LPCE), Unit´ e de Formation et de Recherche en Sciences Exactes et Appliqu´ ee, Universit´ e de Ouagadougou, 03 BP 7021, Ouagadougou 03, Burkina Faso 2 Unit´ e de Formation et de Recherche en Sciences Exactes et Appliqu´ ee, Universit´ e de Ouagadougou, 03 BP 7021, Ouagadougou 03, Burkina Faso Correspondence should be addressed to Ousmane Coulibaly; [email protected] Received 7 August 2015; Revised 11 December 2015; Accepted 31 January 2016 Academic Editor: Yoji Saito Copyright © 2016 O. Coulibaly and A. Ouedraogo. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We utilize the multiple linear regression method to analyse meteorological data for eight cities in Burkina Faso. A correlation between the monthly mean daily global solar radiation on a horizontal surface and five meteorological and geographical parameters, which are the mean daily extraterrestrial solar radiation intensity, the average daily ratio of sunshine duration, the mean daily relative humidity, the mean daily maximum air temperature, and the sine of the solar declination angle, was examined. A second correlation is established for the entire country, using, this time, the monthly mean global solar radiation on a horizontal surface and the following climatic variables: the average daily ratio of sunshine duration, the latitude, and the longitude. e results show that the coefficients of correlation vary between 0.96 and 0.99 depending on the station while the relative errors spread between 3.16% (Pˆ o) and 3.65% (D´ edougou). e maximum value of the RMSD which is 312.36 kJ/m 2 is obtained at Dori, which receives the strongest radiation. For the entire cities, the values of the MBD are found to be in the acceptable margin. 1. Introduction e quantification of the solar energy potential depends on many parameters such as the availability, the number and location of synoptic stations, and the utilization of adequate formalism for its evaluation. A review of solar radiation models [1] and measurement techniques [2] are presented by Pandey and Katiyar. ey noted that the first correlation has been suggested by Angstrom [3]; it relates the global solar radiation to sunshine duration. e modification of the Angstrom relation has been made by Page [4] and Prescott [5]. Aſterwards, many other researches have been accomplished in specific countries throughout the world, for example, in Romania [6], in Malaysia [7], in Iran [8], in China [9], and in Ghana [10]. In 2006, some of these countries have been compiled by Skeiker [11]. Many investigators [12, 13] have utilized the latitude and the solar declination. Yet others have introduced geographical and meteorological parameters [14–16]. Recently, Dumas et al. presented a new correlation between global solar energy radiation and daily temperature variations [17]. In Burkina Faso, preliminary investigations have been made by Garan´ e [18] and Baldy [19] who established a cor- relation between the solar radiation and the sunshine dura- tion spanning from 1971 to 1990 (Garan´ e) and 1971 to 1975 (Baldy) for five cities. In the present study, we look forward to extending the early investigations by determining first of all the coefficients of the modified Angstrom correlation, noted as and for eight cities. Next, we seek to establish, suc- cessively, correlation relations between the global radiation and five climatic variables for the eight cities. Finally the monthly mean global solar radiation on a horizontal surface Hindawi Publishing Corporation Journal of Solar Energy Volume 2016, Article ID 7870907, 9 pages http://dx.doi.org/10.1155/2016/7870907

Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

Research ArticleCorrelation of Global Solar Radiation of Eight SynopticStations in Burkina Faso Based on Linear and MultipleLinear Regression Methods

Ousmane Coulibaly1 and Abdoulaye Ouedraogo2

1Laboratoire de Physique et Chimie de lrsquoEnvironnement (LPCE) Unite de Formation et de Recherche en SciencesExactes et Appliquee Universite de Ouagadougou 03 BP 7021 Ouagadougou 03 Burkina Faso2Unite de Formation et de Recherche en Sciences Exactes et Appliquee Universite de Ouagadougou 03 BP 7021Ouagadougou 03 Burkina Faso

Correspondence should be addressed to Ousmane Coulibaly coulous2005yahoofr

Received 7 August 2015 Revised 11 December 2015 Accepted 31 January 2016

Academic Editor Yoji Saito

Copyright copy 2016 O Coulibaly and A Ouedraogo This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

We utilize the multiple linear regression method to analyse meteorological data for eight cities in Burkina Faso A correlationbetween themonthlymean daily global solar radiation on a horizontal surface and fivemeteorological and geographical parameterswhich are the mean daily extraterrestrial solar radiation intensity the average daily ratio of sunshine duration the mean dailyrelative humidity the mean daily maximum air temperature and the sine of the solar declination angle was examined A secondcorrelation is established for the entire country using this time the monthly mean global solar radiation on a horizontal surfaceand the following climatic variables the average daily ratio of sunshine duration the latitude and the longitude The results showthat the coefficients of correlation vary between 096 and 099 depending on the station while the relative errors spread betweenminus316 (Po) and 365 (Dedougou) The maximum value of the RMSD which is 31236 kJm2 is obtained at Dori which receivesthe strongest radiation For the entire cities the values of the MBD are found to be in the acceptable margin

1 Introduction

The quantification of the solar energy potential depends onmany parameters such as the availability the number andlocation of synoptic stations and the utilization of adequateformalism for its evaluation A review of solar radiationmodels [1] and measurement techniques [2] are presentedby Pandey and Katiyar They noted that the first correlationhas been suggested by Angstrom [3] it relates the globalsolar radiation to sunshine duration The modification ofthe Angstrom relation has been made by Page [4] andPrescott [5] Afterwards many other researches have beenaccomplished in specific countries throughout the world forexample in Romania [6] inMalaysia [7] in Iran [8] in China[9] and in Ghana [10] In 2006 some of these countries havebeen compiled by Skeiker [11] Many investigators [12 13]

have utilized the latitude and the solar declination Yet othershave introduced geographical andmeteorological parameters[14ndash16] Recently Dumas et al presented a new correlationbetween global solar energy radiation and daily temperaturevariations [17]

In Burkina Faso preliminary investigations have beenmade by Garane [18] and Baldy [19] who established a cor-relation between the solar radiation and the sunshine dura-tion spanning from 1971 to 1990 (Garane) and 1971 to 1975(Baldy) for five cities In the present study we look forward toextending the early investigations by determining first of allthe coefficients of the modified Angstrom correlation notedas 119886 and 119887 for eight cities Next we seek to establish suc-cessively correlation relations between the global radiationand five climatic variables for the eight cities Finally themonthly mean global solar radiation on a horizontal surface

Hindawi Publishing CorporationJournal of Solar EnergyVolume 2016 Article ID 7870907 9 pageshttpdxdoiorg10115520167870907

2 Journal of Solar Energy

Table 1 Geographical locations of the eight cities of concern [20]

Cities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouLatitude (N) 12∘211015840 14∘021015840 11∘111015840 10∘201015840 12∘021015840 11∘451015840 11∘101015840 12∘281015840

Longitude (W) 01∘311015840 00∘021015840 04∘191015840 03∘111015840 00∘221015840E 02∘561015840 01∘091015840 03∘291015840

Altitude (m) 296 277 432 333 308 270 326 308

and the following climatic variables the average daily ratio ofsunshine duration the latitude and the longitude would beinvestigated

2 Equipment and Data Collection

21 Equipment Setup and Data Acquisition The sunshinedurations are meteorological data and are measured by aheliograph of Campbell-Stokes type designed by CASELLAThe data acquisition process is made according to the worldorganization of meteorology standards from heliographbands The global radiation is measured utilizing KIPP andZONEN Pyranometer with numerical ELSB-2 integratorswhich integrates the values of the daily solar radiation Twostations Dedougou and Fada Nrsquogourma are equipped withpyranometer-integrator of CIMEL type which integrates thehourly values of the global solar radiation intensityThe appa-ratuses are installed on concrete construction approximately15 meter in height in places released in order to avoidthe shadow of the surrounding objects Table 1 indicates thelatitude the longitude and the altitude of the eight stations ofconcern Data for global solar radiation sunshine durationthe maximum temperature and relative humidity have beencollected for all cities from 1977 to 2006 [20]

22 Estimation of the Extraterrestrial Solar Radiation on aHorizontal Surface (119867

119900) and the Maximum Sunshine Dura-

tion The extraterrestrial radiation on a horizontal surface(119867119900 kJm2) is determined utilizing the following relation [21ndash

23] Indeed the measurement data of global solar radiationprovided by the national meteorological service are in kJm2Consider

119867

119900= 3795

sdot 10

4 cos (120601) cos (120575) [sin (120596119904) minus

120587120596

119904

180

cos (120596119904)]

(1)

The quantity 3795 sdot 104 given by Jannot [22] to convert theextraterrestrial radiation into kJm2 comes from the term(24120587)lowast119868

0The value of the solar constant 119868

0used by Jannot is

1380Wm2 This quantity takes into account the eccentricitycorrection factor of Earthrsquos orbit which is calculated using thefollowing relation

119862 = 1 + 0034 cos [30 (119898 minus 1) + 119889] (2)

In relations (2) and (4)119898 is the number of the month in theyear starting with January and 119889 the number of the day in themonth Let us announce that by carrying out the calculationprogramme under the Matlab software we took account ofconversions on each time the need is essential

In relations (1) and (3)120601 is the latitude120596119904is the solar angle

of the sundown obtained from the next relation

120596

119904= 119886119903 cos (minus tan (120601) tan (120575)) (3)

120575 is the declination which is inferred from the followingequation

120575 = 2345

∘ cos (30119898 + 119889 minus 202) (4)

We also define the hour angle 120596 as follows

120596(∘) = minus15

∘(12 minus 119879

119904) (5)

where 119879119904is the solar hour of the day The hour angle 120596

119888at

sunset is opposite to its sundown equivalent therefore 120596119888=

minus120596

119897The solar hour at sunrise is given by

(119879

119904)

119897= 12 minus

120596

119904

15

(6)

At sunset the equivalent solar hour becomes

(119879

119904)

119888= 12 +

120596

119904

15

(7)

We can then infer the maximum daily sunshine duration asfollows

119873 =

2120596

119904

15

(8)

3 Estimation of the Regression Coefficients

First of all we averaged over one-year interval the globalradiation (119867) and the sunshine duration data collected bythe national meteorological service from 1992 to 2006 Nextwe estimate the extraterrestrial radiation on a horizontalsurface (119867

119900) and the maximum sunshine duration (119873) for

each station for the entire year Finally a linear relation ofAngstrom type is utilized for a correlation between the indexof clearness (119867119867

119900) and the daily ratio of sunshine duration

(119899119873)Now let us recall the original Angstrom formula which is

[3]

119867 = 119867

1015840

119900(119886

1015840+ 119887

1015840 119899

119873

) (9)

where 119899 is the number of hours of daily sunshine duration119873is the maximum number of hours of daily sunshine duration119867 is the daily global radiation on a horizontal surface 1198671015840

119900is

the daily global radiation on a horizontal surface by clear skyand 1198861015840 and 1198871015840 are coefficients to be determined

Journal of Solar Energy 3

In the original Angstrom formula (9) 119867

1015840

119900is found

to be difficult to determine Thus Page [4] and Prescott[5] formulated a modified relation in a manner that theextraterrestrial radiation on a horizontal surface119867

119900appears

that is

119867 = 119867

119900(119886 + 119887

119899

119873

) (10)

Here 119886 and 119887 are constants to be determined experimentallyfor each region

We rewrite relation (10) in a more useful form as follows

119867

119867

119900

= 119886 + 119887

119899

119873

(11)

In this relation the ratio 119867119867

119900usually denoted by 119870

119879is

known as the index of clearness It is an indication of thedegree of purity of the atmosphere it indicates the presence ofaerosols or water molecules in the atmosphereThe ratio 119899119873is the fraction of sunshine duration expressed as the quotientof the actual (119899) divided by the theoretical (119873) sunshineduration The coefficients 119886 and 119887 are obtained by drawingthe fraction of sunshine duration as a function of the indexof clearness then 119886 is the ordinate and is an indication of thevalue of the fraction of the incident radiation for a coveredsky 119887 on the other hand is the slope of the regression lineThe sum (119886 + 119887) gives an indication on the transmissivity ofthe atmosphere in condition of clear sky [18]

For each city a correlation is established between theglobal solar radiation on a horizontal surface and five mete-orological parameters which are the mean daily extrater-restrial solar radiation intensity the average daily ratio ofsunshine duration the mean daily relative humidity themean daily maximum air temperature and the sine of thesolar declination angle For the entire country a correlationis realized involving the index of clearness the average dailyratio of sunshine duration and the latitude and longitude Forthe relations of correlation involving many parameters wehave utilized amultiple linear regression suggested by Skeiker[11]

119910 = 119888 + 119889119909

1+ 119890119909

2+ 119891119909

3+ 119892119909

4+ ℎ119909

5 (12)

where 119888 119889 119890 119891 119892 ℎ are the regression coefficients and 119909

1

119909

2 1199093 1199094 1199095the correlation parameters The relative error

between the measured and estimated quantities is calculatedfrom the following relation

119890 = [

(119867

119894119898minus 119867

119894119888)

119867

119894119898

] sdot 100

(13)

where 119867119894119898

is the monthly average of daily global radiationmeasured over a horizontal surface for the 119894thmonth and119867

119894119888

is its value obtained from the relation of correlationUsually aprecision in the interval of minus10 to 10 is acceptable Skeiker[11] For the same purpose we can also compute statistical testparameters such as the root mean square differences (RMSD)

035040045050055060065070

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonth

HH

o

Ouaga

DoriFada

Boromo

Bobo

GaouaDeacutedougou

Pocirc

Figure 1 Indexes of clearness for the eight synoptic stations

and the mean bias differences (MBD) given by the followingrelations

RMSD = (

1

119899

119899

sum

119894=1

(119867

119894119898minus 119867

119894119888)

2

)

12

(14)

Equation (14) provides information on the short term perfor-mances of the correlations by allowing a term by term com-parison between the calculated and the measured valuesThesmaller the deviations are the better themodelrsquos performancesare Consider

MBD =

1

119899

119899

sum

119894=1

(119867

119894119898minus 119867

119894119888) (15)

The above test relation provides information on the longterm performance A low MBD is desired A positive valuegives the average amount of underestimation in the cal-culated value and vice versa A drawback of this test isthat overestimation of an individual observation will cancelunderestimation in a separate observation

On the other hand the performance of themodel is testedby the following statistical equation

119905 = [

(119899 minus 1)MBD2

RMSD2 minusMBD2]

12

(16)

The smaller the value of 119905 the better themodelrsquos performanceThe critical quantity is calculated at 119905

1205722where 120572 is the level of

significance and (119899minus1) the degrees of freedomThe degree ofconfidence is about 95 which sets 120572 = 5 and 1205722 = 25

4 Results and Discussion

41 Index of Clearness and Daily Ratio of Sunshine DurationFigure 1 indicates the mean values of the indexes of clearnessfor the eight synoptic stations The indexes are comprisedbetween 036 and 066 which indicates that the atmospherecontains impurities all year longThe lowest value is obtainedat Gaoua a region with a tradition of relatively heavy rainfallThis lowest index is therefore due to the albedo of the cloud

4 Journal of Solar Energy

Table 2 Statistics of regression with modified Angstrom model comparison of the results obtained by the current investigation with thoseof other investigations

TownRegression coefficients 119886 119887 119877

119886 119887 119886 + 119887

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)Dori 013 014 024 062 058 052 075 072 076 095 084 gt90Fada NrsquoGourma 021 020 026 045 049 048 066 069 074 091 071 gt90Ouagadougou 017 022 027 047 045 048 064 067 075 095 090 gt90Bobo Dioulasso 021 026 031 046 043 048 067 069 079 090 079 gt90Gaoua 015 022 026 046 046 048 061 068 074 096 092 gt90Boromo 018 mdash mdash 053 mdash mdash 071 mdash mdash 097 mdash mdashPo 021 mdash mdash 043 mdash mdash 064 mdash mdash 093 mdash mdashDedougou 023 mdash mdash 04 mdash mdash 063 mdash mdash 091 mdash mdashBurkina Faso 018 023 026 049 044 042 067 067 068 081 078 mdash(1) Results obtained by the actual investigation(2) Results obtained by Garane J Ali Period 1971ndash1990(3) Results obtained by Baldy Period 1971ndash1975

and the presence of water molecules in the atmosphere Thehighest index 066 is obtained at Dori a city located atthe northern tip of the country with scarce rainfalls For alleight stations the highest values are observed between themonths of November and February This period correspondsto the dry season with no cloud in the sky However the066 index is an indication of the presence of impurities inthe atmosphere which is due to the important phenomenonof absorption and diffusion of solar radiation by the aerosolparticles During this period the strong winds of harmattancarrying dust sand and many other small objects feed theatmosphere with aerosol particles of all sizes Indeed Lathaand Badarinath [24] have noticed that the concentration ofaerosol particles of sizes PM

10and PM

25is strong during

the same period (harmattan) and weak on the other handduring June to October (monsoon) in urban area in tropicalregions At Gaoua Fada and Bobo Po and Boromo thepermanence and the concentration of the clouds during themonth of August explain the strong drop of the indexes ofclearness On the contrary the increase during the month ofOctober is due to the purity of the atmosphere just after theend of the raining season Figure 2Thedaily ratio of sunshineduration varies between 045 and 086 and represents the ratioof the real sunshine duration (119899) and the theoretical sunshineduration (119873) the nationalmean value being 068 Townswithlower latitudes have lower value of the daily ratio of sunshineduration once again due to the heavy rainfalls which shortenthe sunshine duration

42 The Regression Coefficients of the Modified AngstromrsquosRelation We show in Table 2 the results of this researchbased on the relation of Angstrom For all the stationsthe correlation coefficient 119877 is greater than 090 We nextcompare the actual coefficients with the preliminary resultsestablished by Garane [18] and Baldy [19] for five stations

The values of (119886 + 119887) are quite similar For the valuesobtained throughout the country the coefficient (119886) ratherdecreases from (3)

119888 to (1)

119886 and (119887) increases somehow in

040045050055060065070075080085090

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonth

nN

Ouaga

DoriFada

Boromo

Bobo

GaouaDeacutedougou

Pocirc

Figure 2 Daily ratio of sunshine duration for the eight synopticstations

the same period from (3)

119888 to (1)

119886 This is an indication ofthe presence of aerosols in the atmosphere The values of thecorrelation coefficients 119877 which are greater than 090 for allcities tend to indicate good correlations between the globalradiation and the sunshine duration On the other hand themean value of 081 for the entire country is a good indicationof the disparities between the radiation intensities of theregions due to the latitude especially when we move fromnorth to south We present next the correlation results whenwe take into account the latitude and longitude

43 Correlation of the Radiation Intensity for the Eight Syn-optic Stations Table 3 shows the regression and correlationcoefficients obtained for each synoptic station Substitutingthe correlation parameters 119909

1 1199092 1199093 1199094 and 119909

5in relation

(12) respectively by119867o 119899119873119867119903 119879max and sin 120575 we obtain

the following

119867 = 119888 + 119889119867

119900+ 119890

119899

119873

+ 119891119867

119903+ 119892119879max + ℎ sin 120575 (17)

Journal of Solar Energy 5

Table 3 Regression and correlation coefficients for the eight synoptic stations

Town Regression coefficients Correlation coefficients 119877119888 119889 119890 119891 119892 ℎ

Ouagadougou minus4202917 147 2827241 minus5234 minus28851 minus715912 09921Dori minus2970840 118 2470840 minus4267 minus21596 minus566502 09663Bobo minus2534865 125 1946764 minus7046 minus30073 minus496691 09716Fada minus1252850 084 1191321 minus5395 minus13242 minus279462 09703Boromo minus1867415 088 2633683 minus5352 minus23908 mdash 09718Gaoua minus3259717 118 2239381 minus2937 minus20406 minus608006 09958Po minus5851229 231 4106196 minus8936 minus84351 minus1058665 09661Dedougou minus5879168 176 3619121 minus1337 minus29869 minus980501 09782

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

15

16

17

18

19

20times10

3

Measured valuesMultiple regressionAngstrom equation

Figure 3 Comparison between measured and correlated values atOuagadougou

Hence for a given station the correlation between the globalradiation on a horizontal surface and the five parameters isobtained by replacing the regression coefficients 119888 119889 119890 119891 119892and ℎ with their respective numerical values

The values of the regression coefficients 119888 119889 119890 119891 119892 andℎ vary both with and within the same location The studyof Skeiker [11] showed that when the number of regressioncoefficients for the multiple linear regression models ishigher results obtained are better The correlation obtained isnevertheless good between the parameters The lowest valueof the correlation coefficient 119877 is obtained at Po (119877 = 09661)while the highest is reached at Gaoua (119877 = 09958) Forthe city of Boromo a correlation is established between themonthly mean daily global solar radiation on a horizontalsurface and four parameters because the coefficient ldquoℎrdquo showsa different behavior to the rest of the city when we take intoaccount the solar declination angle

We compare in the following Figures 3ndash6 the measuredsolar radiation intensity its estimated values obtained fromthe Angstrom relation and the results obtained from thecorrelations based on the five meteorological parametersThe figures clearly show two picks corresponding to two hotseasons respectively fromMarch to June and in October Asfor the indexes of clearness and the ratio of sunshine durationthe lowest radiation values are observed during the rainingseason

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

17

19

21

23

Measured valuesMultiple regressionAngstrom equation

Figure 4 Comparison between measured and correlated values atDori

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

Measured valuesMultiple regressionAngstrom equation

Figure 5 Comparison between measured and correlated values atBoromo

The histograms show clearly when comparing the mea-sured and the correlation values with the Angstrom relationresults that the meteorological parameters (humidity tem-perature and declination) have an influence on the globalradiation intensity received by a horizontal surface Tables4(a)ndash4(d) display the values of the measured global radiationand the correlated values based on the five meteorologi-cal parameters We present also the statistical parametersobtained in each case

6 Journal of Solar Energy

Table4(a)119890M

BDR

MSD

119905and

119905-criticforO

uagado

ugou

andDori(b)119890M

BDR

MSD

119905and

119905-criticforB

oboandFada(c)119890M

BDR

MSD

119905and

119905-criticforB

orom

oandGaoua(d)

119890M

BDR

MSD

119905and

119905-criticforP

oandDedou

gou

(a)

Mon

thOuagado

ugou

Dori

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1593619

1580818

080

12802

1883522

189091

6minus039

minus7394

February

179438

1181673

8minus12

5minus22357

211576

9210470

1053

11068

March

1871065

1846550

131

24515

2237844

2194349

198

43495

April

1860

079

1871814

minus063

minus11734

220313

42259076

minus248

minus5594

2May

189695

7191010

0minus069

minus1314

32228402

2241255

minus057

minus12854

June

1851597

1830751

113

20846

2164

215

2128711

167

35504

July

1709075

1712545

minus020

minus3470

2110696

208818

710

822509

August

156770

1157890

0minus071

minus1119

92025322

2083244

minus278

minus5792

3Septem

ber

1738429

1735441

017

2988

212670

7209595

514

730752

Octob

er1783503

1770843

071

12660

2075201

2067421

038

7780

Novem

ber

168916

9169873

6minus057

minus9567

1980527

1983045

minus013

minus2518

Decem

ber

1583508

1585848

minus015

minus2341

1852580

1867057

minus078

minus14477

minus273Eminus12

909E

minus13

MBD

1418

131236

RMSD

638Eminus14

966E

minus15

119905

2201

2201

119905-critic

(b)

Mon

thBo

boFada

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1670671

1693578

minus13

7minus2290

7177792

01761675

091

16245

February

1927308

191292

7075

14381

1947206

1919814

141

27392

March

193975

81946355

minus034

minus6597

199476

41993531

006

1233

April

1892000

1885458

035

6541

1977473

2004

124

minus13

5minus26651

May

188078

31901057

minus10

8minus20275

1990334

1990476

minus001

minus14

2June

181798

51795433

124

22551

1919464

1905735

072

1372

9July

1687848

1687692

001

156

1825211

182194

5018

3266

August

1607626

163990

3minus201

minus32277

175710

4174992

4041

7181

Septem

ber

1774492

1722878

291

51614

1757560

179695

4minus224

minus39394

Octob

er1736800

1783496

minus269

minus46

696

180374

31764

291

219

39452

Novem

ber

1734772

1703431

181

31341

1776281

177078

2031

5498

Decem

ber

160979

61607629

013

2167

1692480

1740289

minus282

minus47809

144E

minus11

142E

minus11

MBD

2678

724835

RMSD

178E

minus13

190E

minus13

119905

2201

2201

119905-critic

Journal of Solar Energy 7

(c)

Mon

thBo

romo

Gaoua

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1722759

17119

58

063

10801

1534755

155413

7minus12

6minus19383

February

188579

41895517

minus052

minus9723

172016

6170593

4083

14232

March

193870

41919834

097

18870

1738572

1726071

072

12501

April

1928661

1942054

minus069

minus13392

1729266

1748253

minus110

minus1898

8May

195699

3198478

1minus14

2minus2778

8174898

21759066

minus058

minus10084

June

189094

8184817

0226

4277

81666223

1652431

083

1379

2July

1770250

1752081

103

1817

01478479

1476378

014

2101

August

1660503

168813

9minus16

6minus27636

1385025

138510

1minus001

minus076

Septem

ber

1778886

1800818

minus12

3minus2193

21527047

1530628

minus023

minus3581

Octob

er1890286

1856596

178

33690

1673526

1669872

022

3654

Novem

ber

1785876

1804

286

minus10

3minus18409

1561020

155818

6018

2835

Decem

ber

1690628

1696056

minus032

minus5429

1463367

1460369

020

2997

minus849Eminus12

440

Eminus12

MBD

2314

31093

4RM

SD12

2Eminus13

133E

minus13

119905

2201

2201

119905-critic

(d)

Mon

thPo

Dedou

gou

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1673449

166977

9022

3669

1664

515

160379

5365

6072

0February

1854006

186291

9minus048

minus8913

1857876

1865884

minus043

minus8008

March

1899224

1855346

231

43878

19114

69

1943673

minus16

8minus32204

April

1775381

1831460

minus316

minus56078

194899

51925219

122

23776

May

1919388

1909568

051

9820

202519

0200578

1096

19409

June

185472

2183297

7117

2174

51909455

1910229

minus004

minus774

July

1650000

1676535

minus16

1minus26535

1821364

1837366

minus088

minus16002

August

1591200

1554206

232

3699

4172390

91743045

minus111

minus1913

5Septem

ber

1740

550

1777604

minus213

minus37054

1941336

192178

510

119551

Octob

er1866

828

1845435

115

21393

191479

21907477

038

7316

Novem

ber

1700718

1687818

076

1290

0170896

3173612

8minus15

9minus2716

6Decem

ber

1592868

1614687

minus13

7minus21819

1598303

162578

5minus17

2minus27483

minus256Eminus11

minus10

6Eminus11

MBD

29266

26271

RMSD

290Eminus13

134E

minus13

119905

2201

2201

119905-critic

8 Journal of Solar Energy

Table 5 Calculated and estimated quantities along with the error based on relation (18)

Quantities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouCalculated 049 059 050 045 051 052 050 052Correlated 052 058 048 044 051 051 049 051119890 () minus612 169 400 222 192 192 200 192

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

21

Measured valuesMultiple regressionAngstrom equation

Figure 6 Comparison between measured and correlated values atDedougou

For the station of Ouagadougou the relative error variesbetween minus125 and 131 while the RMSD is estimatedto be 14181 kJm2 For Dori station the relative error iscomprised between ndash278 and 198 and the RMSD is equalto 31236 kJm2 All these results are in the acceptable marginWe obtained small errors because the values simulated arecompared with the average of measurement data over theperiod of the study (1977ndash2006) We would obtain highererrors if we carried out the comparisons with the measureddata for unspecified year

The relative errors vary between minus269 and 291 andbetween ndash282 and 219 respectively for the stations ofBobo and Fadawhile the RMSD are equal to 26787 kJm2 and24835 kJm2 for the same stations Once again the marginerror is acceptable

For the station of Boromo the relative error fluctuatesbetween minus166 and 226 while the RMSD is equal to23143 kJm2 The relative error varies between minus126 and083 and the RMSD is equal to 10934 kJm2 for the stationof Gaoua Once again these quantities are acceptable

For the two stations Po and Dedougou the respectiverelative errors vary between minus316 and 232 and betweenndash172 and 365 while the RMSD are equal to 29266 kJm2and 26271 kJm2 respectively The margin is acceptable TheMBD for the eight stations is comprised between 10minus11 kJm2and 10minus13 kJm2

44 Correlation between the Average Daily Ratio of SunshineDuration the Index of Clearness and the Latitude and Lon-gitude Equation (18) is obtained by substituting the valuesof the regression coefficients and the parameters in relation(12) This equation is valid nationwide and can be utilized to

compute the global solar radiation for the stations measuringthe sunshine duration Consider

119867

119867

119900

= 02689 minus 03108

119899

119873

+ 22147120601 minus 02729119871 (18)

where 119871 (in radian) stands for the longitude and the otherparameters have been defined already

The value of 094 for the correlation coefficient 119877 isan indication of good correlation between the parametersTable 5 gives the calculated and the estimated values of(18) and the corresponding relative error on the indexesof clearness These errors vary from minus612 for the stationat Ouagadougou to 400 for the station at Bobo whichis an indication of good agreement between estimated andcalculated values

5 Conclusions

Besides the indication of the presence of aerosols in theatmosphere we established a correlation relation betweenthe global radiation and five geographical andmeteorologicalparameters for eight stations disseminated throughout thecountry This correlation of the global radiation intensityshows particularly its dependency with the latitude as thehigher the latitude the greater the global radiation Howeverthis trend no longer stands around urban area like Oua-gadougou which experiences lower radiation than BoromoAnother main contribution is the establishment of a relationof correlation which is valid for the entire countryThereforefor better calibration of solar equipment care must be madein gathering solar radiation data For instance in BurkinaFaso not only are the meteorological stations scarce but alsothey lack direct radiation measurement equipment whichmakes it difficult to quantify this parameter known to be veryimportant for the calibration of solar thermal technologiesAlthough the correlation equations of direct and diffuseradiation exist in the literature they need to be rather inferredfrom the measurements of the countryrsquos stations

This work can be itself extended by incorporating theinfluence of parameters such as the atmospheric pressure andthe dew point temperature or by choosing a reference yearThe actual results will be of great importance for the quan-tification of the global solar radiation especially for thosestations which are only measuring solar sunshine durationFinally the correlation relations obtained will facilitate theestimation of the solar systems performances

Journal of Solar Energy 9

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the Head of the NationalMeteorological Service for fruitful discussion and for givinggraciously precious weather data

References

[1] A K Katiyar and C K Pandey ldquoA review of solar radiationmodelsmdashpart Irdquo Journal of Renewable Energy vol 2013 ArticleID 168048 11 pages 2013

[2] C K Pandey and A K Katiyar ldquoSolar radiation models andmeasurement techniquesrdquo Journal of Energy vol 2013 ArticleID 305207 8 pages 2013

[3] A Angstrom ldquoSolar and terrestrial radiation Report to theinternational commission for solar research on actinometricinvestigations of solar and atmospheric radiationrdquo QuarterlyJournal of the Royal Meteorological Society vol 50 no 210 pp121ndash126 1924

[4] J K Page ldquoThe estimation ofmonthlymean values of daily totalshort wave radiation on-vertical and inclined surfaces fromsun shine records for latitudes 400Nndash400 Srdquo Proceedings of theUnited Nations Conference on New Sources of Energy vol 98 no4 pp 378ndash390 1961

[5] J A Prescott ldquoEvaporation from water surface in relationto solar radiationrdquo Transactions of the Royal Society of SouthAustralia vol 64 pp 114ndash118 1940

[6] S V Tahas D Ristoiu andC Cosma ldquoTrends of the global solarradiation and air temperature in Cluj-Napoca Romania (1984ndash2008)rdquo Romanian Journal in Physics vol 56 no 5-6 pp 784ndash789 2011

[7] T Khatib A Mohamed K Sopian and M Mahmoud ldquoSolarenergy prediction forMalaysia using artificial neural networksrdquoInternational Journal of Photoenergy vol 2012 Article ID419504 16 pages 2012

[8] A A Sabziparvar ldquoGeneral formula for estimation of monthlymean global solar radiation in different climates on the southand north coasts of Iranrdquo International Journal of Photoenergyvol 2007 Article ID 94786 7 pages 2007

[9] H Li F Cao XWang andWMa ldquoA temperature-basedmodelfor estimating monthly average daily global solar radiation inChinardquoTheScientificWorld Journal vol 2014Article ID 1287549 pages 2014

[10] E Quansah L K Amekudzi K Preko et al ldquoEmpirical modelsfor estimating global solar radiation over the Ashanti Region ofGhanardquo Journal of Solar Energy vol 2014 Article ID 897970 6pages 2014

[11] K Skeiker ldquoCorrelation of global solar radiation with commongeographical and meteorological parameters for Damascusprovince Syriardquo Energy Conversion amp Management vol 47 no4 pp 331ndash345 2006

[12] O P Singh S K Srivastava and A Gaur ldquoEmpirical rela-tionship to estimate global radiation from hours of sunshinerdquoEnergy Conversion and Management vol 37 no 4 pp 501ndash5041996

[13] I Sezai and E Tasdemiroglu ldquoEvaluation of the meteorologicaldata in Northern Cyprusrdquo Energy Conversion andManagementvol 36 no 10 pp 953ndash961 1995

[14] A A Trabea and M A M Shaltout ldquoCorrelation of globalsolar radiation with meteorological parameters over EgyptrdquoRenewable Energy vol 21 no 2 pp 297ndash308 2000

[15] J C Ododo and A Usman ldquoCorrelation of total solar radiationwith common meteorological parameters for Yola and CalabarNigeriardquo Energy Conversion amp Management vol 37 no 5 pp521ndash530 1996

[16] S Neske ldquoAbout the relation between sunshine duration andcloudiness on the basis of data fromHamburgrdquo Journal of SolarEnergy vol 2014 Article ID 306871 7 pages 2014

[17] A Dumas A Andrisani M Bonnici et al ldquoA new correlationbetween global solar energy radiation and daily temperaturevariationsrdquo Solar Energy vol 116 pp 117ndash124 2015

[18] A J Garane Climatologie du rayonnement solaire global duBurkina Faso Niamey Niger [Memoire de fin drsquoEtudes drsquoInge-nieurs] 1992

[19] C Baldy Contribution a Lrsquoetude du Rayonnement Global et dela Duree Drsquoinsolation en Haute-Volta Service MeteorologigueOuagdougou Burkina Faso 1976

[20] O Coulibaly 2011 Contribution a lrsquoelaboration drsquoune reglemen-tation thermique et energetique des batiments au Burkina FasoDonnees de base multiparametriques et modelisation thermo-aeraulique sous CoDyBa et TRNSYS [these de doctorat] Univer-site de Ouagadougou Burkina Faso 2011

[21] M Daguenet Les Sechoirs Solaires Theories et PratiquesUNESCO Paris France 1982

[22] Y JannotThermique Solaire EIER mars Ouagadougou Burk-ina Faso 1993

[23] P J Lunde Solar Thermal Engineering Space Heating and HotWater Systems John Wiley amp Sons New York NY USA 1980

[24] K M Latha and K V S Badarinath ldquoSeasonal variations ofPM10and PM

25particles loading over tropical urban environ-

mentrdquo International Journal of Environmental Health Researchvol 15 no 1 pp 63ndash68 2005

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Page 2: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

2 Journal of Solar Energy

Table 1 Geographical locations of the eight cities of concern [20]

Cities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouLatitude (N) 12∘211015840 14∘021015840 11∘111015840 10∘201015840 12∘021015840 11∘451015840 11∘101015840 12∘281015840

Longitude (W) 01∘311015840 00∘021015840 04∘191015840 03∘111015840 00∘221015840E 02∘561015840 01∘091015840 03∘291015840

Altitude (m) 296 277 432 333 308 270 326 308

and the following climatic variables the average daily ratio ofsunshine duration the latitude and the longitude would beinvestigated

2 Equipment and Data Collection

21 Equipment Setup and Data Acquisition The sunshinedurations are meteorological data and are measured by aheliograph of Campbell-Stokes type designed by CASELLAThe data acquisition process is made according to the worldorganization of meteorology standards from heliographbands The global radiation is measured utilizing KIPP andZONEN Pyranometer with numerical ELSB-2 integratorswhich integrates the values of the daily solar radiation Twostations Dedougou and Fada Nrsquogourma are equipped withpyranometer-integrator of CIMEL type which integrates thehourly values of the global solar radiation intensityThe appa-ratuses are installed on concrete construction approximately15 meter in height in places released in order to avoidthe shadow of the surrounding objects Table 1 indicates thelatitude the longitude and the altitude of the eight stations ofconcern Data for global solar radiation sunshine durationthe maximum temperature and relative humidity have beencollected for all cities from 1977 to 2006 [20]

22 Estimation of the Extraterrestrial Solar Radiation on aHorizontal Surface (119867

119900) and the Maximum Sunshine Dura-

tion The extraterrestrial radiation on a horizontal surface(119867119900 kJm2) is determined utilizing the following relation [21ndash

23] Indeed the measurement data of global solar radiationprovided by the national meteorological service are in kJm2Consider

119867

119900= 3795

sdot 10

4 cos (120601) cos (120575) [sin (120596119904) minus

120587120596

119904

180

cos (120596119904)]

(1)

The quantity 3795 sdot 104 given by Jannot [22] to convert theextraterrestrial radiation into kJm2 comes from the term(24120587)lowast119868

0The value of the solar constant 119868

0used by Jannot is

1380Wm2 This quantity takes into account the eccentricitycorrection factor of Earthrsquos orbit which is calculated using thefollowing relation

119862 = 1 + 0034 cos [30 (119898 minus 1) + 119889] (2)

In relations (2) and (4)119898 is the number of the month in theyear starting with January and 119889 the number of the day in themonth Let us announce that by carrying out the calculationprogramme under the Matlab software we took account ofconversions on each time the need is essential

In relations (1) and (3)120601 is the latitude120596119904is the solar angle

of the sundown obtained from the next relation

120596

119904= 119886119903 cos (minus tan (120601) tan (120575)) (3)

120575 is the declination which is inferred from the followingequation

120575 = 2345

∘ cos (30119898 + 119889 minus 202) (4)

We also define the hour angle 120596 as follows

120596(∘) = minus15

∘(12 minus 119879

119904) (5)

where 119879119904is the solar hour of the day The hour angle 120596

119888at

sunset is opposite to its sundown equivalent therefore 120596119888=

minus120596

119897The solar hour at sunrise is given by

(119879

119904)

119897= 12 minus

120596

119904

15

(6)

At sunset the equivalent solar hour becomes

(119879

119904)

119888= 12 +

120596

119904

15

(7)

We can then infer the maximum daily sunshine duration asfollows

119873 =

2120596

119904

15

(8)

3 Estimation of the Regression Coefficients

First of all we averaged over one-year interval the globalradiation (119867) and the sunshine duration data collected bythe national meteorological service from 1992 to 2006 Nextwe estimate the extraterrestrial radiation on a horizontalsurface (119867

119900) and the maximum sunshine duration (119873) for

each station for the entire year Finally a linear relation ofAngstrom type is utilized for a correlation between the indexof clearness (119867119867

119900) and the daily ratio of sunshine duration

(119899119873)Now let us recall the original Angstrom formula which is

[3]

119867 = 119867

1015840

119900(119886

1015840+ 119887

1015840 119899

119873

) (9)

where 119899 is the number of hours of daily sunshine duration119873is the maximum number of hours of daily sunshine duration119867 is the daily global radiation on a horizontal surface 1198671015840

119900is

the daily global radiation on a horizontal surface by clear skyand 1198861015840 and 1198871015840 are coefficients to be determined

Journal of Solar Energy 3

In the original Angstrom formula (9) 119867

1015840

119900is found

to be difficult to determine Thus Page [4] and Prescott[5] formulated a modified relation in a manner that theextraterrestrial radiation on a horizontal surface119867

119900appears

that is

119867 = 119867

119900(119886 + 119887

119899

119873

) (10)

Here 119886 and 119887 are constants to be determined experimentallyfor each region

We rewrite relation (10) in a more useful form as follows

119867

119867

119900

= 119886 + 119887

119899

119873

(11)

In this relation the ratio 119867119867

119900usually denoted by 119870

119879is

known as the index of clearness It is an indication of thedegree of purity of the atmosphere it indicates the presence ofaerosols or water molecules in the atmosphereThe ratio 119899119873is the fraction of sunshine duration expressed as the quotientof the actual (119899) divided by the theoretical (119873) sunshineduration The coefficients 119886 and 119887 are obtained by drawingthe fraction of sunshine duration as a function of the indexof clearness then 119886 is the ordinate and is an indication of thevalue of the fraction of the incident radiation for a coveredsky 119887 on the other hand is the slope of the regression lineThe sum (119886 + 119887) gives an indication on the transmissivity ofthe atmosphere in condition of clear sky [18]

For each city a correlation is established between theglobal solar radiation on a horizontal surface and five mete-orological parameters which are the mean daily extrater-restrial solar radiation intensity the average daily ratio ofsunshine duration the mean daily relative humidity themean daily maximum air temperature and the sine of thesolar declination angle For the entire country a correlationis realized involving the index of clearness the average dailyratio of sunshine duration and the latitude and longitude Forthe relations of correlation involving many parameters wehave utilized amultiple linear regression suggested by Skeiker[11]

119910 = 119888 + 119889119909

1+ 119890119909

2+ 119891119909

3+ 119892119909

4+ ℎ119909

5 (12)

where 119888 119889 119890 119891 119892 ℎ are the regression coefficients and 119909

1

119909

2 1199093 1199094 1199095the correlation parameters The relative error

between the measured and estimated quantities is calculatedfrom the following relation

119890 = [

(119867

119894119898minus 119867

119894119888)

119867

119894119898

] sdot 100

(13)

where 119867119894119898

is the monthly average of daily global radiationmeasured over a horizontal surface for the 119894thmonth and119867

119894119888

is its value obtained from the relation of correlationUsually aprecision in the interval of minus10 to 10 is acceptable Skeiker[11] For the same purpose we can also compute statistical testparameters such as the root mean square differences (RMSD)

035040045050055060065070

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonth

HH

o

Ouaga

DoriFada

Boromo

Bobo

GaouaDeacutedougou

Pocirc

Figure 1 Indexes of clearness for the eight synoptic stations

and the mean bias differences (MBD) given by the followingrelations

RMSD = (

1

119899

119899

sum

119894=1

(119867

119894119898minus 119867

119894119888)

2

)

12

(14)

Equation (14) provides information on the short term perfor-mances of the correlations by allowing a term by term com-parison between the calculated and the measured valuesThesmaller the deviations are the better themodelrsquos performancesare Consider

MBD =

1

119899

119899

sum

119894=1

(119867

119894119898minus 119867

119894119888) (15)

The above test relation provides information on the longterm performance A low MBD is desired A positive valuegives the average amount of underestimation in the cal-culated value and vice versa A drawback of this test isthat overestimation of an individual observation will cancelunderestimation in a separate observation

On the other hand the performance of themodel is testedby the following statistical equation

119905 = [

(119899 minus 1)MBD2

RMSD2 minusMBD2]

12

(16)

The smaller the value of 119905 the better themodelrsquos performanceThe critical quantity is calculated at 119905

1205722where 120572 is the level of

significance and (119899minus1) the degrees of freedomThe degree ofconfidence is about 95 which sets 120572 = 5 and 1205722 = 25

4 Results and Discussion

41 Index of Clearness and Daily Ratio of Sunshine DurationFigure 1 indicates the mean values of the indexes of clearnessfor the eight synoptic stations The indexes are comprisedbetween 036 and 066 which indicates that the atmospherecontains impurities all year longThe lowest value is obtainedat Gaoua a region with a tradition of relatively heavy rainfallThis lowest index is therefore due to the albedo of the cloud

4 Journal of Solar Energy

Table 2 Statistics of regression with modified Angstrom model comparison of the results obtained by the current investigation with thoseof other investigations

TownRegression coefficients 119886 119887 119877

119886 119887 119886 + 119887

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)Dori 013 014 024 062 058 052 075 072 076 095 084 gt90Fada NrsquoGourma 021 020 026 045 049 048 066 069 074 091 071 gt90Ouagadougou 017 022 027 047 045 048 064 067 075 095 090 gt90Bobo Dioulasso 021 026 031 046 043 048 067 069 079 090 079 gt90Gaoua 015 022 026 046 046 048 061 068 074 096 092 gt90Boromo 018 mdash mdash 053 mdash mdash 071 mdash mdash 097 mdash mdashPo 021 mdash mdash 043 mdash mdash 064 mdash mdash 093 mdash mdashDedougou 023 mdash mdash 04 mdash mdash 063 mdash mdash 091 mdash mdashBurkina Faso 018 023 026 049 044 042 067 067 068 081 078 mdash(1) Results obtained by the actual investigation(2) Results obtained by Garane J Ali Period 1971ndash1990(3) Results obtained by Baldy Period 1971ndash1975

and the presence of water molecules in the atmosphere Thehighest index 066 is obtained at Dori a city located atthe northern tip of the country with scarce rainfalls For alleight stations the highest values are observed between themonths of November and February This period correspondsto the dry season with no cloud in the sky However the066 index is an indication of the presence of impurities inthe atmosphere which is due to the important phenomenonof absorption and diffusion of solar radiation by the aerosolparticles During this period the strong winds of harmattancarrying dust sand and many other small objects feed theatmosphere with aerosol particles of all sizes Indeed Lathaand Badarinath [24] have noticed that the concentration ofaerosol particles of sizes PM

10and PM

25is strong during

the same period (harmattan) and weak on the other handduring June to October (monsoon) in urban area in tropicalregions At Gaoua Fada and Bobo Po and Boromo thepermanence and the concentration of the clouds during themonth of August explain the strong drop of the indexes ofclearness On the contrary the increase during the month ofOctober is due to the purity of the atmosphere just after theend of the raining season Figure 2Thedaily ratio of sunshineduration varies between 045 and 086 and represents the ratioof the real sunshine duration (119899) and the theoretical sunshineduration (119873) the nationalmean value being 068 Townswithlower latitudes have lower value of the daily ratio of sunshineduration once again due to the heavy rainfalls which shortenthe sunshine duration

42 The Regression Coefficients of the Modified AngstromrsquosRelation We show in Table 2 the results of this researchbased on the relation of Angstrom For all the stationsthe correlation coefficient 119877 is greater than 090 We nextcompare the actual coefficients with the preliminary resultsestablished by Garane [18] and Baldy [19] for five stations

The values of (119886 + 119887) are quite similar For the valuesobtained throughout the country the coefficient (119886) ratherdecreases from (3)

119888 to (1)

119886 and (119887) increases somehow in

040045050055060065070075080085090

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonth

nN

Ouaga

DoriFada

Boromo

Bobo

GaouaDeacutedougou

Pocirc

Figure 2 Daily ratio of sunshine duration for the eight synopticstations

the same period from (3)

119888 to (1)

119886 This is an indication ofthe presence of aerosols in the atmosphere The values of thecorrelation coefficients 119877 which are greater than 090 for allcities tend to indicate good correlations between the globalradiation and the sunshine duration On the other hand themean value of 081 for the entire country is a good indicationof the disparities between the radiation intensities of theregions due to the latitude especially when we move fromnorth to south We present next the correlation results whenwe take into account the latitude and longitude

43 Correlation of the Radiation Intensity for the Eight Syn-optic Stations Table 3 shows the regression and correlationcoefficients obtained for each synoptic station Substitutingthe correlation parameters 119909

1 1199092 1199093 1199094 and 119909

5in relation

(12) respectively by119867o 119899119873119867119903 119879max and sin 120575 we obtain

the following

119867 = 119888 + 119889119867

119900+ 119890

119899

119873

+ 119891119867

119903+ 119892119879max + ℎ sin 120575 (17)

Journal of Solar Energy 5

Table 3 Regression and correlation coefficients for the eight synoptic stations

Town Regression coefficients Correlation coefficients 119877119888 119889 119890 119891 119892 ℎ

Ouagadougou minus4202917 147 2827241 minus5234 minus28851 minus715912 09921Dori minus2970840 118 2470840 minus4267 minus21596 minus566502 09663Bobo minus2534865 125 1946764 minus7046 minus30073 minus496691 09716Fada minus1252850 084 1191321 minus5395 minus13242 minus279462 09703Boromo minus1867415 088 2633683 minus5352 minus23908 mdash 09718Gaoua minus3259717 118 2239381 minus2937 minus20406 minus608006 09958Po minus5851229 231 4106196 minus8936 minus84351 minus1058665 09661Dedougou minus5879168 176 3619121 minus1337 minus29869 minus980501 09782

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

15

16

17

18

19

20times10

3

Measured valuesMultiple regressionAngstrom equation

Figure 3 Comparison between measured and correlated values atOuagadougou

Hence for a given station the correlation between the globalradiation on a horizontal surface and the five parameters isobtained by replacing the regression coefficients 119888 119889 119890 119891 119892and ℎ with their respective numerical values

The values of the regression coefficients 119888 119889 119890 119891 119892 andℎ vary both with and within the same location The studyof Skeiker [11] showed that when the number of regressioncoefficients for the multiple linear regression models ishigher results obtained are better The correlation obtained isnevertheless good between the parameters The lowest valueof the correlation coefficient 119877 is obtained at Po (119877 = 09661)while the highest is reached at Gaoua (119877 = 09958) Forthe city of Boromo a correlation is established between themonthly mean daily global solar radiation on a horizontalsurface and four parameters because the coefficient ldquoℎrdquo showsa different behavior to the rest of the city when we take intoaccount the solar declination angle

We compare in the following Figures 3ndash6 the measuredsolar radiation intensity its estimated values obtained fromthe Angstrom relation and the results obtained from thecorrelations based on the five meteorological parametersThe figures clearly show two picks corresponding to two hotseasons respectively fromMarch to June and in October Asfor the indexes of clearness and the ratio of sunshine durationthe lowest radiation values are observed during the rainingseason

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

17

19

21

23

Measured valuesMultiple regressionAngstrom equation

Figure 4 Comparison between measured and correlated values atDori

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

Measured valuesMultiple regressionAngstrom equation

Figure 5 Comparison between measured and correlated values atBoromo

The histograms show clearly when comparing the mea-sured and the correlation values with the Angstrom relationresults that the meteorological parameters (humidity tem-perature and declination) have an influence on the globalradiation intensity received by a horizontal surface Tables4(a)ndash4(d) display the values of the measured global radiationand the correlated values based on the five meteorologi-cal parameters We present also the statistical parametersobtained in each case

6 Journal of Solar Energy

Table4(a)119890M

BDR

MSD

119905and

119905-criticforO

uagado

ugou

andDori(b)119890M

BDR

MSD

119905and

119905-criticforB

oboandFada(c)119890M

BDR

MSD

119905and

119905-criticforB

orom

oandGaoua(d)

119890M

BDR

MSD

119905and

119905-criticforP

oandDedou

gou

(a)

Mon

thOuagado

ugou

Dori

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1593619

1580818

080

12802

1883522

189091

6minus039

minus7394

February

179438

1181673

8minus12

5minus22357

211576

9210470

1053

11068

March

1871065

1846550

131

24515

2237844

2194349

198

43495

April

1860

079

1871814

minus063

minus11734

220313

42259076

minus248

minus5594

2May

189695

7191010

0minus069

minus1314

32228402

2241255

minus057

minus12854

June

1851597

1830751

113

20846

2164

215

2128711

167

35504

July

1709075

1712545

minus020

minus3470

2110696

208818

710

822509

August

156770

1157890

0minus071

minus1119

92025322

2083244

minus278

minus5792

3Septem

ber

1738429

1735441

017

2988

212670

7209595

514

730752

Octob

er1783503

1770843

071

12660

2075201

2067421

038

7780

Novem

ber

168916

9169873

6minus057

minus9567

1980527

1983045

minus013

minus2518

Decem

ber

1583508

1585848

minus015

minus2341

1852580

1867057

minus078

minus14477

minus273Eminus12

909E

minus13

MBD

1418

131236

RMSD

638Eminus14

966E

minus15

119905

2201

2201

119905-critic

(b)

Mon

thBo

boFada

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1670671

1693578

minus13

7minus2290

7177792

01761675

091

16245

February

1927308

191292

7075

14381

1947206

1919814

141

27392

March

193975

81946355

minus034

minus6597

199476

41993531

006

1233

April

1892000

1885458

035

6541

1977473

2004

124

minus13

5minus26651

May

188078

31901057

minus10

8minus20275

1990334

1990476

minus001

minus14

2June

181798

51795433

124

22551

1919464

1905735

072

1372

9July

1687848

1687692

001

156

1825211

182194

5018

3266

August

1607626

163990

3minus201

minus32277

175710

4174992

4041

7181

Septem

ber

1774492

1722878

291

51614

1757560

179695

4minus224

minus39394

Octob

er1736800

1783496

minus269

minus46

696

180374

31764

291

219

39452

Novem

ber

1734772

1703431

181

31341

1776281

177078

2031

5498

Decem

ber

160979

61607629

013

2167

1692480

1740289

minus282

minus47809

144E

minus11

142E

minus11

MBD

2678

724835

RMSD

178E

minus13

190E

minus13

119905

2201

2201

119905-critic

Journal of Solar Energy 7

(c)

Mon

thBo

romo

Gaoua

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1722759

17119

58

063

10801

1534755

155413

7minus12

6minus19383

February

188579

41895517

minus052

minus9723

172016

6170593

4083

14232

March

193870

41919834

097

18870

1738572

1726071

072

12501

April

1928661

1942054

minus069

minus13392

1729266

1748253

minus110

minus1898

8May

195699

3198478

1minus14

2minus2778

8174898

21759066

minus058

minus10084

June

189094

8184817

0226

4277

81666223

1652431

083

1379

2July

1770250

1752081

103

1817

01478479

1476378

014

2101

August

1660503

168813

9minus16

6minus27636

1385025

138510

1minus001

minus076

Septem

ber

1778886

1800818

minus12

3minus2193

21527047

1530628

minus023

minus3581

Octob

er1890286

1856596

178

33690

1673526

1669872

022

3654

Novem

ber

1785876

1804

286

minus10

3minus18409

1561020

155818

6018

2835

Decem

ber

1690628

1696056

minus032

minus5429

1463367

1460369

020

2997

minus849Eminus12

440

Eminus12

MBD

2314

31093

4RM

SD12

2Eminus13

133E

minus13

119905

2201

2201

119905-critic

(d)

Mon

thPo

Dedou

gou

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1673449

166977

9022

3669

1664

515

160379

5365

6072

0February

1854006

186291

9minus048

minus8913

1857876

1865884

minus043

minus8008

March

1899224

1855346

231

43878

19114

69

1943673

minus16

8minus32204

April

1775381

1831460

minus316

minus56078

194899

51925219

122

23776

May

1919388

1909568

051

9820

202519

0200578

1096

19409

June

185472

2183297

7117

2174

51909455

1910229

minus004

minus774

July

1650000

1676535

minus16

1minus26535

1821364

1837366

minus088

minus16002

August

1591200

1554206

232

3699

4172390

91743045

minus111

minus1913

5Septem

ber

1740

550

1777604

minus213

minus37054

1941336

192178

510

119551

Octob

er1866

828

1845435

115

21393

191479

21907477

038

7316

Novem

ber

1700718

1687818

076

1290

0170896

3173612

8minus15

9minus2716

6Decem

ber

1592868

1614687

minus13

7minus21819

1598303

162578

5minus17

2minus27483

minus256Eminus11

minus10

6Eminus11

MBD

29266

26271

RMSD

290Eminus13

134E

minus13

119905

2201

2201

119905-critic

8 Journal of Solar Energy

Table 5 Calculated and estimated quantities along with the error based on relation (18)

Quantities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouCalculated 049 059 050 045 051 052 050 052Correlated 052 058 048 044 051 051 049 051119890 () minus612 169 400 222 192 192 200 192

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

21

Measured valuesMultiple regressionAngstrom equation

Figure 6 Comparison between measured and correlated values atDedougou

For the station of Ouagadougou the relative error variesbetween minus125 and 131 while the RMSD is estimatedto be 14181 kJm2 For Dori station the relative error iscomprised between ndash278 and 198 and the RMSD is equalto 31236 kJm2 All these results are in the acceptable marginWe obtained small errors because the values simulated arecompared with the average of measurement data over theperiod of the study (1977ndash2006) We would obtain highererrors if we carried out the comparisons with the measureddata for unspecified year

The relative errors vary between minus269 and 291 andbetween ndash282 and 219 respectively for the stations ofBobo and Fadawhile the RMSD are equal to 26787 kJm2 and24835 kJm2 for the same stations Once again the marginerror is acceptable

For the station of Boromo the relative error fluctuatesbetween minus166 and 226 while the RMSD is equal to23143 kJm2 The relative error varies between minus126 and083 and the RMSD is equal to 10934 kJm2 for the stationof Gaoua Once again these quantities are acceptable

For the two stations Po and Dedougou the respectiverelative errors vary between minus316 and 232 and betweenndash172 and 365 while the RMSD are equal to 29266 kJm2and 26271 kJm2 respectively The margin is acceptable TheMBD for the eight stations is comprised between 10minus11 kJm2and 10minus13 kJm2

44 Correlation between the Average Daily Ratio of SunshineDuration the Index of Clearness and the Latitude and Lon-gitude Equation (18) is obtained by substituting the valuesof the regression coefficients and the parameters in relation(12) This equation is valid nationwide and can be utilized to

compute the global solar radiation for the stations measuringthe sunshine duration Consider

119867

119867

119900

= 02689 minus 03108

119899

119873

+ 22147120601 minus 02729119871 (18)

where 119871 (in radian) stands for the longitude and the otherparameters have been defined already

The value of 094 for the correlation coefficient 119877 isan indication of good correlation between the parametersTable 5 gives the calculated and the estimated values of(18) and the corresponding relative error on the indexesof clearness These errors vary from minus612 for the stationat Ouagadougou to 400 for the station at Bobo whichis an indication of good agreement between estimated andcalculated values

5 Conclusions

Besides the indication of the presence of aerosols in theatmosphere we established a correlation relation betweenthe global radiation and five geographical andmeteorologicalparameters for eight stations disseminated throughout thecountry This correlation of the global radiation intensityshows particularly its dependency with the latitude as thehigher the latitude the greater the global radiation Howeverthis trend no longer stands around urban area like Oua-gadougou which experiences lower radiation than BoromoAnother main contribution is the establishment of a relationof correlation which is valid for the entire countryThereforefor better calibration of solar equipment care must be madein gathering solar radiation data For instance in BurkinaFaso not only are the meteorological stations scarce but alsothey lack direct radiation measurement equipment whichmakes it difficult to quantify this parameter known to be veryimportant for the calibration of solar thermal technologiesAlthough the correlation equations of direct and diffuseradiation exist in the literature they need to be rather inferredfrom the measurements of the countryrsquos stations

This work can be itself extended by incorporating theinfluence of parameters such as the atmospheric pressure andthe dew point temperature or by choosing a reference yearThe actual results will be of great importance for the quan-tification of the global solar radiation especially for thosestations which are only measuring solar sunshine durationFinally the correlation relations obtained will facilitate theestimation of the solar systems performances

Journal of Solar Energy 9

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the Head of the NationalMeteorological Service for fruitful discussion and for givinggraciously precious weather data

References

[1] A K Katiyar and C K Pandey ldquoA review of solar radiationmodelsmdashpart Irdquo Journal of Renewable Energy vol 2013 ArticleID 168048 11 pages 2013

[2] C K Pandey and A K Katiyar ldquoSolar radiation models andmeasurement techniquesrdquo Journal of Energy vol 2013 ArticleID 305207 8 pages 2013

[3] A Angstrom ldquoSolar and terrestrial radiation Report to theinternational commission for solar research on actinometricinvestigations of solar and atmospheric radiationrdquo QuarterlyJournal of the Royal Meteorological Society vol 50 no 210 pp121ndash126 1924

[4] J K Page ldquoThe estimation ofmonthlymean values of daily totalshort wave radiation on-vertical and inclined surfaces fromsun shine records for latitudes 400Nndash400 Srdquo Proceedings of theUnited Nations Conference on New Sources of Energy vol 98 no4 pp 378ndash390 1961

[5] J A Prescott ldquoEvaporation from water surface in relationto solar radiationrdquo Transactions of the Royal Society of SouthAustralia vol 64 pp 114ndash118 1940

[6] S V Tahas D Ristoiu andC Cosma ldquoTrends of the global solarradiation and air temperature in Cluj-Napoca Romania (1984ndash2008)rdquo Romanian Journal in Physics vol 56 no 5-6 pp 784ndash789 2011

[7] T Khatib A Mohamed K Sopian and M Mahmoud ldquoSolarenergy prediction forMalaysia using artificial neural networksrdquoInternational Journal of Photoenergy vol 2012 Article ID419504 16 pages 2012

[8] A A Sabziparvar ldquoGeneral formula for estimation of monthlymean global solar radiation in different climates on the southand north coasts of Iranrdquo International Journal of Photoenergyvol 2007 Article ID 94786 7 pages 2007

[9] H Li F Cao XWang andWMa ldquoA temperature-basedmodelfor estimating monthly average daily global solar radiation inChinardquoTheScientificWorld Journal vol 2014Article ID 1287549 pages 2014

[10] E Quansah L K Amekudzi K Preko et al ldquoEmpirical modelsfor estimating global solar radiation over the Ashanti Region ofGhanardquo Journal of Solar Energy vol 2014 Article ID 897970 6pages 2014

[11] K Skeiker ldquoCorrelation of global solar radiation with commongeographical and meteorological parameters for Damascusprovince Syriardquo Energy Conversion amp Management vol 47 no4 pp 331ndash345 2006

[12] O P Singh S K Srivastava and A Gaur ldquoEmpirical rela-tionship to estimate global radiation from hours of sunshinerdquoEnergy Conversion and Management vol 37 no 4 pp 501ndash5041996

[13] I Sezai and E Tasdemiroglu ldquoEvaluation of the meteorologicaldata in Northern Cyprusrdquo Energy Conversion andManagementvol 36 no 10 pp 953ndash961 1995

[14] A A Trabea and M A M Shaltout ldquoCorrelation of globalsolar radiation with meteorological parameters over EgyptrdquoRenewable Energy vol 21 no 2 pp 297ndash308 2000

[15] J C Ododo and A Usman ldquoCorrelation of total solar radiationwith common meteorological parameters for Yola and CalabarNigeriardquo Energy Conversion amp Management vol 37 no 5 pp521ndash530 1996

[16] S Neske ldquoAbout the relation between sunshine duration andcloudiness on the basis of data fromHamburgrdquo Journal of SolarEnergy vol 2014 Article ID 306871 7 pages 2014

[17] A Dumas A Andrisani M Bonnici et al ldquoA new correlationbetween global solar energy radiation and daily temperaturevariationsrdquo Solar Energy vol 116 pp 117ndash124 2015

[18] A J Garane Climatologie du rayonnement solaire global duBurkina Faso Niamey Niger [Memoire de fin drsquoEtudes drsquoInge-nieurs] 1992

[19] C Baldy Contribution a Lrsquoetude du Rayonnement Global et dela Duree Drsquoinsolation en Haute-Volta Service MeteorologigueOuagdougou Burkina Faso 1976

[20] O Coulibaly 2011 Contribution a lrsquoelaboration drsquoune reglemen-tation thermique et energetique des batiments au Burkina FasoDonnees de base multiparametriques et modelisation thermo-aeraulique sous CoDyBa et TRNSYS [these de doctorat] Univer-site de Ouagadougou Burkina Faso 2011

[21] M Daguenet Les Sechoirs Solaires Theories et PratiquesUNESCO Paris France 1982

[22] Y JannotThermique Solaire EIER mars Ouagadougou Burk-ina Faso 1993

[23] P J Lunde Solar Thermal Engineering Space Heating and HotWater Systems John Wiley amp Sons New York NY USA 1980

[24] K M Latha and K V S Badarinath ldquoSeasonal variations ofPM10and PM

25particles loading over tropical urban environ-

mentrdquo International Journal of Environmental Health Researchvol 15 no 1 pp 63ndash68 2005

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Page 3: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

Journal of Solar Energy 3

In the original Angstrom formula (9) 119867

1015840

119900is found

to be difficult to determine Thus Page [4] and Prescott[5] formulated a modified relation in a manner that theextraterrestrial radiation on a horizontal surface119867

119900appears

that is

119867 = 119867

119900(119886 + 119887

119899

119873

) (10)

Here 119886 and 119887 are constants to be determined experimentallyfor each region

We rewrite relation (10) in a more useful form as follows

119867

119867

119900

= 119886 + 119887

119899

119873

(11)

In this relation the ratio 119867119867

119900usually denoted by 119870

119879is

known as the index of clearness It is an indication of thedegree of purity of the atmosphere it indicates the presence ofaerosols or water molecules in the atmosphereThe ratio 119899119873is the fraction of sunshine duration expressed as the quotientof the actual (119899) divided by the theoretical (119873) sunshineduration The coefficients 119886 and 119887 are obtained by drawingthe fraction of sunshine duration as a function of the indexof clearness then 119886 is the ordinate and is an indication of thevalue of the fraction of the incident radiation for a coveredsky 119887 on the other hand is the slope of the regression lineThe sum (119886 + 119887) gives an indication on the transmissivity ofthe atmosphere in condition of clear sky [18]

For each city a correlation is established between theglobal solar radiation on a horizontal surface and five mete-orological parameters which are the mean daily extrater-restrial solar radiation intensity the average daily ratio ofsunshine duration the mean daily relative humidity themean daily maximum air temperature and the sine of thesolar declination angle For the entire country a correlationis realized involving the index of clearness the average dailyratio of sunshine duration and the latitude and longitude Forthe relations of correlation involving many parameters wehave utilized amultiple linear regression suggested by Skeiker[11]

119910 = 119888 + 119889119909

1+ 119890119909

2+ 119891119909

3+ 119892119909

4+ ℎ119909

5 (12)

where 119888 119889 119890 119891 119892 ℎ are the regression coefficients and 119909

1

119909

2 1199093 1199094 1199095the correlation parameters The relative error

between the measured and estimated quantities is calculatedfrom the following relation

119890 = [

(119867

119894119898minus 119867

119894119888)

119867

119894119898

] sdot 100

(13)

where 119867119894119898

is the monthly average of daily global radiationmeasured over a horizontal surface for the 119894thmonth and119867

119894119888

is its value obtained from the relation of correlationUsually aprecision in the interval of minus10 to 10 is acceptable Skeiker[11] For the same purpose we can also compute statistical testparameters such as the root mean square differences (RMSD)

035040045050055060065070

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonth

HH

o

Ouaga

DoriFada

Boromo

Bobo

GaouaDeacutedougou

Pocirc

Figure 1 Indexes of clearness for the eight synoptic stations

and the mean bias differences (MBD) given by the followingrelations

RMSD = (

1

119899

119899

sum

119894=1

(119867

119894119898minus 119867

119894119888)

2

)

12

(14)

Equation (14) provides information on the short term perfor-mances of the correlations by allowing a term by term com-parison between the calculated and the measured valuesThesmaller the deviations are the better themodelrsquos performancesare Consider

MBD =

1

119899

119899

sum

119894=1

(119867

119894119898minus 119867

119894119888) (15)

The above test relation provides information on the longterm performance A low MBD is desired A positive valuegives the average amount of underestimation in the cal-culated value and vice versa A drawback of this test isthat overestimation of an individual observation will cancelunderestimation in a separate observation

On the other hand the performance of themodel is testedby the following statistical equation

119905 = [

(119899 minus 1)MBD2

RMSD2 minusMBD2]

12

(16)

The smaller the value of 119905 the better themodelrsquos performanceThe critical quantity is calculated at 119905

1205722where 120572 is the level of

significance and (119899minus1) the degrees of freedomThe degree ofconfidence is about 95 which sets 120572 = 5 and 1205722 = 25

4 Results and Discussion

41 Index of Clearness and Daily Ratio of Sunshine DurationFigure 1 indicates the mean values of the indexes of clearnessfor the eight synoptic stations The indexes are comprisedbetween 036 and 066 which indicates that the atmospherecontains impurities all year longThe lowest value is obtainedat Gaoua a region with a tradition of relatively heavy rainfallThis lowest index is therefore due to the albedo of the cloud

4 Journal of Solar Energy

Table 2 Statistics of regression with modified Angstrom model comparison of the results obtained by the current investigation with thoseof other investigations

TownRegression coefficients 119886 119887 119877

119886 119887 119886 + 119887

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)Dori 013 014 024 062 058 052 075 072 076 095 084 gt90Fada NrsquoGourma 021 020 026 045 049 048 066 069 074 091 071 gt90Ouagadougou 017 022 027 047 045 048 064 067 075 095 090 gt90Bobo Dioulasso 021 026 031 046 043 048 067 069 079 090 079 gt90Gaoua 015 022 026 046 046 048 061 068 074 096 092 gt90Boromo 018 mdash mdash 053 mdash mdash 071 mdash mdash 097 mdash mdashPo 021 mdash mdash 043 mdash mdash 064 mdash mdash 093 mdash mdashDedougou 023 mdash mdash 04 mdash mdash 063 mdash mdash 091 mdash mdashBurkina Faso 018 023 026 049 044 042 067 067 068 081 078 mdash(1) Results obtained by the actual investigation(2) Results obtained by Garane J Ali Period 1971ndash1990(3) Results obtained by Baldy Period 1971ndash1975

and the presence of water molecules in the atmosphere Thehighest index 066 is obtained at Dori a city located atthe northern tip of the country with scarce rainfalls For alleight stations the highest values are observed between themonths of November and February This period correspondsto the dry season with no cloud in the sky However the066 index is an indication of the presence of impurities inthe atmosphere which is due to the important phenomenonof absorption and diffusion of solar radiation by the aerosolparticles During this period the strong winds of harmattancarrying dust sand and many other small objects feed theatmosphere with aerosol particles of all sizes Indeed Lathaand Badarinath [24] have noticed that the concentration ofaerosol particles of sizes PM

10and PM

25is strong during

the same period (harmattan) and weak on the other handduring June to October (monsoon) in urban area in tropicalregions At Gaoua Fada and Bobo Po and Boromo thepermanence and the concentration of the clouds during themonth of August explain the strong drop of the indexes ofclearness On the contrary the increase during the month ofOctober is due to the purity of the atmosphere just after theend of the raining season Figure 2Thedaily ratio of sunshineduration varies between 045 and 086 and represents the ratioof the real sunshine duration (119899) and the theoretical sunshineduration (119873) the nationalmean value being 068 Townswithlower latitudes have lower value of the daily ratio of sunshineduration once again due to the heavy rainfalls which shortenthe sunshine duration

42 The Regression Coefficients of the Modified AngstromrsquosRelation We show in Table 2 the results of this researchbased on the relation of Angstrom For all the stationsthe correlation coefficient 119877 is greater than 090 We nextcompare the actual coefficients with the preliminary resultsestablished by Garane [18] and Baldy [19] for five stations

The values of (119886 + 119887) are quite similar For the valuesobtained throughout the country the coefficient (119886) ratherdecreases from (3)

119888 to (1)

119886 and (119887) increases somehow in

040045050055060065070075080085090

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonth

nN

Ouaga

DoriFada

Boromo

Bobo

GaouaDeacutedougou

Pocirc

Figure 2 Daily ratio of sunshine duration for the eight synopticstations

the same period from (3)

119888 to (1)

119886 This is an indication ofthe presence of aerosols in the atmosphere The values of thecorrelation coefficients 119877 which are greater than 090 for allcities tend to indicate good correlations between the globalradiation and the sunshine duration On the other hand themean value of 081 for the entire country is a good indicationof the disparities between the radiation intensities of theregions due to the latitude especially when we move fromnorth to south We present next the correlation results whenwe take into account the latitude and longitude

43 Correlation of the Radiation Intensity for the Eight Syn-optic Stations Table 3 shows the regression and correlationcoefficients obtained for each synoptic station Substitutingthe correlation parameters 119909

1 1199092 1199093 1199094 and 119909

5in relation

(12) respectively by119867o 119899119873119867119903 119879max and sin 120575 we obtain

the following

119867 = 119888 + 119889119867

119900+ 119890

119899

119873

+ 119891119867

119903+ 119892119879max + ℎ sin 120575 (17)

Journal of Solar Energy 5

Table 3 Regression and correlation coefficients for the eight synoptic stations

Town Regression coefficients Correlation coefficients 119877119888 119889 119890 119891 119892 ℎ

Ouagadougou minus4202917 147 2827241 minus5234 minus28851 minus715912 09921Dori minus2970840 118 2470840 minus4267 minus21596 minus566502 09663Bobo minus2534865 125 1946764 minus7046 minus30073 minus496691 09716Fada minus1252850 084 1191321 minus5395 minus13242 minus279462 09703Boromo minus1867415 088 2633683 minus5352 minus23908 mdash 09718Gaoua minus3259717 118 2239381 minus2937 minus20406 minus608006 09958Po minus5851229 231 4106196 minus8936 minus84351 minus1058665 09661Dedougou minus5879168 176 3619121 minus1337 minus29869 minus980501 09782

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

15

16

17

18

19

20times10

3

Measured valuesMultiple regressionAngstrom equation

Figure 3 Comparison between measured and correlated values atOuagadougou

Hence for a given station the correlation between the globalradiation on a horizontal surface and the five parameters isobtained by replacing the regression coefficients 119888 119889 119890 119891 119892and ℎ with their respective numerical values

The values of the regression coefficients 119888 119889 119890 119891 119892 andℎ vary both with and within the same location The studyof Skeiker [11] showed that when the number of regressioncoefficients for the multiple linear regression models ishigher results obtained are better The correlation obtained isnevertheless good between the parameters The lowest valueof the correlation coefficient 119877 is obtained at Po (119877 = 09661)while the highest is reached at Gaoua (119877 = 09958) Forthe city of Boromo a correlation is established between themonthly mean daily global solar radiation on a horizontalsurface and four parameters because the coefficient ldquoℎrdquo showsa different behavior to the rest of the city when we take intoaccount the solar declination angle

We compare in the following Figures 3ndash6 the measuredsolar radiation intensity its estimated values obtained fromthe Angstrom relation and the results obtained from thecorrelations based on the five meteorological parametersThe figures clearly show two picks corresponding to two hotseasons respectively fromMarch to June and in October Asfor the indexes of clearness and the ratio of sunshine durationthe lowest radiation values are observed during the rainingseason

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

17

19

21

23

Measured valuesMultiple regressionAngstrom equation

Figure 4 Comparison between measured and correlated values atDori

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

Measured valuesMultiple regressionAngstrom equation

Figure 5 Comparison between measured and correlated values atBoromo

The histograms show clearly when comparing the mea-sured and the correlation values with the Angstrom relationresults that the meteorological parameters (humidity tem-perature and declination) have an influence on the globalradiation intensity received by a horizontal surface Tables4(a)ndash4(d) display the values of the measured global radiationand the correlated values based on the five meteorologi-cal parameters We present also the statistical parametersobtained in each case

6 Journal of Solar Energy

Table4(a)119890M

BDR

MSD

119905and

119905-criticforO

uagado

ugou

andDori(b)119890M

BDR

MSD

119905and

119905-criticforB

oboandFada(c)119890M

BDR

MSD

119905and

119905-criticforB

orom

oandGaoua(d)

119890M

BDR

MSD

119905and

119905-criticforP

oandDedou

gou

(a)

Mon

thOuagado

ugou

Dori

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1593619

1580818

080

12802

1883522

189091

6minus039

minus7394

February

179438

1181673

8minus12

5minus22357

211576

9210470

1053

11068

March

1871065

1846550

131

24515

2237844

2194349

198

43495

April

1860

079

1871814

minus063

minus11734

220313

42259076

minus248

minus5594

2May

189695

7191010

0minus069

minus1314

32228402

2241255

minus057

minus12854

June

1851597

1830751

113

20846

2164

215

2128711

167

35504

July

1709075

1712545

minus020

minus3470

2110696

208818

710

822509

August

156770

1157890

0minus071

minus1119

92025322

2083244

minus278

minus5792

3Septem

ber

1738429

1735441

017

2988

212670

7209595

514

730752

Octob

er1783503

1770843

071

12660

2075201

2067421

038

7780

Novem

ber

168916

9169873

6minus057

minus9567

1980527

1983045

minus013

minus2518

Decem

ber

1583508

1585848

minus015

minus2341

1852580

1867057

minus078

minus14477

minus273Eminus12

909E

minus13

MBD

1418

131236

RMSD

638Eminus14

966E

minus15

119905

2201

2201

119905-critic

(b)

Mon

thBo

boFada

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1670671

1693578

minus13

7minus2290

7177792

01761675

091

16245

February

1927308

191292

7075

14381

1947206

1919814

141

27392

March

193975

81946355

minus034

minus6597

199476

41993531

006

1233

April

1892000

1885458

035

6541

1977473

2004

124

minus13

5minus26651

May

188078

31901057

minus10

8minus20275

1990334

1990476

minus001

minus14

2June

181798

51795433

124

22551

1919464

1905735

072

1372

9July

1687848

1687692

001

156

1825211

182194

5018

3266

August

1607626

163990

3minus201

minus32277

175710

4174992

4041

7181

Septem

ber

1774492

1722878

291

51614

1757560

179695

4minus224

minus39394

Octob

er1736800

1783496

minus269

minus46

696

180374

31764

291

219

39452

Novem

ber

1734772

1703431

181

31341

1776281

177078

2031

5498

Decem

ber

160979

61607629

013

2167

1692480

1740289

minus282

minus47809

144E

minus11

142E

minus11

MBD

2678

724835

RMSD

178E

minus13

190E

minus13

119905

2201

2201

119905-critic

Journal of Solar Energy 7

(c)

Mon

thBo

romo

Gaoua

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1722759

17119

58

063

10801

1534755

155413

7minus12

6minus19383

February

188579

41895517

minus052

minus9723

172016

6170593

4083

14232

March

193870

41919834

097

18870

1738572

1726071

072

12501

April

1928661

1942054

minus069

minus13392

1729266

1748253

minus110

minus1898

8May

195699

3198478

1minus14

2minus2778

8174898

21759066

minus058

minus10084

June

189094

8184817

0226

4277

81666223

1652431

083

1379

2July

1770250

1752081

103

1817

01478479

1476378

014

2101

August

1660503

168813

9minus16

6minus27636

1385025

138510

1minus001

minus076

Septem

ber

1778886

1800818

minus12

3minus2193

21527047

1530628

minus023

minus3581

Octob

er1890286

1856596

178

33690

1673526

1669872

022

3654

Novem

ber

1785876

1804

286

minus10

3minus18409

1561020

155818

6018

2835

Decem

ber

1690628

1696056

minus032

minus5429

1463367

1460369

020

2997

minus849Eminus12

440

Eminus12

MBD

2314

31093

4RM

SD12

2Eminus13

133E

minus13

119905

2201

2201

119905-critic

(d)

Mon

thPo

Dedou

gou

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1673449

166977

9022

3669

1664

515

160379

5365

6072

0February

1854006

186291

9minus048

minus8913

1857876

1865884

minus043

minus8008

March

1899224

1855346

231

43878

19114

69

1943673

minus16

8minus32204

April

1775381

1831460

minus316

minus56078

194899

51925219

122

23776

May

1919388

1909568

051

9820

202519

0200578

1096

19409

June

185472

2183297

7117

2174

51909455

1910229

minus004

minus774

July

1650000

1676535

minus16

1minus26535

1821364

1837366

minus088

minus16002

August

1591200

1554206

232

3699

4172390

91743045

minus111

minus1913

5Septem

ber

1740

550

1777604

minus213

minus37054

1941336

192178

510

119551

Octob

er1866

828

1845435

115

21393

191479

21907477

038

7316

Novem

ber

1700718

1687818

076

1290

0170896

3173612

8minus15

9minus2716

6Decem

ber

1592868

1614687

minus13

7minus21819

1598303

162578

5minus17

2minus27483

minus256Eminus11

minus10

6Eminus11

MBD

29266

26271

RMSD

290Eminus13

134E

minus13

119905

2201

2201

119905-critic

8 Journal of Solar Energy

Table 5 Calculated and estimated quantities along with the error based on relation (18)

Quantities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouCalculated 049 059 050 045 051 052 050 052Correlated 052 058 048 044 051 051 049 051119890 () minus612 169 400 222 192 192 200 192

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

21

Measured valuesMultiple regressionAngstrom equation

Figure 6 Comparison between measured and correlated values atDedougou

For the station of Ouagadougou the relative error variesbetween minus125 and 131 while the RMSD is estimatedto be 14181 kJm2 For Dori station the relative error iscomprised between ndash278 and 198 and the RMSD is equalto 31236 kJm2 All these results are in the acceptable marginWe obtained small errors because the values simulated arecompared with the average of measurement data over theperiod of the study (1977ndash2006) We would obtain highererrors if we carried out the comparisons with the measureddata for unspecified year

The relative errors vary between minus269 and 291 andbetween ndash282 and 219 respectively for the stations ofBobo and Fadawhile the RMSD are equal to 26787 kJm2 and24835 kJm2 for the same stations Once again the marginerror is acceptable

For the station of Boromo the relative error fluctuatesbetween minus166 and 226 while the RMSD is equal to23143 kJm2 The relative error varies between minus126 and083 and the RMSD is equal to 10934 kJm2 for the stationof Gaoua Once again these quantities are acceptable

For the two stations Po and Dedougou the respectiverelative errors vary between minus316 and 232 and betweenndash172 and 365 while the RMSD are equal to 29266 kJm2and 26271 kJm2 respectively The margin is acceptable TheMBD for the eight stations is comprised between 10minus11 kJm2and 10minus13 kJm2

44 Correlation between the Average Daily Ratio of SunshineDuration the Index of Clearness and the Latitude and Lon-gitude Equation (18) is obtained by substituting the valuesof the regression coefficients and the parameters in relation(12) This equation is valid nationwide and can be utilized to

compute the global solar radiation for the stations measuringthe sunshine duration Consider

119867

119867

119900

= 02689 minus 03108

119899

119873

+ 22147120601 minus 02729119871 (18)

where 119871 (in radian) stands for the longitude and the otherparameters have been defined already

The value of 094 for the correlation coefficient 119877 isan indication of good correlation between the parametersTable 5 gives the calculated and the estimated values of(18) and the corresponding relative error on the indexesof clearness These errors vary from minus612 for the stationat Ouagadougou to 400 for the station at Bobo whichis an indication of good agreement between estimated andcalculated values

5 Conclusions

Besides the indication of the presence of aerosols in theatmosphere we established a correlation relation betweenthe global radiation and five geographical andmeteorologicalparameters for eight stations disseminated throughout thecountry This correlation of the global radiation intensityshows particularly its dependency with the latitude as thehigher the latitude the greater the global radiation Howeverthis trend no longer stands around urban area like Oua-gadougou which experiences lower radiation than BoromoAnother main contribution is the establishment of a relationof correlation which is valid for the entire countryThereforefor better calibration of solar equipment care must be madein gathering solar radiation data For instance in BurkinaFaso not only are the meteorological stations scarce but alsothey lack direct radiation measurement equipment whichmakes it difficult to quantify this parameter known to be veryimportant for the calibration of solar thermal technologiesAlthough the correlation equations of direct and diffuseradiation exist in the literature they need to be rather inferredfrom the measurements of the countryrsquos stations

This work can be itself extended by incorporating theinfluence of parameters such as the atmospheric pressure andthe dew point temperature or by choosing a reference yearThe actual results will be of great importance for the quan-tification of the global solar radiation especially for thosestations which are only measuring solar sunshine durationFinally the correlation relations obtained will facilitate theestimation of the solar systems performances

Journal of Solar Energy 9

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the Head of the NationalMeteorological Service for fruitful discussion and for givinggraciously precious weather data

References

[1] A K Katiyar and C K Pandey ldquoA review of solar radiationmodelsmdashpart Irdquo Journal of Renewable Energy vol 2013 ArticleID 168048 11 pages 2013

[2] C K Pandey and A K Katiyar ldquoSolar radiation models andmeasurement techniquesrdquo Journal of Energy vol 2013 ArticleID 305207 8 pages 2013

[3] A Angstrom ldquoSolar and terrestrial radiation Report to theinternational commission for solar research on actinometricinvestigations of solar and atmospheric radiationrdquo QuarterlyJournal of the Royal Meteorological Society vol 50 no 210 pp121ndash126 1924

[4] J K Page ldquoThe estimation ofmonthlymean values of daily totalshort wave radiation on-vertical and inclined surfaces fromsun shine records for latitudes 400Nndash400 Srdquo Proceedings of theUnited Nations Conference on New Sources of Energy vol 98 no4 pp 378ndash390 1961

[5] J A Prescott ldquoEvaporation from water surface in relationto solar radiationrdquo Transactions of the Royal Society of SouthAustralia vol 64 pp 114ndash118 1940

[6] S V Tahas D Ristoiu andC Cosma ldquoTrends of the global solarradiation and air temperature in Cluj-Napoca Romania (1984ndash2008)rdquo Romanian Journal in Physics vol 56 no 5-6 pp 784ndash789 2011

[7] T Khatib A Mohamed K Sopian and M Mahmoud ldquoSolarenergy prediction forMalaysia using artificial neural networksrdquoInternational Journal of Photoenergy vol 2012 Article ID419504 16 pages 2012

[8] A A Sabziparvar ldquoGeneral formula for estimation of monthlymean global solar radiation in different climates on the southand north coasts of Iranrdquo International Journal of Photoenergyvol 2007 Article ID 94786 7 pages 2007

[9] H Li F Cao XWang andWMa ldquoA temperature-basedmodelfor estimating monthly average daily global solar radiation inChinardquoTheScientificWorld Journal vol 2014Article ID 1287549 pages 2014

[10] E Quansah L K Amekudzi K Preko et al ldquoEmpirical modelsfor estimating global solar radiation over the Ashanti Region ofGhanardquo Journal of Solar Energy vol 2014 Article ID 897970 6pages 2014

[11] K Skeiker ldquoCorrelation of global solar radiation with commongeographical and meteorological parameters for Damascusprovince Syriardquo Energy Conversion amp Management vol 47 no4 pp 331ndash345 2006

[12] O P Singh S K Srivastava and A Gaur ldquoEmpirical rela-tionship to estimate global radiation from hours of sunshinerdquoEnergy Conversion and Management vol 37 no 4 pp 501ndash5041996

[13] I Sezai and E Tasdemiroglu ldquoEvaluation of the meteorologicaldata in Northern Cyprusrdquo Energy Conversion andManagementvol 36 no 10 pp 953ndash961 1995

[14] A A Trabea and M A M Shaltout ldquoCorrelation of globalsolar radiation with meteorological parameters over EgyptrdquoRenewable Energy vol 21 no 2 pp 297ndash308 2000

[15] J C Ododo and A Usman ldquoCorrelation of total solar radiationwith common meteorological parameters for Yola and CalabarNigeriardquo Energy Conversion amp Management vol 37 no 5 pp521ndash530 1996

[16] S Neske ldquoAbout the relation between sunshine duration andcloudiness on the basis of data fromHamburgrdquo Journal of SolarEnergy vol 2014 Article ID 306871 7 pages 2014

[17] A Dumas A Andrisani M Bonnici et al ldquoA new correlationbetween global solar energy radiation and daily temperaturevariationsrdquo Solar Energy vol 116 pp 117ndash124 2015

[18] A J Garane Climatologie du rayonnement solaire global duBurkina Faso Niamey Niger [Memoire de fin drsquoEtudes drsquoInge-nieurs] 1992

[19] C Baldy Contribution a Lrsquoetude du Rayonnement Global et dela Duree Drsquoinsolation en Haute-Volta Service MeteorologigueOuagdougou Burkina Faso 1976

[20] O Coulibaly 2011 Contribution a lrsquoelaboration drsquoune reglemen-tation thermique et energetique des batiments au Burkina FasoDonnees de base multiparametriques et modelisation thermo-aeraulique sous CoDyBa et TRNSYS [these de doctorat] Univer-site de Ouagadougou Burkina Faso 2011

[21] M Daguenet Les Sechoirs Solaires Theories et PratiquesUNESCO Paris France 1982

[22] Y JannotThermique Solaire EIER mars Ouagadougou Burk-ina Faso 1993

[23] P J Lunde Solar Thermal Engineering Space Heating and HotWater Systems John Wiley amp Sons New York NY USA 1980

[24] K M Latha and K V S Badarinath ldquoSeasonal variations ofPM10and PM

25particles loading over tropical urban environ-

mentrdquo International Journal of Environmental Health Researchvol 15 no 1 pp 63ndash68 2005

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Page 4: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

4 Journal of Solar Energy

Table 2 Statistics of regression with modified Angstrom model comparison of the results obtained by the current investigation with thoseof other investigations

TownRegression coefficients 119886 119887 119877

119886 119887 119886 + 119887

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)Dori 013 014 024 062 058 052 075 072 076 095 084 gt90Fada NrsquoGourma 021 020 026 045 049 048 066 069 074 091 071 gt90Ouagadougou 017 022 027 047 045 048 064 067 075 095 090 gt90Bobo Dioulasso 021 026 031 046 043 048 067 069 079 090 079 gt90Gaoua 015 022 026 046 046 048 061 068 074 096 092 gt90Boromo 018 mdash mdash 053 mdash mdash 071 mdash mdash 097 mdash mdashPo 021 mdash mdash 043 mdash mdash 064 mdash mdash 093 mdash mdashDedougou 023 mdash mdash 04 mdash mdash 063 mdash mdash 091 mdash mdashBurkina Faso 018 023 026 049 044 042 067 067 068 081 078 mdash(1) Results obtained by the actual investigation(2) Results obtained by Garane J Ali Period 1971ndash1990(3) Results obtained by Baldy Period 1971ndash1975

and the presence of water molecules in the atmosphere Thehighest index 066 is obtained at Dori a city located atthe northern tip of the country with scarce rainfalls For alleight stations the highest values are observed between themonths of November and February This period correspondsto the dry season with no cloud in the sky However the066 index is an indication of the presence of impurities inthe atmosphere which is due to the important phenomenonof absorption and diffusion of solar radiation by the aerosolparticles During this period the strong winds of harmattancarrying dust sand and many other small objects feed theatmosphere with aerosol particles of all sizes Indeed Lathaand Badarinath [24] have noticed that the concentration ofaerosol particles of sizes PM

10and PM

25is strong during

the same period (harmattan) and weak on the other handduring June to October (monsoon) in urban area in tropicalregions At Gaoua Fada and Bobo Po and Boromo thepermanence and the concentration of the clouds during themonth of August explain the strong drop of the indexes ofclearness On the contrary the increase during the month ofOctober is due to the purity of the atmosphere just after theend of the raining season Figure 2Thedaily ratio of sunshineduration varies between 045 and 086 and represents the ratioof the real sunshine duration (119899) and the theoretical sunshineduration (119873) the nationalmean value being 068 Townswithlower latitudes have lower value of the daily ratio of sunshineduration once again due to the heavy rainfalls which shortenthe sunshine duration

42 The Regression Coefficients of the Modified AngstromrsquosRelation We show in Table 2 the results of this researchbased on the relation of Angstrom For all the stationsthe correlation coefficient 119877 is greater than 090 We nextcompare the actual coefficients with the preliminary resultsestablished by Garane [18] and Baldy [19] for five stations

The values of (119886 + 119887) are quite similar For the valuesobtained throughout the country the coefficient (119886) ratherdecreases from (3)

119888 to (1)

119886 and (119887) increases somehow in

040045050055060065070075080085090

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonth

nN

Ouaga

DoriFada

Boromo

Bobo

GaouaDeacutedougou

Pocirc

Figure 2 Daily ratio of sunshine duration for the eight synopticstations

the same period from (3)

119888 to (1)

119886 This is an indication ofthe presence of aerosols in the atmosphere The values of thecorrelation coefficients 119877 which are greater than 090 for allcities tend to indicate good correlations between the globalradiation and the sunshine duration On the other hand themean value of 081 for the entire country is a good indicationof the disparities between the radiation intensities of theregions due to the latitude especially when we move fromnorth to south We present next the correlation results whenwe take into account the latitude and longitude

43 Correlation of the Radiation Intensity for the Eight Syn-optic Stations Table 3 shows the regression and correlationcoefficients obtained for each synoptic station Substitutingthe correlation parameters 119909

1 1199092 1199093 1199094 and 119909

5in relation

(12) respectively by119867o 119899119873119867119903 119879max and sin 120575 we obtain

the following

119867 = 119888 + 119889119867

119900+ 119890

119899

119873

+ 119891119867

119903+ 119892119879max + ℎ sin 120575 (17)

Journal of Solar Energy 5

Table 3 Regression and correlation coefficients for the eight synoptic stations

Town Regression coefficients Correlation coefficients 119877119888 119889 119890 119891 119892 ℎ

Ouagadougou minus4202917 147 2827241 minus5234 minus28851 minus715912 09921Dori minus2970840 118 2470840 minus4267 minus21596 minus566502 09663Bobo minus2534865 125 1946764 minus7046 minus30073 minus496691 09716Fada minus1252850 084 1191321 minus5395 minus13242 minus279462 09703Boromo minus1867415 088 2633683 minus5352 minus23908 mdash 09718Gaoua minus3259717 118 2239381 minus2937 minus20406 minus608006 09958Po minus5851229 231 4106196 minus8936 minus84351 minus1058665 09661Dedougou minus5879168 176 3619121 minus1337 minus29869 minus980501 09782

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

15

16

17

18

19

20times10

3

Measured valuesMultiple regressionAngstrom equation

Figure 3 Comparison between measured and correlated values atOuagadougou

Hence for a given station the correlation between the globalradiation on a horizontal surface and the five parameters isobtained by replacing the regression coefficients 119888 119889 119890 119891 119892and ℎ with their respective numerical values

The values of the regression coefficients 119888 119889 119890 119891 119892 andℎ vary both with and within the same location The studyof Skeiker [11] showed that when the number of regressioncoefficients for the multiple linear regression models ishigher results obtained are better The correlation obtained isnevertheless good between the parameters The lowest valueof the correlation coefficient 119877 is obtained at Po (119877 = 09661)while the highest is reached at Gaoua (119877 = 09958) Forthe city of Boromo a correlation is established between themonthly mean daily global solar radiation on a horizontalsurface and four parameters because the coefficient ldquoℎrdquo showsa different behavior to the rest of the city when we take intoaccount the solar declination angle

We compare in the following Figures 3ndash6 the measuredsolar radiation intensity its estimated values obtained fromthe Angstrom relation and the results obtained from thecorrelations based on the five meteorological parametersThe figures clearly show two picks corresponding to two hotseasons respectively fromMarch to June and in October Asfor the indexes of clearness and the ratio of sunshine durationthe lowest radiation values are observed during the rainingseason

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

17

19

21

23

Measured valuesMultiple regressionAngstrom equation

Figure 4 Comparison between measured and correlated values atDori

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

Measured valuesMultiple regressionAngstrom equation

Figure 5 Comparison between measured and correlated values atBoromo

The histograms show clearly when comparing the mea-sured and the correlation values with the Angstrom relationresults that the meteorological parameters (humidity tem-perature and declination) have an influence on the globalradiation intensity received by a horizontal surface Tables4(a)ndash4(d) display the values of the measured global radiationand the correlated values based on the five meteorologi-cal parameters We present also the statistical parametersobtained in each case

6 Journal of Solar Energy

Table4(a)119890M

BDR

MSD

119905and

119905-criticforO

uagado

ugou

andDori(b)119890M

BDR

MSD

119905and

119905-criticforB

oboandFada(c)119890M

BDR

MSD

119905and

119905-criticforB

orom

oandGaoua(d)

119890M

BDR

MSD

119905and

119905-criticforP

oandDedou

gou

(a)

Mon

thOuagado

ugou

Dori

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1593619

1580818

080

12802

1883522

189091

6minus039

minus7394

February

179438

1181673

8minus12

5minus22357

211576

9210470

1053

11068

March

1871065

1846550

131

24515

2237844

2194349

198

43495

April

1860

079

1871814

minus063

minus11734

220313

42259076

minus248

minus5594

2May

189695

7191010

0minus069

minus1314

32228402

2241255

minus057

minus12854

June

1851597

1830751

113

20846

2164

215

2128711

167

35504

July

1709075

1712545

minus020

minus3470

2110696

208818

710

822509

August

156770

1157890

0minus071

minus1119

92025322

2083244

minus278

minus5792

3Septem

ber

1738429

1735441

017

2988

212670

7209595

514

730752

Octob

er1783503

1770843

071

12660

2075201

2067421

038

7780

Novem

ber

168916

9169873

6minus057

minus9567

1980527

1983045

minus013

minus2518

Decem

ber

1583508

1585848

minus015

minus2341

1852580

1867057

minus078

minus14477

minus273Eminus12

909E

minus13

MBD

1418

131236

RMSD

638Eminus14

966E

minus15

119905

2201

2201

119905-critic

(b)

Mon

thBo

boFada

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1670671

1693578

minus13

7minus2290

7177792

01761675

091

16245

February

1927308

191292

7075

14381

1947206

1919814

141

27392

March

193975

81946355

minus034

minus6597

199476

41993531

006

1233

April

1892000

1885458

035

6541

1977473

2004

124

minus13

5minus26651

May

188078

31901057

minus10

8minus20275

1990334

1990476

minus001

minus14

2June

181798

51795433

124

22551

1919464

1905735

072

1372

9July

1687848

1687692

001

156

1825211

182194

5018

3266

August

1607626

163990

3minus201

minus32277

175710

4174992

4041

7181

Septem

ber

1774492

1722878

291

51614

1757560

179695

4minus224

minus39394

Octob

er1736800

1783496

minus269

minus46

696

180374

31764

291

219

39452

Novem

ber

1734772

1703431

181

31341

1776281

177078

2031

5498

Decem

ber

160979

61607629

013

2167

1692480

1740289

minus282

minus47809

144E

minus11

142E

minus11

MBD

2678

724835

RMSD

178E

minus13

190E

minus13

119905

2201

2201

119905-critic

Journal of Solar Energy 7

(c)

Mon

thBo

romo

Gaoua

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1722759

17119

58

063

10801

1534755

155413

7minus12

6minus19383

February

188579

41895517

minus052

minus9723

172016

6170593

4083

14232

March

193870

41919834

097

18870

1738572

1726071

072

12501

April

1928661

1942054

minus069

minus13392

1729266

1748253

minus110

minus1898

8May

195699

3198478

1minus14

2minus2778

8174898

21759066

minus058

minus10084

June

189094

8184817

0226

4277

81666223

1652431

083

1379

2July

1770250

1752081

103

1817

01478479

1476378

014

2101

August

1660503

168813

9minus16

6minus27636

1385025

138510

1minus001

minus076

Septem

ber

1778886

1800818

minus12

3minus2193

21527047

1530628

minus023

minus3581

Octob

er1890286

1856596

178

33690

1673526

1669872

022

3654

Novem

ber

1785876

1804

286

minus10

3minus18409

1561020

155818

6018

2835

Decem

ber

1690628

1696056

minus032

minus5429

1463367

1460369

020

2997

minus849Eminus12

440

Eminus12

MBD

2314

31093

4RM

SD12

2Eminus13

133E

minus13

119905

2201

2201

119905-critic

(d)

Mon

thPo

Dedou

gou

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1673449

166977

9022

3669

1664

515

160379

5365

6072

0February

1854006

186291

9minus048

minus8913

1857876

1865884

minus043

minus8008

March

1899224

1855346

231

43878

19114

69

1943673

minus16

8minus32204

April

1775381

1831460

minus316

minus56078

194899

51925219

122

23776

May

1919388

1909568

051

9820

202519

0200578

1096

19409

June

185472

2183297

7117

2174

51909455

1910229

minus004

minus774

July

1650000

1676535

minus16

1minus26535

1821364

1837366

minus088

minus16002

August

1591200

1554206

232

3699

4172390

91743045

minus111

minus1913

5Septem

ber

1740

550

1777604

minus213

minus37054

1941336

192178

510

119551

Octob

er1866

828

1845435

115

21393

191479

21907477

038

7316

Novem

ber

1700718

1687818

076

1290

0170896

3173612

8minus15

9minus2716

6Decem

ber

1592868

1614687

minus13

7minus21819

1598303

162578

5minus17

2minus27483

minus256Eminus11

minus10

6Eminus11

MBD

29266

26271

RMSD

290Eminus13

134E

minus13

119905

2201

2201

119905-critic

8 Journal of Solar Energy

Table 5 Calculated and estimated quantities along with the error based on relation (18)

Quantities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouCalculated 049 059 050 045 051 052 050 052Correlated 052 058 048 044 051 051 049 051119890 () minus612 169 400 222 192 192 200 192

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

21

Measured valuesMultiple regressionAngstrom equation

Figure 6 Comparison between measured and correlated values atDedougou

For the station of Ouagadougou the relative error variesbetween minus125 and 131 while the RMSD is estimatedto be 14181 kJm2 For Dori station the relative error iscomprised between ndash278 and 198 and the RMSD is equalto 31236 kJm2 All these results are in the acceptable marginWe obtained small errors because the values simulated arecompared with the average of measurement data over theperiod of the study (1977ndash2006) We would obtain highererrors if we carried out the comparisons with the measureddata for unspecified year

The relative errors vary between minus269 and 291 andbetween ndash282 and 219 respectively for the stations ofBobo and Fadawhile the RMSD are equal to 26787 kJm2 and24835 kJm2 for the same stations Once again the marginerror is acceptable

For the station of Boromo the relative error fluctuatesbetween minus166 and 226 while the RMSD is equal to23143 kJm2 The relative error varies between minus126 and083 and the RMSD is equal to 10934 kJm2 for the stationof Gaoua Once again these quantities are acceptable

For the two stations Po and Dedougou the respectiverelative errors vary between minus316 and 232 and betweenndash172 and 365 while the RMSD are equal to 29266 kJm2and 26271 kJm2 respectively The margin is acceptable TheMBD for the eight stations is comprised between 10minus11 kJm2and 10minus13 kJm2

44 Correlation between the Average Daily Ratio of SunshineDuration the Index of Clearness and the Latitude and Lon-gitude Equation (18) is obtained by substituting the valuesof the regression coefficients and the parameters in relation(12) This equation is valid nationwide and can be utilized to

compute the global solar radiation for the stations measuringthe sunshine duration Consider

119867

119867

119900

= 02689 minus 03108

119899

119873

+ 22147120601 minus 02729119871 (18)

where 119871 (in radian) stands for the longitude and the otherparameters have been defined already

The value of 094 for the correlation coefficient 119877 isan indication of good correlation between the parametersTable 5 gives the calculated and the estimated values of(18) and the corresponding relative error on the indexesof clearness These errors vary from minus612 for the stationat Ouagadougou to 400 for the station at Bobo whichis an indication of good agreement between estimated andcalculated values

5 Conclusions

Besides the indication of the presence of aerosols in theatmosphere we established a correlation relation betweenthe global radiation and five geographical andmeteorologicalparameters for eight stations disseminated throughout thecountry This correlation of the global radiation intensityshows particularly its dependency with the latitude as thehigher the latitude the greater the global radiation Howeverthis trend no longer stands around urban area like Oua-gadougou which experiences lower radiation than BoromoAnother main contribution is the establishment of a relationof correlation which is valid for the entire countryThereforefor better calibration of solar equipment care must be madein gathering solar radiation data For instance in BurkinaFaso not only are the meteorological stations scarce but alsothey lack direct radiation measurement equipment whichmakes it difficult to quantify this parameter known to be veryimportant for the calibration of solar thermal technologiesAlthough the correlation equations of direct and diffuseradiation exist in the literature they need to be rather inferredfrom the measurements of the countryrsquos stations

This work can be itself extended by incorporating theinfluence of parameters such as the atmospheric pressure andthe dew point temperature or by choosing a reference yearThe actual results will be of great importance for the quan-tification of the global solar radiation especially for thosestations which are only measuring solar sunshine durationFinally the correlation relations obtained will facilitate theestimation of the solar systems performances

Journal of Solar Energy 9

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the Head of the NationalMeteorological Service for fruitful discussion and for givinggraciously precious weather data

References

[1] A K Katiyar and C K Pandey ldquoA review of solar radiationmodelsmdashpart Irdquo Journal of Renewable Energy vol 2013 ArticleID 168048 11 pages 2013

[2] C K Pandey and A K Katiyar ldquoSolar radiation models andmeasurement techniquesrdquo Journal of Energy vol 2013 ArticleID 305207 8 pages 2013

[3] A Angstrom ldquoSolar and terrestrial radiation Report to theinternational commission for solar research on actinometricinvestigations of solar and atmospheric radiationrdquo QuarterlyJournal of the Royal Meteorological Society vol 50 no 210 pp121ndash126 1924

[4] J K Page ldquoThe estimation ofmonthlymean values of daily totalshort wave radiation on-vertical and inclined surfaces fromsun shine records for latitudes 400Nndash400 Srdquo Proceedings of theUnited Nations Conference on New Sources of Energy vol 98 no4 pp 378ndash390 1961

[5] J A Prescott ldquoEvaporation from water surface in relationto solar radiationrdquo Transactions of the Royal Society of SouthAustralia vol 64 pp 114ndash118 1940

[6] S V Tahas D Ristoiu andC Cosma ldquoTrends of the global solarradiation and air temperature in Cluj-Napoca Romania (1984ndash2008)rdquo Romanian Journal in Physics vol 56 no 5-6 pp 784ndash789 2011

[7] T Khatib A Mohamed K Sopian and M Mahmoud ldquoSolarenergy prediction forMalaysia using artificial neural networksrdquoInternational Journal of Photoenergy vol 2012 Article ID419504 16 pages 2012

[8] A A Sabziparvar ldquoGeneral formula for estimation of monthlymean global solar radiation in different climates on the southand north coasts of Iranrdquo International Journal of Photoenergyvol 2007 Article ID 94786 7 pages 2007

[9] H Li F Cao XWang andWMa ldquoA temperature-basedmodelfor estimating monthly average daily global solar radiation inChinardquoTheScientificWorld Journal vol 2014Article ID 1287549 pages 2014

[10] E Quansah L K Amekudzi K Preko et al ldquoEmpirical modelsfor estimating global solar radiation over the Ashanti Region ofGhanardquo Journal of Solar Energy vol 2014 Article ID 897970 6pages 2014

[11] K Skeiker ldquoCorrelation of global solar radiation with commongeographical and meteorological parameters for Damascusprovince Syriardquo Energy Conversion amp Management vol 47 no4 pp 331ndash345 2006

[12] O P Singh S K Srivastava and A Gaur ldquoEmpirical rela-tionship to estimate global radiation from hours of sunshinerdquoEnergy Conversion and Management vol 37 no 4 pp 501ndash5041996

[13] I Sezai and E Tasdemiroglu ldquoEvaluation of the meteorologicaldata in Northern Cyprusrdquo Energy Conversion andManagementvol 36 no 10 pp 953ndash961 1995

[14] A A Trabea and M A M Shaltout ldquoCorrelation of globalsolar radiation with meteorological parameters over EgyptrdquoRenewable Energy vol 21 no 2 pp 297ndash308 2000

[15] J C Ododo and A Usman ldquoCorrelation of total solar radiationwith common meteorological parameters for Yola and CalabarNigeriardquo Energy Conversion amp Management vol 37 no 5 pp521ndash530 1996

[16] S Neske ldquoAbout the relation between sunshine duration andcloudiness on the basis of data fromHamburgrdquo Journal of SolarEnergy vol 2014 Article ID 306871 7 pages 2014

[17] A Dumas A Andrisani M Bonnici et al ldquoA new correlationbetween global solar energy radiation and daily temperaturevariationsrdquo Solar Energy vol 116 pp 117ndash124 2015

[18] A J Garane Climatologie du rayonnement solaire global duBurkina Faso Niamey Niger [Memoire de fin drsquoEtudes drsquoInge-nieurs] 1992

[19] C Baldy Contribution a Lrsquoetude du Rayonnement Global et dela Duree Drsquoinsolation en Haute-Volta Service MeteorologigueOuagdougou Burkina Faso 1976

[20] O Coulibaly 2011 Contribution a lrsquoelaboration drsquoune reglemen-tation thermique et energetique des batiments au Burkina FasoDonnees de base multiparametriques et modelisation thermo-aeraulique sous CoDyBa et TRNSYS [these de doctorat] Univer-site de Ouagadougou Burkina Faso 2011

[21] M Daguenet Les Sechoirs Solaires Theories et PratiquesUNESCO Paris France 1982

[22] Y JannotThermique Solaire EIER mars Ouagadougou Burk-ina Faso 1993

[23] P J Lunde Solar Thermal Engineering Space Heating and HotWater Systems John Wiley amp Sons New York NY USA 1980

[24] K M Latha and K V S Badarinath ldquoSeasonal variations ofPM10and PM

25particles loading over tropical urban environ-

mentrdquo International Journal of Environmental Health Researchvol 15 no 1 pp 63ndash68 2005

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Page 5: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

Journal of Solar Energy 5

Table 3 Regression and correlation coefficients for the eight synoptic stations

Town Regression coefficients Correlation coefficients 119877119888 119889 119890 119891 119892 ℎ

Ouagadougou minus4202917 147 2827241 minus5234 minus28851 minus715912 09921Dori minus2970840 118 2470840 minus4267 minus21596 minus566502 09663Bobo minus2534865 125 1946764 minus7046 minus30073 minus496691 09716Fada minus1252850 084 1191321 minus5395 minus13242 minus279462 09703Boromo minus1867415 088 2633683 minus5352 minus23908 mdash 09718Gaoua minus3259717 118 2239381 minus2937 minus20406 minus608006 09958Po minus5851229 231 4106196 minus8936 minus84351 minus1058665 09661Dedougou minus5879168 176 3619121 minus1337 minus29869 minus980501 09782

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

15

16

17

18

19

20times10

3

Measured valuesMultiple regressionAngstrom equation

Figure 3 Comparison between measured and correlated values atOuagadougou

Hence for a given station the correlation between the globalradiation on a horizontal surface and the five parameters isobtained by replacing the regression coefficients 119888 119889 119890 119891 119892and ℎ with their respective numerical values

The values of the regression coefficients 119888 119889 119890 119891 119892 andℎ vary both with and within the same location The studyof Skeiker [11] showed that when the number of regressioncoefficients for the multiple linear regression models ishigher results obtained are better The correlation obtained isnevertheless good between the parameters The lowest valueof the correlation coefficient 119877 is obtained at Po (119877 = 09661)while the highest is reached at Gaoua (119877 = 09958) Forthe city of Boromo a correlation is established between themonthly mean daily global solar radiation on a horizontalsurface and four parameters because the coefficient ldquoℎrdquo showsa different behavior to the rest of the city when we take intoaccount the solar declination angle

We compare in the following Figures 3ndash6 the measuredsolar radiation intensity its estimated values obtained fromthe Angstrom relation and the results obtained from thecorrelations based on the five meteorological parametersThe figures clearly show two picks corresponding to two hotseasons respectively fromMarch to June and in October Asfor the indexes of clearness and the ratio of sunshine durationthe lowest radiation values are observed during the rainingseason

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

17

19

21

23

Measured valuesMultiple regressionAngstrom equation

Figure 4 Comparison between measured and correlated values atDori

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

Measured valuesMultiple regressionAngstrom equation

Figure 5 Comparison between measured and correlated values atBoromo

The histograms show clearly when comparing the mea-sured and the correlation values with the Angstrom relationresults that the meteorological parameters (humidity tem-perature and declination) have an influence on the globalradiation intensity received by a horizontal surface Tables4(a)ndash4(d) display the values of the measured global radiationand the correlated values based on the five meteorologi-cal parameters We present also the statistical parametersobtained in each case

6 Journal of Solar Energy

Table4(a)119890M

BDR

MSD

119905and

119905-criticforO

uagado

ugou

andDori(b)119890M

BDR

MSD

119905and

119905-criticforB

oboandFada(c)119890M

BDR

MSD

119905and

119905-criticforB

orom

oandGaoua(d)

119890M

BDR

MSD

119905and

119905-criticforP

oandDedou

gou

(a)

Mon

thOuagado

ugou

Dori

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1593619

1580818

080

12802

1883522

189091

6minus039

minus7394

February

179438

1181673

8minus12

5minus22357

211576

9210470

1053

11068

March

1871065

1846550

131

24515

2237844

2194349

198

43495

April

1860

079

1871814

minus063

minus11734

220313

42259076

minus248

minus5594

2May

189695

7191010

0minus069

minus1314

32228402

2241255

minus057

minus12854

June

1851597

1830751

113

20846

2164

215

2128711

167

35504

July

1709075

1712545

minus020

minus3470

2110696

208818

710

822509

August

156770

1157890

0minus071

minus1119

92025322

2083244

minus278

minus5792

3Septem

ber

1738429

1735441

017

2988

212670

7209595

514

730752

Octob

er1783503

1770843

071

12660

2075201

2067421

038

7780

Novem

ber

168916

9169873

6minus057

minus9567

1980527

1983045

minus013

minus2518

Decem

ber

1583508

1585848

minus015

minus2341

1852580

1867057

minus078

minus14477

minus273Eminus12

909E

minus13

MBD

1418

131236

RMSD

638Eminus14

966E

minus15

119905

2201

2201

119905-critic

(b)

Mon

thBo

boFada

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1670671

1693578

minus13

7minus2290

7177792

01761675

091

16245

February

1927308

191292

7075

14381

1947206

1919814

141

27392

March

193975

81946355

minus034

minus6597

199476

41993531

006

1233

April

1892000

1885458

035

6541

1977473

2004

124

minus13

5minus26651

May

188078

31901057

minus10

8minus20275

1990334

1990476

minus001

minus14

2June

181798

51795433

124

22551

1919464

1905735

072

1372

9July

1687848

1687692

001

156

1825211

182194

5018

3266

August

1607626

163990

3minus201

minus32277

175710

4174992

4041

7181

Septem

ber

1774492

1722878

291

51614

1757560

179695

4minus224

minus39394

Octob

er1736800

1783496

minus269

minus46

696

180374

31764

291

219

39452

Novem

ber

1734772

1703431

181

31341

1776281

177078

2031

5498

Decem

ber

160979

61607629

013

2167

1692480

1740289

minus282

minus47809

144E

minus11

142E

minus11

MBD

2678

724835

RMSD

178E

minus13

190E

minus13

119905

2201

2201

119905-critic

Journal of Solar Energy 7

(c)

Mon

thBo

romo

Gaoua

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1722759

17119

58

063

10801

1534755

155413

7minus12

6minus19383

February

188579

41895517

minus052

minus9723

172016

6170593

4083

14232

March

193870

41919834

097

18870

1738572

1726071

072

12501

April

1928661

1942054

minus069

minus13392

1729266

1748253

minus110

minus1898

8May

195699

3198478

1minus14

2minus2778

8174898

21759066

minus058

minus10084

June

189094

8184817

0226

4277

81666223

1652431

083

1379

2July

1770250

1752081

103

1817

01478479

1476378

014

2101

August

1660503

168813

9minus16

6minus27636

1385025

138510

1minus001

minus076

Septem

ber

1778886

1800818

minus12

3minus2193

21527047

1530628

minus023

minus3581

Octob

er1890286

1856596

178

33690

1673526

1669872

022

3654

Novem

ber

1785876

1804

286

minus10

3minus18409

1561020

155818

6018

2835

Decem

ber

1690628

1696056

minus032

minus5429

1463367

1460369

020

2997

minus849Eminus12

440

Eminus12

MBD

2314

31093

4RM

SD12

2Eminus13

133E

minus13

119905

2201

2201

119905-critic

(d)

Mon

thPo

Dedou

gou

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1673449

166977

9022

3669

1664

515

160379

5365

6072

0February

1854006

186291

9minus048

minus8913

1857876

1865884

minus043

minus8008

March

1899224

1855346

231

43878

19114

69

1943673

minus16

8minus32204

April

1775381

1831460

minus316

minus56078

194899

51925219

122

23776

May

1919388

1909568

051

9820

202519

0200578

1096

19409

June

185472

2183297

7117

2174

51909455

1910229

minus004

minus774

July

1650000

1676535

minus16

1minus26535

1821364

1837366

minus088

minus16002

August

1591200

1554206

232

3699

4172390

91743045

minus111

minus1913

5Septem

ber

1740

550

1777604

minus213

minus37054

1941336

192178

510

119551

Octob

er1866

828

1845435

115

21393

191479

21907477

038

7316

Novem

ber

1700718

1687818

076

1290

0170896

3173612

8minus15

9minus2716

6Decem

ber

1592868

1614687

minus13

7minus21819

1598303

162578

5minus17

2minus27483

minus256Eminus11

minus10

6Eminus11

MBD

29266

26271

RMSD

290Eminus13

134E

minus13

119905

2201

2201

119905-critic

8 Journal of Solar Energy

Table 5 Calculated and estimated quantities along with the error based on relation (18)

Quantities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouCalculated 049 059 050 045 051 052 050 052Correlated 052 058 048 044 051 051 049 051119890 () minus612 169 400 222 192 192 200 192

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

21

Measured valuesMultiple regressionAngstrom equation

Figure 6 Comparison between measured and correlated values atDedougou

For the station of Ouagadougou the relative error variesbetween minus125 and 131 while the RMSD is estimatedto be 14181 kJm2 For Dori station the relative error iscomprised between ndash278 and 198 and the RMSD is equalto 31236 kJm2 All these results are in the acceptable marginWe obtained small errors because the values simulated arecompared with the average of measurement data over theperiod of the study (1977ndash2006) We would obtain highererrors if we carried out the comparisons with the measureddata for unspecified year

The relative errors vary between minus269 and 291 andbetween ndash282 and 219 respectively for the stations ofBobo and Fadawhile the RMSD are equal to 26787 kJm2 and24835 kJm2 for the same stations Once again the marginerror is acceptable

For the station of Boromo the relative error fluctuatesbetween minus166 and 226 while the RMSD is equal to23143 kJm2 The relative error varies between minus126 and083 and the RMSD is equal to 10934 kJm2 for the stationof Gaoua Once again these quantities are acceptable

For the two stations Po and Dedougou the respectiverelative errors vary between minus316 and 232 and betweenndash172 and 365 while the RMSD are equal to 29266 kJm2and 26271 kJm2 respectively The margin is acceptable TheMBD for the eight stations is comprised between 10minus11 kJm2and 10minus13 kJm2

44 Correlation between the Average Daily Ratio of SunshineDuration the Index of Clearness and the Latitude and Lon-gitude Equation (18) is obtained by substituting the valuesof the regression coefficients and the parameters in relation(12) This equation is valid nationwide and can be utilized to

compute the global solar radiation for the stations measuringthe sunshine duration Consider

119867

119867

119900

= 02689 minus 03108

119899

119873

+ 22147120601 minus 02729119871 (18)

where 119871 (in radian) stands for the longitude and the otherparameters have been defined already

The value of 094 for the correlation coefficient 119877 isan indication of good correlation between the parametersTable 5 gives the calculated and the estimated values of(18) and the corresponding relative error on the indexesof clearness These errors vary from minus612 for the stationat Ouagadougou to 400 for the station at Bobo whichis an indication of good agreement between estimated andcalculated values

5 Conclusions

Besides the indication of the presence of aerosols in theatmosphere we established a correlation relation betweenthe global radiation and five geographical andmeteorologicalparameters for eight stations disseminated throughout thecountry This correlation of the global radiation intensityshows particularly its dependency with the latitude as thehigher the latitude the greater the global radiation Howeverthis trend no longer stands around urban area like Oua-gadougou which experiences lower radiation than BoromoAnother main contribution is the establishment of a relationof correlation which is valid for the entire countryThereforefor better calibration of solar equipment care must be madein gathering solar radiation data For instance in BurkinaFaso not only are the meteorological stations scarce but alsothey lack direct radiation measurement equipment whichmakes it difficult to quantify this parameter known to be veryimportant for the calibration of solar thermal technologiesAlthough the correlation equations of direct and diffuseradiation exist in the literature they need to be rather inferredfrom the measurements of the countryrsquos stations

This work can be itself extended by incorporating theinfluence of parameters such as the atmospheric pressure andthe dew point temperature or by choosing a reference yearThe actual results will be of great importance for the quan-tification of the global solar radiation especially for thosestations which are only measuring solar sunshine durationFinally the correlation relations obtained will facilitate theestimation of the solar systems performances

Journal of Solar Energy 9

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the Head of the NationalMeteorological Service for fruitful discussion and for givinggraciously precious weather data

References

[1] A K Katiyar and C K Pandey ldquoA review of solar radiationmodelsmdashpart Irdquo Journal of Renewable Energy vol 2013 ArticleID 168048 11 pages 2013

[2] C K Pandey and A K Katiyar ldquoSolar radiation models andmeasurement techniquesrdquo Journal of Energy vol 2013 ArticleID 305207 8 pages 2013

[3] A Angstrom ldquoSolar and terrestrial radiation Report to theinternational commission for solar research on actinometricinvestigations of solar and atmospheric radiationrdquo QuarterlyJournal of the Royal Meteorological Society vol 50 no 210 pp121ndash126 1924

[4] J K Page ldquoThe estimation ofmonthlymean values of daily totalshort wave radiation on-vertical and inclined surfaces fromsun shine records for latitudes 400Nndash400 Srdquo Proceedings of theUnited Nations Conference on New Sources of Energy vol 98 no4 pp 378ndash390 1961

[5] J A Prescott ldquoEvaporation from water surface in relationto solar radiationrdquo Transactions of the Royal Society of SouthAustralia vol 64 pp 114ndash118 1940

[6] S V Tahas D Ristoiu andC Cosma ldquoTrends of the global solarradiation and air temperature in Cluj-Napoca Romania (1984ndash2008)rdquo Romanian Journal in Physics vol 56 no 5-6 pp 784ndash789 2011

[7] T Khatib A Mohamed K Sopian and M Mahmoud ldquoSolarenergy prediction forMalaysia using artificial neural networksrdquoInternational Journal of Photoenergy vol 2012 Article ID419504 16 pages 2012

[8] A A Sabziparvar ldquoGeneral formula for estimation of monthlymean global solar radiation in different climates on the southand north coasts of Iranrdquo International Journal of Photoenergyvol 2007 Article ID 94786 7 pages 2007

[9] H Li F Cao XWang andWMa ldquoA temperature-basedmodelfor estimating monthly average daily global solar radiation inChinardquoTheScientificWorld Journal vol 2014Article ID 1287549 pages 2014

[10] E Quansah L K Amekudzi K Preko et al ldquoEmpirical modelsfor estimating global solar radiation over the Ashanti Region ofGhanardquo Journal of Solar Energy vol 2014 Article ID 897970 6pages 2014

[11] K Skeiker ldquoCorrelation of global solar radiation with commongeographical and meteorological parameters for Damascusprovince Syriardquo Energy Conversion amp Management vol 47 no4 pp 331ndash345 2006

[12] O P Singh S K Srivastava and A Gaur ldquoEmpirical rela-tionship to estimate global radiation from hours of sunshinerdquoEnergy Conversion and Management vol 37 no 4 pp 501ndash5041996

[13] I Sezai and E Tasdemiroglu ldquoEvaluation of the meteorologicaldata in Northern Cyprusrdquo Energy Conversion andManagementvol 36 no 10 pp 953ndash961 1995

[14] A A Trabea and M A M Shaltout ldquoCorrelation of globalsolar radiation with meteorological parameters over EgyptrdquoRenewable Energy vol 21 no 2 pp 297ndash308 2000

[15] J C Ododo and A Usman ldquoCorrelation of total solar radiationwith common meteorological parameters for Yola and CalabarNigeriardquo Energy Conversion amp Management vol 37 no 5 pp521ndash530 1996

[16] S Neske ldquoAbout the relation between sunshine duration andcloudiness on the basis of data fromHamburgrdquo Journal of SolarEnergy vol 2014 Article ID 306871 7 pages 2014

[17] A Dumas A Andrisani M Bonnici et al ldquoA new correlationbetween global solar energy radiation and daily temperaturevariationsrdquo Solar Energy vol 116 pp 117ndash124 2015

[18] A J Garane Climatologie du rayonnement solaire global duBurkina Faso Niamey Niger [Memoire de fin drsquoEtudes drsquoInge-nieurs] 1992

[19] C Baldy Contribution a Lrsquoetude du Rayonnement Global et dela Duree Drsquoinsolation en Haute-Volta Service MeteorologigueOuagdougou Burkina Faso 1976

[20] O Coulibaly 2011 Contribution a lrsquoelaboration drsquoune reglemen-tation thermique et energetique des batiments au Burkina FasoDonnees de base multiparametriques et modelisation thermo-aeraulique sous CoDyBa et TRNSYS [these de doctorat] Univer-site de Ouagadougou Burkina Faso 2011

[21] M Daguenet Les Sechoirs Solaires Theories et PratiquesUNESCO Paris France 1982

[22] Y JannotThermique Solaire EIER mars Ouagadougou Burk-ina Faso 1993

[23] P J Lunde Solar Thermal Engineering Space Heating and HotWater Systems John Wiley amp Sons New York NY USA 1980

[24] K M Latha and K V S Badarinath ldquoSeasonal variations ofPM10and PM

25particles loading over tropical urban environ-

mentrdquo International Journal of Environmental Health Researchvol 15 no 1 pp 63ndash68 2005

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Page 6: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

6 Journal of Solar Energy

Table4(a)119890M

BDR

MSD

119905and

119905-criticforO

uagado

ugou

andDori(b)119890M

BDR

MSD

119905and

119905-criticforB

oboandFada(c)119890M

BDR

MSD

119905and

119905-criticforB

orom

oandGaoua(d)

119890M

BDR

MSD

119905and

119905-criticforP

oandDedou

gou

(a)

Mon

thOuagado

ugou

Dori

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1593619

1580818

080

12802

1883522

189091

6minus039

minus7394

February

179438

1181673

8minus12

5minus22357

211576

9210470

1053

11068

March

1871065

1846550

131

24515

2237844

2194349

198

43495

April

1860

079

1871814

minus063

minus11734

220313

42259076

minus248

minus5594

2May

189695

7191010

0minus069

minus1314

32228402

2241255

minus057

minus12854

June

1851597

1830751

113

20846

2164

215

2128711

167

35504

July

1709075

1712545

minus020

minus3470

2110696

208818

710

822509

August

156770

1157890

0minus071

minus1119

92025322

2083244

minus278

minus5792

3Septem

ber

1738429

1735441

017

2988

212670

7209595

514

730752

Octob

er1783503

1770843

071

12660

2075201

2067421

038

7780

Novem

ber

168916

9169873

6minus057

minus9567

1980527

1983045

minus013

minus2518

Decem

ber

1583508

1585848

minus015

minus2341

1852580

1867057

minus078

minus14477

minus273Eminus12

909E

minus13

MBD

1418

131236

RMSD

638Eminus14

966E

minus15

119905

2201

2201

119905-critic

(b)

Mon

thBo

boFada

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1670671

1693578

minus13

7minus2290

7177792

01761675

091

16245

February

1927308

191292

7075

14381

1947206

1919814

141

27392

March

193975

81946355

minus034

minus6597

199476

41993531

006

1233

April

1892000

1885458

035

6541

1977473

2004

124

minus13

5minus26651

May

188078

31901057

minus10

8minus20275

1990334

1990476

minus001

minus14

2June

181798

51795433

124

22551

1919464

1905735

072

1372

9July

1687848

1687692

001

156

1825211

182194

5018

3266

August

1607626

163990

3minus201

minus32277

175710

4174992

4041

7181

Septem

ber

1774492

1722878

291

51614

1757560

179695

4minus224

minus39394

Octob

er1736800

1783496

minus269

minus46

696

180374

31764

291

219

39452

Novem

ber

1734772

1703431

181

31341

1776281

177078

2031

5498

Decem

ber

160979

61607629

013

2167

1692480

1740289

minus282

minus47809

144E

minus11

142E

minus11

MBD

2678

724835

RMSD

178E

minus13

190E

minus13

119905

2201

2201

119905-critic

Journal of Solar Energy 7

(c)

Mon

thBo

romo

Gaoua

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1722759

17119

58

063

10801

1534755

155413

7minus12

6minus19383

February

188579

41895517

minus052

minus9723

172016

6170593

4083

14232

March

193870

41919834

097

18870

1738572

1726071

072

12501

April

1928661

1942054

minus069

minus13392

1729266

1748253

minus110

minus1898

8May

195699

3198478

1minus14

2minus2778

8174898

21759066

minus058

minus10084

June

189094

8184817

0226

4277

81666223

1652431

083

1379

2July

1770250

1752081

103

1817

01478479

1476378

014

2101

August

1660503

168813

9minus16

6minus27636

1385025

138510

1minus001

minus076

Septem

ber

1778886

1800818

minus12

3minus2193

21527047

1530628

minus023

minus3581

Octob

er1890286

1856596

178

33690

1673526

1669872

022

3654

Novem

ber

1785876

1804

286

minus10

3minus18409

1561020

155818

6018

2835

Decem

ber

1690628

1696056

minus032

minus5429

1463367

1460369

020

2997

minus849Eminus12

440

Eminus12

MBD

2314

31093

4RM

SD12

2Eminus13

133E

minus13

119905

2201

2201

119905-critic

(d)

Mon

thPo

Dedou

gou

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1673449

166977

9022

3669

1664

515

160379

5365

6072

0February

1854006

186291

9minus048

minus8913

1857876

1865884

minus043

minus8008

March

1899224

1855346

231

43878

19114

69

1943673

minus16

8minus32204

April

1775381

1831460

minus316

minus56078

194899

51925219

122

23776

May

1919388

1909568

051

9820

202519

0200578

1096

19409

June

185472

2183297

7117

2174

51909455

1910229

minus004

minus774

July

1650000

1676535

minus16

1minus26535

1821364

1837366

minus088

minus16002

August

1591200

1554206

232

3699

4172390

91743045

minus111

minus1913

5Septem

ber

1740

550

1777604

minus213

minus37054

1941336

192178

510

119551

Octob

er1866

828

1845435

115

21393

191479

21907477

038

7316

Novem

ber

1700718

1687818

076

1290

0170896

3173612

8minus15

9minus2716

6Decem

ber

1592868

1614687

minus13

7minus21819

1598303

162578

5minus17

2minus27483

minus256Eminus11

minus10

6Eminus11

MBD

29266

26271

RMSD

290Eminus13

134E

minus13

119905

2201

2201

119905-critic

8 Journal of Solar Energy

Table 5 Calculated and estimated quantities along with the error based on relation (18)

Quantities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouCalculated 049 059 050 045 051 052 050 052Correlated 052 058 048 044 051 051 049 051119890 () minus612 169 400 222 192 192 200 192

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

21

Measured valuesMultiple regressionAngstrom equation

Figure 6 Comparison between measured and correlated values atDedougou

For the station of Ouagadougou the relative error variesbetween minus125 and 131 while the RMSD is estimatedto be 14181 kJm2 For Dori station the relative error iscomprised between ndash278 and 198 and the RMSD is equalto 31236 kJm2 All these results are in the acceptable marginWe obtained small errors because the values simulated arecompared with the average of measurement data over theperiod of the study (1977ndash2006) We would obtain highererrors if we carried out the comparisons with the measureddata for unspecified year

The relative errors vary between minus269 and 291 andbetween ndash282 and 219 respectively for the stations ofBobo and Fadawhile the RMSD are equal to 26787 kJm2 and24835 kJm2 for the same stations Once again the marginerror is acceptable

For the station of Boromo the relative error fluctuatesbetween minus166 and 226 while the RMSD is equal to23143 kJm2 The relative error varies between minus126 and083 and the RMSD is equal to 10934 kJm2 for the stationof Gaoua Once again these quantities are acceptable

For the two stations Po and Dedougou the respectiverelative errors vary between minus316 and 232 and betweenndash172 and 365 while the RMSD are equal to 29266 kJm2and 26271 kJm2 respectively The margin is acceptable TheMBD for the eight stations is comprised between 10minus11 kJm2and 10minus13 kJm2

44 Correlation between the Average Daily Ratio of SunshineDuration the Index of Clearness and the Latitude and Lon-gitude Equation (18) is obtained by substituting the valuesof the regression coefficients and the parameters in relation(12) This equation is valid nationwide and can be utilized to

compute the global solar radiation for the stations measuringthe sunshine duration Consider

119867

119867

119900

= 02689 minus 03108

119899

119873

+ 22147120601 minus 02729119871 (18)

where 119871 (in radian) stands for the longitude and the otherparameters have been defined already

The value of 094 for the correlation coefficient 119877 isan indication of good correlation between the parametersTable 5 gives the calculated and the estimated values of(18) and the corresponding relative error on the indexesof clearness These errors vary from minus612 for the stationat Ouagadougou to 400 for the station at Bobo whichis an indication of good agreement between estimated andcalculated values

5 Conclusions

Besides the indication of the presence of aerosols in theatmosphere we established a correlation relation betweenthe global radiation and five geographical andmeteorologicalparameters for eight stations disseminated throughout thecountry This correlation of the global radiation intensityshows particularly its dependency with the latitude as thehigher the latitude the greater the global radiation Howeverthis trend no longer stands around urban area like Oua-gadougou which experiences lower radiation than BoromoAnother main contribution is the establishment of a relationof correlation which is valid for the entire countryThereforefor better calibration of solar equipment care must be madein gathering solar radiation data For instance in BurkinaFaso not only are the meteorological stations scarce but alsothey lack direct radiation measurement equipment whichmakes it difficult to quantify this parameter known to be veryimportant for the calibration of solar thermal technologiesAlthough the correlation equations of direct and diffuseradiation exist in the literature they need to be rather inferredfrom the measurements of the countryrsquos stations

This work can be itself extended by incorporating theinfluence of parameters such as the atmospheric pressure andthe dew point temperature or by choosing a reference yearThe actual results will be of great importance for the quan-tification of the global solar radiation especially for thosestations which are only measuring solar sunshine durationFinally the correlation relations obtained will facilitate theestimation of the solar systems performances

Journal of Solar Energy 9

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the Head of the NationalMeteorological Service for fruitful discussion and for givinggraciously precious weather data

References

[1] A K Katiyar and C K Pandey ldquoA review of solar radiationmodelsmdashpart Irdquo Journal of Renewable Energy vol 2013 ArticleID 168048 11 pages 2013

[2] C K Pandey and A K Katiyar ldquoSolar radiation models andmeasurement techniquesrdquo Journal of Energy vol 2013 ArticleID 305207 8 pages 2013

[3] A Angstrom ldquoSolar and terrestrial radiation Report to theinternational commission for solar research on actinometricinvestigations of solar and atmospheric radiationrdquo QuarterlyJournal of the Royal Meteorological Society vol 50 no 210 pp121ndash126 1924

[4] J K Page ldquoThe estimation ofmonthlymean values of daily totalshort wave radiation on-vertical and inclined surfaces fromsun shine records for latitudes 400Nndash400 Srdquo Proceedings of theUnited Nations Conference on New Sources of Energy vol 98 no4 pp 378ndash390 1961

[5] J A Prescott ldquoEvaporation from water surface in relationto solar radiationrdquo Transactions of the Royal Society of SouthAustralia vol 64 pp 114ndash118 1940

[6] S V Tahas D Ristoiu andC Cosma ldquoTrends of the global solarradiation and air temperature in Cluj-Napoca Romania (1984ndash2008)rdquo Romanian Journal in Physics vol 56 no 5-6 pp 784ndash789 2011

[7] T Khatib A Mohamed K Sopian and M Mahmoud ldquoSolarenergy prediction forMalaysia using artificial neural networksrdquoInternational Journal of Photoenergy vol 2012 Article ID419504 16 pages 2012

[8] A A Sabziparvar ldquoGeneral formula for estimation of monthlymean global solar radiation in different climates on the southand north coasts of Iranrdquo International Journal of Photoenergyvol 2007 Article ID 94786 7 pages 2007

[9] H Li F Cao XWang andWMa ldquoA temperature-basedmodelfor estimating monthly average daily global solar radiation inChinardquoTheScientificWorld Journal vol 2014Article ID 1287549 pages 2014

[10] E Quansah L K Amekudzi K Preko et al ldquoEmpirical modelsfor estimating global solar radiation over the Ashanti Region ofGhanardquo Journal of Solar Energy vol 2014 Article ID 897970 6pages 2014

[11] K Skeiker ldquoCorrelation of global solar radiation with commongeographical and meteorological parameters for Damascusprovince Syriardquo Energy Conversion amp Management vol 47 no4 pp 331ndash345 2006

[12] O P Singh S K Srivastava and A Gaur ldquoEmpirical rela-tionship to estimate global radiation from hours of sunshinerdquoEnergy Conversion and Management vol 37 no 4 pp 501ndash5041996

[13] I Sezai and E Tasdemiroglu ldquoEvaluation of the meteorologicaldata in Northern Cyprusrdquo Energy Conversion andManagementvol 36 no 10 pp 953ndash961 1995

[14] A A Trabea and M A M Shaltout ldquoCorrelation of globalsolar radiation with meteorological parameters over EgyptrdquoRenewable Energy vol 21 no 2 pp 297ndash308 2000

[15] J C Ododo and A Usman ldquoCorrelation of total solar radiationwith common meteorological parameters for Yola and CalabarNigeriardquo Energy Conversion amp Management vol 37 no 5 pp521ndash530 1996

[16] S Neske ldquoAbout the relation between sunshine duration andcloudiness on the basis of data fromHamburgrdquo Journal of SolarEnergy vol 2014 Article ID 306871 7 pages 2014

[17] A Dumas A Andrisani M Bonnici et al ldquoA new correlationbetween global solar energy radiation and daily temperaturevariationsrdquo Solar Energy vol 116 pp 117ndash124 2015

[18] A J Garane Climatologie du rayonnement solaire global duBurkina Faso Niamey Niger [Memoire de fin drsquoEtudes drsquoInge-nieurs] 1992

[19] C Baldy Contribution a Lrsquoetude du Rayonnement Global et dela Duree Drsquoinsolation en Haute-Volta Service MeteorologigueOuagdougou Burkina Faso 1976

[20] O Coulibaly 2011 Contribution a lrsquoelaboration drsquoune reglemen-tation thermique et energetique des batiments au Burkina FasoDonnees de base multiparametriques et modelisation thermo-aeraulique sous CoDyBa et TRNSYS [these de doctorat] Univer-site de Ouagadougou Burkina Faso 2011

[21] M Daguenet Les Sechoirs Solaires Theories et PratiquesUNESCO Paris France 1982

[22] Y JannotThermique Solaire EIER mars Ouagadougou Burk-ina Faso 1993

[23] P J Lunde Solar Thermal Engineering Space Heating and HotWater Systems John Wiley amp Sons New York NY USA 1980

[24] K M Latha and K V S Badarinath ldquoSeasonal variations ofPM10and PM

25particles loading over tropical urban environ-

mentrdquo International Journal of Environmental Health Researchvol 15 no 1 pp 63ndash68 2005

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Page 7: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

Journal of Solar Energy 7

(c)

Mon

thBo

romo

Gaoua

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1722759

17119

58

063

10801

1534755

155413

7minus12

6minus19383

February

188579

41895517

minus052

minus9723

172016

6170593

4083

14232

March

193870

41919834

097

18870

1738572

1726071

072

12501

April

1928661

1942054

minus069

minus13392

1729266

1748253

minus110

minus1898

8May

195699

3198478

1minus14

2minus2778

8174898

21759066

minus058

minus10084

June

189094

8184817

0226

4277

81666223

1652431

083

1379

2July

1770250

1752081

103

1817

01478479

1476378

014

2101

August

1660503

168813

9minus16

6minus27636

1385025

138510

1minus001

minus076

Septem

ber

1778886

1800818

minus12

3minus2193

21527047

1530628

minus023

minus3581

Octob

er1890286

1856596

178

33690

1673526

1669872

022

3654

Novem

ber

1785876

1804

286

minus10

3minus18409

1561020

155818

6018

2835

Decem

ber

1690628

1696056

minus032

minus5429

1463367

1460369

020

2997

minus849Eminus12

440

Eminus12

MBD

2314

31093

4RM

SD12

2Eminus13

133E

minus13

119905

2201

2201

119905-critic

(d)

Mon

thPo

Dedou

gou

Ann

ualstatistics

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Measured(kJm2)

Estim

ated

(kJm2)

119890(

)MBD

(kJm2)

Janu

ary

1673449

166977

9022

3669

1664

515

160379

5365

6072

0February

1854006

186291

9minus048

minus8913

1857876

1865884

minus043

minus8008

March

1899224

1855346

231

43878

19114

69

1943673

minus16

8minus32204

April

1775381

1831460

minus316

minus56078

194899

51925219

122

23776

May

1919388

1909568

051

9820

202519

0200578

1096

19409

June

185472

2183297

7117

2174

51909455

1910229

minus004

minus774

July

1650000

1676535

minus16

1minus26535

1821364

1837366

minus088

minus16002

August

1591200

1554206

232

3699

4172390

91743045

minus111

minus1913

5Septem

ber

1740

550

1777604

minus213

minus37054

1941336

192178

510

119551

Octob

er1866

828

1845435

115

21393

191479

21907477

038

7316

Novem

ber

1700718

1687818

076

1290

0170896

3173612

8minus15

9minus2716

6Decem

ber

1592868

1614687

minus13

7minus21819

1598303

162578

5minus17

2minus27483

minus256Eminus11

minus10

6Eminus11

MBD

29266

26271

RMSD

290Eminus13

134E

minus13

119905

2201

2201

119905-critic

8 Journal of Solar Energy

Table 5 Calculated and estimated quantities along with the error based on relation (18)

Quantities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouCalculated 049 059 050 045 051 052 050 052Correlated 052 058 048 044 051 051 049 051119890 () minus612 169 400 222 192 192 200 192

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

21

Measured valuesMultiple regressionAngstrom equation

Figure 6 Comparison between measured and correlated values atDedougou

For the station of Ouagadougou the relative error variesbetween minus125 and 131 while the RMSD is estimatedto be 14181 kJm2 For Dori station the relative error iscomprised between ndash278 and 198 and the RMSD is equalto 31236 kJm2 All these results are in the acceptable marginWe obtained small errors because the values simulated arecompared with the average of measurement data over theperiod of the study (1977ndash2006) We would obtain highererrors if we carried out the comparisons with the measureddata for unspecified year

The relative errors vary between minus269 and 291 andbetween ndash282 and 219 respectively for the stations ofBobo and Fadawhile the RMSD are equal to 26787 kJm2 and24835 kJm2 for the same stations Once again the marginerror is acceptable

For the station of Boromo the relative error fluctuatesbetween minus166 and 226 while the RMSD is equal to23143 kJm2 The relative error varies between minus126 and083 and the RMSD is equal to 10934 kJm2 for the stationof Gaoua Once again these quantities are acceptable

For the two stations Po and Dedougou the respectiverelative errors vary between minus316 and 232 and betweenndash172 and 365 while the RMSD are equal to 29266 kJm2and 26271 kJm2 respectively The margin is acceptable TheMBD for the eight stations is comprised between 10minus11 kJm2and 10minus13 kJm2

44 Correlation between the Average Daily Ratio of SunshineDuration the Index of Clearness and the Latitude and Lon-gitude Equation (18) is obtained by substituting the valuesof the regression coefficients and the parameters in relation(12) This equation is valid nationwide and can be utilized to

compute the global solar radiation for the stations measuringthe sunshine duration Consider

119867

119867

119900

= 02689 minus 03108

119899

119873

+ 22147120601 minus 02729119871 (18)

where 119871 (in radian) stands for the longitude and the otherparameters have been defined already

The value of 094 for the correlation coefficient 119877 isan indication of good correlation between the parametersTable 5 gives the calculated and the estimated values of(18) and the corresponding relative error on the indexesof clearness These errors vary from minus612 for the stationat Ouagadougou to 400 for the station at Bobo whichis an indication of good agreement between estimated andcalculated values

5 Conclusions

Besides the indication of the presence of aerosols in theatmosphere we established a correlation relation betweenthe global radiation and five geographical andmeteorologicalparameters for eight stations disseminated throughout thecountry This correlation of the global radiation intensityshows particularly its dependency with the latitude as thehigher the latitude the greater the global radiation Howeverthis trend no longer stands around urban area like Oua-gadougou which experiences lower radiation than BoromoAnother main contribution is the establishment of a relationof correlation which is valid for the entire countryThereforefor better calibration of solar equipment care must be madein gathering solar radiation data For instance in BurkinaFaso not only are the meteorological stations scarce but alsothey lack direct radiation measurement equipment whichmakes it difficult to quantify this parameter known to be veryimportant for the calibration of solar thermal technologiesAlthough the correlation equations of direct and diffuseradiation exist in the literature they need to be rather inferredfrom the measurements of the countryrsquos stations

This work can be itself extended by incorporating theinfluence of parameters such as the atmospheric pressure andthe dew point temperature or by choosing a reference yearThe actual results will be of great importance for the quan-tification of the global solar radiation especially for thosestations which are only measuring solar sunshine durationFinally the correlation relations obtained will facilitate theestimation of the solar systems performances

Journal of Solar Energy 9

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the Head of the NationalMeteorological Service for fruitful discussion and for givinggraciously precious weather data

References

[1] A K Katiyar and C K Pandey ldquoA review of solar radiationmodelsmdashpart Irdquo Journal of Renewable Energy vol 2013 ArticleID 168048 11 pages 2013

[2] C K Pandey and A K Katiyar ldquoSolar radiation models andmeasurement techniquesrdquo Journal of Energy vol 2013 ArticleID 305207 8 pages 2013

[3] A Angstrom ldquoSolar and terrestrial radiation Report to theinternational commission for solar research on actinometricinvestigations of solar and atmospheric radiationrdquo QuarterlyJournal of the Royal Meteorological Society vol 50 no 210 pp121ndash126 1924

[4] J K Page ldquoThe estimation ofmonthlymean values of daily totalshort wave radiation on-vertical and inclined surfaces fromsun shine records for latitudes 400Nndash400 Srdquo Proceedings of theUnited Nations Conference on New Sources of Energy vol 98 no4 pp 378ndash390 1961

[5] J A Prescott ldquoEvaporation from water surface in relationto solar radiationrdquo Transactions of the Royal Society of SouthAustralia vol 64 pp 114ndash118 1940

[6] S V Tahas D Ristoiu andC Cosma ldquoTrends of the global solarradiation and air temperature in Cluj-Napoca Romania (1984ndash2008)rdquo Romanian Journal in Physics vol 56 no 5-6 pp 784ndash789 2011

[7] T Khatib A Mohamed K Sopian and M Mahmoud ldquoSolarenergy prediction forMalaysia using artificial neural networksrdquoInternational Journal of Photoenergy vol 2012 Article ID419504 16 pages 2012

[8] A A Sabziparvar ldquoGeneral formula for estimation of monthlymean global solar radiation in different climates on the southand north coasts of Iranrdquo International Journal of Photoenergyvol 2007 Article ID 94786 7 pages 2007

[9] H Li F Cao XWang andWMa ldquoA temperature-basedmodelfor estimating monthly average daily global solar radiation inChinardquoTheScientificWorld Journal vol 2014Article ID 1287549 pages 2014

[10] E Quansah L K Amekudzi K Preko et al ldquoEmpirical modelsfor estimating global solar radiation over the Ashanti Region ofGhanardquo Journal of Solar Energy vol 2014 Article ID 897970 6pages 2014

[11] K Skeiker ldquoCorrelation of global solar radiation with commongeographical and meteorological parameters for Damascusprovince Syriardquo Energy Conversion amp Management vol 47 no4 pp 331ndash345 2006

[12] O P Singh S K Srivastava and A Gaur ldquoEmpirical rela-tionship to estimate global radiation from hours of sunshinerdquoEnergy Conversion and Management vol 37 no 4 pp 501ndash5041996

[13] I Sezai and E Tasdemiroglu ldquoEvaluation of the meteorologicaldata in Northern Cyprusrdquo Energy Conversion andManagementvol 36 no 10 pp 953ndash961 1995

[14] A A Trabea and M A M Shaltout ldquoCorrelation of globalsolar radiation with meteorological parameters over EgyptrdquoRenewable Energy vol 21 no 2 pp 297ndash308 2000

[15] J C Ododo and A Usman ldquoCorrelation of total solar radiationwith common meteorological parameters for Yola and CalabarNigeriardquo Energy Conversion amp Management vol 37 no 5 pp521ndash530 1996

[16] S Neske ldquoAbout the relation between sunshine duration andcloudiness on the basis of data fromHamburgrdquo Journal of SolarEnergy vol 2014 Article ID 306871 7 pages 2014

[17] A Dumas A Andrisani M Bonnici et al ldquoA new correlationbetween global solar energy radiation and daily temperaturevariationsrdquo Solar Energy vol 116 pp 117ndash124 2015

[18] A J Garane Climatologie du rayonnement solaire global duBurkina Faso Niamey Niger [Memoire de fin drsquoEtudes drsquoInge-nieurs] 1992

[19] C Baldy Contribution a Lrsquoetude du Rayonnement Global et dela Duree Drsquoinsolation en Haute-Volta Service MeteorologigueOuagdougou Burkina Faso 1976

[20] O Coulibaly 2011 Contribution a lrsquoelaboration drsquoune reglemen-tation thermique et energetique des batiments au Burkina FasoDonnees de base multiparametriques et modelisation thermo-aeraulique sous CoDyBa et TRNSYS [these de doctorat] Univer-site de Ouagadougou Burkina Faso 2011

[21] M Daguenet Les Sechoirs Solaires Theories et PratiquesUNESCO Paris France 1982

[22] Y JannotThermique Solaire EIER mars Ouagadougou Burk-ina Faso 1993

[23] P J Lunde Solar Thermal Engineering Space Heating and HotWater Systems John Wiley amp Sons New York NY USA 1980

[24] K M Latha and K V S Badarinath ldquoSeasonal variations ofPM10and PM

25particles loading over tropical urban environ-

mentrdquo International Journal of Environmental Health Researchvol 15 no 1 pp 63ndash68 2005

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Page 8: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

8 Journal of Solar Energy

Table 5 Calculated and estimated quantities along with the error based on relation (18)

Quantities Ouaga Dori Bobo Gaoua Fada Boromo Po DedougouCalculated 049 059 050 045 051 052 050 052Correlated 052 058 048 044 051 051 049 051119890 () minus612 169 400 222 192 192 200 192

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mon

thly

mea

n da

ily g

loba

lso

lar r

adia

tion

(kJ(

m2middotd

ay))

times103

15

16

17

18

19

20

21

Measured valuesMultiple regressionAngstrom equation

Figure 6 Comparison between measured and correlated values atDedougou

For the station of Ouagadougou the relative error variesbetween minus125 and 131 while the RMSD is estimatedto be 14181 kJm2 For Dori station the relative error iscomprised between ndash278 and 198 and the RMSD is equalto 31236 kJm2 All these results are in the acceptable marginWe obtained small errors because the values simulated arecompared with the average of measurement data over theperiod of the study (1977ndash2006) We would obtain highererrors if we carried out the comparisons with the measureddata for unspecified year

The relative errors vary between minus269 and 291 andbetween ndash282 and 219 respectively for the stations ofBobo and Fadawhile the RMSD are equal to 26787 kJm2 and24835 kJm2 for the same stations Once again the marginerror is acceptable

For the station of Boromo the relative error fluctuatesbetween minus166 and 226 while the RMSD is equal to23143 kJm2 The relative error varies between minus126 and083 and the RMSD is equal to 10934 kJm2 for the stationof Gaoua Once again these quantities are acceptable

For the two stations Po and Dedougou the respectiverelative errors vary between minus316 and 232 and betweenndash172 and 365 while the RMSD are equal to 29266 kJm2and 26271 kJm2 respectively The margin is acceptable TheMBD for the eight stations is comprised between 10minus11 kJm2and 10minus13 kJm2

44 Correlation between the Average Daily Ratio of SunshineDuration the Index of Clearness and the Latitude and Lon-gitude Equation (18) is obtained by substituting the valuesof the regression coefficients and the parameters in relation(12) This equation is valid nationwide and can be utilized to

compute the global solar radiation for the stations measuringthe sunshine duration Consider

119867

119867

119900

= 02689 minus 03108

119899

119873

+ 22147120601 minus 02729119871 (18)

where 119871 (in radian) stands for the longitude and the otherparameters have been defined already

The value of 094 for the correlation coefficient 119877 isan indication of good correlation between the parametersTable 5 gives the calculated and the estimated values of(18) and the corresponding relative error on the indexesof clearness These errors vary from minus612 for the stationat Ouagadougou to 400 for the station at Bobo whichis an indication of good agreement between estimated andcalculated values

5 Conclusions

Besides the indication of the presence of aerosols in theatmosphere we established a correlation relation betweenthe global radiation and five geographical andmeteorologicalparameters for eight stations disseminated throughout thecountry This correlation of the global radiation intensityshows particularly its dependency with the latitude as thehigher the latitude the greater the global radiation Howeverthis trend no longer stands around urban area like Oua-gadougou which experiences lower radiation than BoromoAnother main contribution is the establishment of a relationof correlation which is valid for the entire countryThereforefor better calibration of solar equipment care must be madein gathering solar radiation data For instance in BurkinaFaso not only are the meteorological stations scarce but alsothey lack direct radiation measurement equipment whichmakes it difficult to quantify this parameter known to be veryimportant for the calibration of solar thermal technologiesAlthough the correlation equations of direct and diffuseradiation exist in the literature they need to be rather inferredfrom the measurements of the countryrsquos stations

This work can be itself extended by incorporating theinfluence of parameters such as the atmospheric pressure andthe dew point temperature or by choosing a reference yearThe actual results will be of great importance for the quan-tification of the global solar radiation especially for thosestations which are only measuring solar sunshine durationFinally the correlation relations obtained will facilitate theestimation of the solar systems performances

Journal of Solar Energy 9

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the Head of the NationalMeteorological Service for fruitful discussion and for givinggraciously precious weather data

References

[1] A K Katiyar and C K Pandey ldquoA review of solar radiationmodelsmdashpart Irdquo Journal of Renewable Energy vol 2013 ArticleID 168048 11 pages 2013

[2] C K Pandey and A K Katiyar ldquoSolar radiation models andmeasurement techniquesrdquo Journal of Energy vol 2013 ArticleID 305207 8 pages 2013

[3] A Angstrom ldquoSolar and terrestrial radiation Report to theinternational commission for solar research on actinometricinvestigations of solar and atmospheric radiationrdquo QuarterlyJournal of the Royal Meteorological Society vol 50 no 210 pp121ndash126 1924

[4] J K Page ldquoThe estimation ofmonthlymean values of daily totalshort wave radiation on-vertical and inclined surfaces fromsun shine records for latitudes 400Nndash400 Srdquo Proceedings of theUnited Nations Conference on New Sources of Energy vol 98 no4 pp 378ndash390 1961

[5] J A Prescott ldquoEvaporation from water surface in relationto solar radiationrdquo Transactions of the Royal Society of SouthAustralia vol 64 pp 114ndash118 1940

[6] S V Tahas D Ristoiu andC Cosma ldquoTrends of the global solarradiation and air temperature in Cluj-Napoca Romania (1984ndash2008)rdquo Romanian Journal in Physics vol 56 no 5-6 pp 784ndash789 2011

[7] T Khatib A Mohamed K Sopian and M Mahmoud ldquoSolarenergy prediction forMalaysia using artificial neural networksrdquoInternational Journal of Photoenergy vol 2012 Article ID419504 16 pages 2012

[8] A A Sabziparvar ldquoGeneral formula for estimation of monthlymean global solar radiation in different climates on the southand north coasts of Iranrdquo International Journal of Photoenergyvol 2007 Article ID 94786 7 pages 2007

[9] H Li F Cao XWang andWMa ldquoA temperature-basedmodelfor estimating monthly average daily global solar radiation inChinardquoTheScientificWorld Journal vol 2014Article ID 1287549 pages 2014

[10] E Quansah L K Amekudzi K Preko et al ldquoEmpirical modelsfor estimating global solar radiation over the Ashanti Region ofGhanardquo Journal of Solar Energy vol 2014 Article ID 897970 6pages 2014

[11] K Skeiker ldquoCorrelation of global solar radiation with commongeographical and meteorological parameters for Damascusprovince Syriardquo Energy Conversion amp Management vol 47 no4 pp 331ndash345 2006

[12] O P Singh S K Srivastava and A Gaur ldquoEmpirical rela-tionship to estimate global radiation from hours of sunshinerdquoEnergy Conversion and Management vol 37 no 4 pp 501ndash5041996

[13] I Sezai and E Tasdemiroglu ldquoEvaluation of the meteorologicaldata in Northern Cyprusrdquo Energy Conversion andManagementvol 36 no 10 pp 953ndash961 1995

[14] A A Trabea and M A M Shaltout ldquoCorrelation of globalsolar radiation with meteorological parameters over EgyptrdquoRenewable Energy vol 21 no 2 pp 297ndash308 2000

[15] J C Ododo and A Usman ldquoCorrelation of total solar radiationwith common meteorological parameters for Yola and CalabarNigeriardquo Energy Conversion amp Management vol 37 no 5 pp521ndash530 1996

[16] S Neske ldquoAbout the relation between sunshine duration andcloudiness on the basis of data fromHamburgrdquo Journal of SolarEnergy vol 2014 Article ID 306871 7 pages 2014

[17] A Dumas A Andrisani M Bonnici et al ldquoA new correlationbetween global solar energy radiation and daily temperaturevariationsrdquo Solar Energy vol 116 pp 117ndash124 2015

[18] A J Garane Climatologie du rayonnement solaire global duBurkina Faso Niamey Niger [Memoire de fin drsquoEtudes drsquoInge-nieurs] 1992

[19] C Baldy Contribution a Lrsquoetude du Rayonnement Global et dela Duree Drsquoinsolation en Haute-Volta Service MeteorologigueOuagdougou Burkina Faso 1976

[20] O Coulibaly 2011 Contribution a lrsquoelaboration drsquoune reglemen-tation thermique et energetique des batiments au Burkina FasoDonnees de base multiparametriques et modelisation thermo-aeraulique sous CoDyBa et TRNSYS [these de doctorat] Univer-site de Ouagadougou Burkina Faso 2011

[21] M Daguenet Les Sechoirs Solaires Theories et PratiquesUNESCO Paris France 1982

[22] Y JannotThermique Solaire EIER mars Ouagadougou Burk-ina Faso 1993

[23] P J Lunde Solar Thermal Engineering Space Heating and HotWater Systems John Wiley amp Sons New York NY USA 1980

[24] K M Latha and K V S Badarinath ldquoSeasonal variations ofPM10and PM

25particles loading over tropical urban environ-

mentrdquo International Journal of Environmental Health Researchvol 15 no 1 pp 63ndash68 2005

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Page 9: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

Journal of Solar Energy 9

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank the Head of the NationalMeteorological Service for fruitful discussion and for givinggraciously precious weather data

References

[1] A K Katiyar and C K Pandey ldquoA review of solar radiationmodelsmdashpart Irdquo Journal of Renewable Energy vol 2013 ArticleID 168048 11 pages 2013

[2] C K Pandey and A K Katiyar ldquoSolar radiation models andmeasurement techniquesrdquo Journal of Energy vol 2013 ArticleID 305207 8 pages 2013

[3] A Angstrom ldquoSolar and terrestrial radiation Report to theinternational commission for solar research on actinometricinvestigations of solar and atmospheric radiationrdquo QuarterlyJournal of the Royal Meteorological Society vol 50 no 210 pp121ndash126 1924

[4] J K Page ldquoThe estimation ofmonthlymean values of daily totalshort wave radiation on-vertical and inclined surfaces fromsun shine records for latitudes 400Nndash400 Srdquo Proceedings of theUnited Nations Conference on New Sources of Energy vol 98 no4 pp 378ndash390 1961

[5] J A Prescott ldquoEvaporation from water surface in relationto solar radiationrdquo Transactions of the Royal Society of SouthAustralia vol 64 pp 114ndash118 1940

[6] S V Tahas D Ristoiu andC Cosma ldquoTrends of the global solarradiation and air temperature in Cluj-Napoca Romania (1984ndash2008)rdquo Romanian Journal in Physics vol 56 no 5-6 pp 784ndash789 2011

[7] T Khatib A Mohamed K Sopian and M Mahmoud ldquoSolarenergy prediction forMalaysia using artificial neural networksrdquoInternational Journal of Photoenergy vol 2012 Article ID419504 16 pages 2012

[8] A A Sabziparvar ldquoGeneral formula for estimation of monthlymean global solar radiation in different climates on the southand north coasts of Iranrdquo International Journal of Photoenergyvol 2007 Article ID 94786 7 pages 2007

[9] H Li F Cao XWang andWMa ldquoA temperature-basedmodelfor estimating monthly average daily global solar radiation inChinardquoTheScientificWorld Journal vol 2014Article ID 1287549 pages 2014

[10] E Quansah L K Amekudzi K Preko et al ldquoEmpirical modelsfor estimating global solar radiation over the Ashanti Region ofGhanardquo Journal of Solar Energy vol 2014 Article ID 897970 6pages 2014

[11] K Skeiker ldquoCorrelation of global solar radiation with commongeographical and meteorological parameters for Damascusprovince Syriardquo Energy Conversion amp Management vol 47 no4 pp 331ndash345 2006

[12] O P Singh S K Srivastava and A Gaur ldquoEmpirical rela-tionship to estimate global radiation from hours of sunshinerdquoEnergy Conversion and Management vol 37 no 4 pp 501ndash5041996

[13] I Sezai and E Tasdemiroglu ldquoEvaluation of the meteorologicaldata in Northern Cyprusrdquo Energy Conversion andManagementvol 36 no 10 pp 953ndash961 1995

[14] A A Trabea and M A M Shaltout ldquoCorrelation of globalsolar radiation with meteorological parameters over EgyptrdquoRenewable Energy vol 21 no 2 pp 297ndash308 2000

[15] J C Ododo and A Usman ldquoCorrelation of total solar radiationwith common meteorological parameters for Yola and CalabarNigeriardquo Energy Conversion amp Management vol 37 no 5 pp521ndash530 1996

[16] S Neske ldquoAbout the relation between sunshine duration andcloudiness on the basis of data fromHamburgrdquo Journal of SolarEnergy vol 2014 Article ID 306871 7 pages 2014

[17] A Dumas A Andrisani M Bonnici et al ldquoA new correlationbetween global solar energy radiation and daily temperaturevariationsrdquo Solar Energy vol 116 pp 117ndash124 2015

[18] A J Garane Climatologie du rayonnement solaire global duBurkina Faso Niamey Niger [Memoire de fin drsquoEtudes drsquoInge-nieurs] 1992

[19] C Baldy Contribution a Lrsquoetude du Rayonnement Global et dela Duree Drsquoinsolation en Haute-Volta Service MeteorologigueOuagdougou Burkina Faso 1976

[20] O Coulibaly 2011 Contribution a lrsquoelaboration drsquoune reglemen-tation thermique et energetique des batiments au Burkina FasoDonnees de base multiparametriques et modelisation thermo-aeraulique sous CoDyBa et TRNSYS [these de doctorat] Univer-site de Ouagadougou Burkina Faso 2011

[21] M Daguenet Les Sechoirs Solaires Theories et PratiquesUNESCO Paris France 1982

[22] Y JannotThermique Solaire EIER mars Ouagadougou Burk-ina Faso 1993

[23] P J Lunde Solar Thermal Engineering Space Heating and HotWater Systems John Wiley amp Sons New York NY USA 1980

[24] K M Latha and K V S Badarinath ldquoSeasonal variations ofPM10and PM

25particles loading over tropical urban environ-

mentrdquo International Journal of Environmental Health Researchvol 15 no 1 pp 63ndash68 2005

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Page 10: Research Article Correlation of Global Solar Radiation of Eight … · 2018. 11. 12. · global solar radiation on a horizontal surface and ve mete-orological parameters, which are

TribologyAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FuelsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Industrial EngineeringJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Power ElectronicsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

CombustionJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Renewable Energy

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

StructuresJournal of

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear InstallationsScience and Technology of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solar EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Wind EnergyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nuclear EnergyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014