10
Research Article Dielectric Relaxation Studies of 2-Butoxyethanol with Aniline and Substituted Anilines Using Time Domain Reflectometry P. Jeevanandham, 1 S. Kumar, 2 P. Periyasamy, 2 and A. C. Kumbharkhane 3 1 Dr.Nallini Institute of Engineering and Technology, Dharapuram, Tamil Nadu 638673, India 2 Department of Physics, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India 3 School of Physics, S.R.T.M. University, Nanded, Maharashtra 431606, India Correspondence should be addressed to P. Jeevanandham; [email protected] Received 19 June 2013; Revised 17 October 2013; Accepted 25 October 2013; Published 18 February 2014 Academic Editor: Jyh-Ping Hsu Copyright © 2014 P. Jeevanandham et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline, o-chloroaniline, m- chloroaniline, o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0%, 25%, 50%, 75%, and 100%) have been measured as a function of frequency between 10 MHz and 30 GHz at 298.15 K. e dielectric parameters like static dielectric constant ( 0 ) and relaxation time () have been obtained by using least square fit method. By using these parameters ( 0 , ), effective Kirkwood correlation factor ( eff ), corrective Kirkwood correlation factor ( ), Bruggeman factor ( ), excess dielectric constant ( ), and excess inverse relaxation time (1/) values are calculated and discussed to yield information on the dipolar alignment and molecular rotation of the binary liquid mixtures. From all the derived dielectric parameters, molecular interactions are interpreted through hydrogen bonding. 1. Introduction Time domain reflectometry technique is the powerful tool to identify the inter- and intramolecular rotations of the liquid and liquid mixtures. Dielectric studies on mixtures of polar liquids either in the pure state or in the inert solvents have been a subject of interest because they provide useful infor- mation regarding molecular complex formation in solution [1]. A significance of the intermolecular interactions in the dynamics of molecules, as revealed in dielectric relaxation spectroscopy, is one of the most important and still open problems of molecular physics of the liquid state [2]. Anilines are the prototypical aromatic amine. Being a precursor to many industrial chemicals, their main use is in the manu- facture of precursors to polyurethane. 2-Alkoxyethanols are the combinations of ether, alcohol, and hydrocarbon chain in one molecule, providing versatile solvency characteristics with both polar and nonpolar properties [3]. In the series of 2-alkoxyethanols, ethylene glycol monobutyl ether (2- butoxyethanol) was selected for the present investigation, because 2-BE is a commercial liquid that is mainly used for the cleaning purpose. e dipole moment value of 2-BE is 2.08 Debye and is having high pKa for OH group. Rana et al. [4] carried out the dielectric relaxation study of 1-propanol with 2-chloroaniline and 3-chloroanilines over the entire range of concentration at frequency ranging from 10 MHz to 10 GHz using time domain reflectometry (TDR) technique at four different temperatures. ey found strong intermolec- ular association between the anilines in 1-propanol. Krishna and Sastry [5] studied the dielectric and thermodynamic properties of aniline in isopropyl alcohol at five different temperatures. So many attempts have been made in the study of dielectric properties of aniline and alcohols [611]. But no attempt has been taken for the dielectric study of anilines like aniline, o-chloroaniline (o-CA), m-chloroaniline (m-CA), o- anisidine (o-A), and m-anisidine (m-A) with 2-butoxyethanol (2-BE). e complex dielectric permittivity in the frequency range from 10 MHz to 30 GHz has been determined by using Tektronix Digital Serial Analyzer. e aim of our present investigation is to describe the molecular association Hindawi Publishing Corporation Advances in Physical Chemistry Volume 2014, Article ID 659531, 9 pages http://dx.doi.org/10.1155/2014/659531

Research Article Dielectric Relaxation Studies of 2

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Research Article Dielectric Relaxation Studies of 2

Research ArticleDielectric Relaxation Studies of 2-Butoxyethanol with Anilineand Substituted Anilines Using Time Domain Reflectometry

P Jeevanandham1 S Kumar2 P Periyasamy2 and A C Kumbharkhane3

1 DrNallini Institute of Engineering and Technology Dharapuram Tamil Nadu 638673 India2Department of Physics Annamalai University Annamalai Nagar Tamil Nadu 608002 India3 School of Physics SRTM University Nanded Maharashtra 431606 India

Correspondence should be addressed to P Jeevanandham jeevaphys86gmailcom

Received 19 June 2013 Revised 17 October 2013 Accepted 25 October 2013 Published 18 February 2014

Academic Editor Jyh-Ping Hsu

Copyright copy 2014 P Jeevanandham et al This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

The complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline o-chloroaniline m-chloroaniline o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0 25 5075 and 100) have been measured as a function of frequency between 10MHz and 30GHz at 29815 KThe dielectric parameterslike static dielectric constant (120576

0) and relaxation time (120591) have been obtained by using least square fit method By using these

parameters (1205760 120591) effective Kirkwood correlation factor (119892eff) corrective Kirkwood correlation factor (119892

119891) Bruggeman factor (119891

119861)

excess dielectric constant (120576119864) and excess inverse relaxation time (1120591)119864 values are calculated and discussed to yield information onthe dipolar alignment and molecular rotation of the binary liquid mixtures From all the derived dielectric parameters molecularinteractions are interpreted through hydrogen bonding

1 Introduction

Time domain reflectometry technique is the powerful tool toidentify the inter- and intramolecular rotations of the liquidand liquid mixtures Dielectric studies on mixtures of polarliquids either in the pure state or in the inert solvents havebeen a subject of interest because they provide useful infor-mation regarding molecular complex formation in solution[1] A significance of the intermolecular interactions in thedynamics of molecules as revealed in dielectric relaxationspectroscopy is one of the most important and still openproblems of molecular physics of the liquid state [2] Anilinesare the prototypical aromatic amine Being a precursor tomany industrial chemicals their main use is in the manu-facture of precursors to polyurethane 2-Alkoxyethanols arethe combinations of ether alcohol and hydrocarbon chainin one molecule providing versatile solvency characteristicswith both polar and nonpolar properties [3] In the seriesof 2-alkoxyethanols ethylene glycol monobutyl ether (2-butoxyethanol) was selected for the present investigation

because 2-BE is a commercial liquid that is mainly used forthe cleaning purpose The dipole moment value of 2-BE is208 Debye and is having high pKa for OH group Rana et al[4] carried out the dielectric relaxation study of 1-propanolwith 2-chloroaniline and 3-chloroanilines over the entirerange of concentration at frequency ranging from 10MHz to10GHz using time domain reflectometry (TDR) technique atfour different temperatures They found strong intermolec-ular association between the anilines in 1-propanol Krishnaand Sastry [5] studied the dielectric and thermodynamicproperties of aniline in isopropyl alcohol at five differenttemperatures So many attempts have been made in the studyof dielectric properties of aniline and alcohols [6ndash11] But noattempt has been taken for the dielectric study of anilines likeaniline o-chloroaniline (o-CA) m-chloroaniline (m-CA) o-anisidine (o-A) andm-anisidine (m-A)with 2-butoxyethanol(2-BE) The complex dielectric permittivity in the frequencyrange from 10MHz to 30GHz has been determined byusing Tektronix Digital Serial Analyzer The aim of ourpresent investigation is to describe the molecular association

Hindawi Publishing CorporationAdvances in Physical ChemistryVolume 2014 Article ID 659531 9 pageshttpdxdoiorg1011552014659531

2 Advances in Physical Chemistry

of anilines with 2-butoxyethanol binary mixtures throughdielectric properties It has been measured by using differentdielectric parameters like static dielectric constant relaxationtime Bruggeman factor Kirkwood correlation factors excessdielectric permittivity and excess inverse relaxation time at29815 K

2 Material and Methods

21 Chemicals All compounds used in this work were sup-plied by Loba (purity≫99) chemicals and were used assuchwithout further purificationThepurity of chemicalswaschecked by comparing their densities with literature valuesThe binary mixtures were prepared using airtight stopperedbottles (to avoid evaporation) and themixtureswere preparedat an interval of 25 anilines

22Measurements Thedielectric spectra have been obtainedby the time domain reflectometry (TDR) techniqueThe Tek-tronix model no DSA8200 Digital Serial Analyzer samplingmainframe along with the sampling module 80E08 has beenused for the measurement A repetitive fast rising voltagepulsewith 18 ps incident rise timewas fed through coaxial linesystem of 50Ω impedance Sampling oscilloscope monitorschanges in step pulse after reflection from the end of lineReflected pulse without sample 119877

1(119905) and with sample 119877

119909(119905)

were recorded in the time window of 2 ns and digitizedin 2000 points The Fourier transformation of the pulsesand data analysis were done earlier to determine complexpermittivity spectra 120576lowast(120596) using nonlinear least squares fitmethod [12ndash14] The experimental values of 120576lowast(120596) are fittedwith Debye equation [15ndash17]

120576lowast(120596) = 120576infin +

(1205760minus 120576infin)

1 + 119895120596120591 (1)

where (1205760) (120576infin) and (120591) are fitting parameters In (1) (120576

0) is

the static permittivity (120591) is the relaxation time and (120576infin) is

the permittivity at high frequency

3 Result and Discussion

Figures 1(a) 1(b) 2(a) and 2(b) show the complex permittivity(dielectric permittivity and loss) spectra of aniline and m-anisidine with 2-butoxyethanol binary mixtures at 29815 KIn the case of aniline o-chloroaniline and o-anisidine with2-butoxyethanol systems the position of the peak in theplot of dielectric loss versus log119865 shifts towards higher fre-quency with increasing volume percent of anilines But inm-chloroaniline andm-anisidine with 2-butoxyethanol systemsthe position of the peak in the plot of dielectric loss versuslog119865 shifts towards lower frequency with increasing volumepercent ofm-chloroaniline andm-anisidine This shows thatthe relaxation time decreases with the increasing volumepercent of aniline o-chloroaniline and o-anisidine systemsand the relaxation time increases for the volume percent ofm-chloroaniline andm-anisidine systems [18]Themolecularinteraction taking place in the binary liquid mixtures can beexplained by the measured values of static dielectric constant

(1205760) and relaxation time (120591) A perusal Table 1 contains the

experimental values of static dielectric constant and relax-ation time of anilines with 2-butoxyethanol binary systems at29815 KThe static dielectric constant values decrease for ani-line o-chloroaniline o-anisidine and m-anisidine systemsand increase for m-chloroaniline system The nonlinearitybehaviour of static dielectric constant values in each studiedsystem can be attributed to the appearance of aggregatesin solutions The dielectric constant at an optical frequency(120576infin) values increases with increasing concentration of solutes

(anilines) for all the studied systems The relaxation timedepends critically on the nature of functional groups andvolume of molecule Functional groups that are able to formhydrogen bonding have a strong influence on relaxation time[19] Aniline has the free NH

2group in the benzene ring

But in the case of substituted anilines (o-chloroaniline m-chloroaniline o-anisidine and m-anisidine) the functionalgroup is added to the isomers of benzene ring with respectiveNH2group The relaxation times of aniline o-chloroaniline

m-chloroaniline o-anisidine andm-anisidine at 29815 K are1620 ps 2422 ps 5089 ps 989 ps and 12427 ps respectivelyThis shows that there is a systematic increase in relaxationtime when chlorine and methoxy groups shift from o-to m-position with respect to the amino group From thestudied systems more relaxation effects appear in the form ofMaxwell-Wagner-Sillars relaxation peaks Similar behaviourwas observed by Srivastava andVij [20] in their study of threechloroanilines in dilute benzene solution A regular variationin relaxation time values may be due to the change in themolecular volume or change in the effective length of thedipole involved in the orientation process

The structural information about the liquids from thedielectric relaxation parameter may be obtained by usingthe Kirkwood correlation parameter ldquo119892rdquo [21] This parameteris useful for obtaining information regarding orientationof electric dipoles in polar liquids The structural informa-tion on the interacting species is obtained by correctivecorrelation factor (119892

119891) The (119892

119891) values are deviated from

unity indicating strong intermolecular interactions betweencomponents of the studied systems [22 23] This significantdeviation from unity in the (119892

119891) values of the studied systems

confirms that the effective dipoles in the mixture will be lessthan the corresponding average value in pure liquids and theclustering due to dipole-dipole interaction between the twohetero molecules Modified forms of corrective correlationfactor have been used to study the orientation of electricdipoles in binary mixture of anilines with 2-BE named as theeffective Kirkwood correlation factor (119892eff) [24ndash26]

The effective Kirkwood correlation factor (119892eff) that iscalculated using (3) is given in Table 2 at 29815 K The 119892effvalues will change from 119892

1to 1198922as concentration of molecule

2 will increase from 0 to 100 The information on dipole-dipole correlation in associating polar liquid can be derivedfrom effective correlation factor [22] If the 119892eff values aregreater than unity which indicates the parallel orientation ofdipoles and if less than unity which indicates the antiparallelorientation of dipoles In pure state the 119892eff value of 2-butoxyethanol (1939) is greater than unity indicating parallel

Advances in Physical Chemistry 3

23456789

1011

7 75 8 85 9 95 10 105

Die

lect

ric p

erm

ittiv

ity (120576

998400 )

2-BE

75 2-BE + 25 aniline50 2-BE + 50 aniline25 2-BE + 75 anilineAniline

Log F (Hz)

(a)

0

05

1

15

2

25

3

35

7 75 8 85 9 95 10 105

2-BE

75 2-BE + 25 aniline50 2-BE + 50 aniline

25 2-BE + 75 aniline

Log F (Hz)

Die

lect

ric lo

ss (120576

998400998400)

Aniline

(b)

Figure 1 (a) The dielectric permittivity spectra of aniline + 2-butoxyethanol binary mixtures (b) The dielectric loss spectra of aniline + 2-butoxyethanol binary mixtures

23456789

1011

7 75 8 85 9 95 10 105

Die

lect

ric p

erm

ittiv

ity (120576

998400 )

Log F (Hz)

M-A2-BE

75 2-BE + 25 m-A50 2-BE + 50 m-A25 2-BE + 75 m-A

(a)

0

05

1

15

2

25

3

35

7 75 8 85 9 95 10 105Log F (Hz)

M-A2-BE

75 2-BE + 25 m-A50 2-BE + 50 m-A25 2-BE + 75 m-A

Die

lect

ric lo

ss (120576

998400998400)

(b)

Figure 2 (a) The dielectric permittivity spectra of m-anisidine + 2-butoxyethanol binary mixtures (b) The dielectric loss spectra of m-anisidine + 2-butoxyethanol binary mixtures

orientation of electric dipolesThe 119892eff values of pure anilineslike aniline (0898) o-chloroaniline (0742) m-chloroaniline(0632) and o-anisidine (0568) are less than unity indicatingantiparallel orientation of electric dipoles in the case of m-anisidine the 119892eff value is greater than unity (1168) As thevolume of solute (anilines) increases the 119892eff values aredecreasing It is interesting to note that the 119892eff values aremore deviated from unity and are found to be larger Thisconfirms the greater ability of 2-BE to form hydrogen bondswith aniline molecules

The Bruggeman factor which is the ratio of theoret-ical values of static dielectric constant computed fromBruggeman mixture formula and practically obtained valueshas been obtained (Figure 3)[23] A linear relationship isexpected from the Bruggeman factor values which givesa straight line when 119891

119861plotted against 120601

2 However here

the experimental values of (119891119861) were found to deviate

from the linear relations The nonlinear relation of (119891119861) 2-

butoxyethanol with aniline systems suggests an intermolec-ular interaction taking place in the mixed components Itis assumed that the volume fraction (120601

2) in the mixture is

modified by a factor [119886 minus (119886 minus 1)120601] This modification maybe due to the structural rearrangement of solute (anilines)molecule in the mixtures [27] The values of ldquo119886rdquo containinformation regarding the change in the orientation of thesolute molecules (anilines) in the mixture The values ofldquo119886rdquo are determined from the least square fit method for allthe studied systems The value of ldquo11988610158401015840 = 1 corresponds to theideal Bruggeman mixture formula The deviation from unityrelates to corresponding solute-solute interactionThe valuesof ldquo119886rdquo are 1514 (aniline) 2562 (o-CA) 2843 (m-CA) 3164(o-A) and 0934 (m-A) respectively

The excess properties like excess dielectric constant (120576119864)and excess inverse relaxation time (1120591)119864 provide valuable

4 Advances in Physical Chemistry

Table 1 Values of static dielectric constant (1205760) and relaxation time (120591) of aniline + 2-butoxyethanol binary mixtures at 29815 K

Aniline Aniline + 2-BE o-CA + 2-BE m-CA + 2-BE o-A + 2-BE m-A + 2-BEStatic dielectric constant (120576

0)

0 999 (4) 999 (4) 0999 (4) 999 (4) 999 (4)25 909 (1) 945 (5) 1043 (7) 937 (4) 978 (1)50 830 (6) 898 (7) 1105 (3) 802 (4) 957 (1)75 748 (2) 816 (3) 1196 (8) 594 (4) 936 (3)100 659 (1) 778 (4) 1294 (6) 445 (4) 921 (4)

Dielectric constant at optical frequency (120576infin)

0 1719 (2) 1719 (2) 1719 (2) 1719 (2) 1719 (2)25 2196 (2) 2299 (3) 2342 (1) 2323 (4) 2325 (1)50 2469 (1) 2364 (2) 2506 (4) 2414 (4) 2421 (1)75 2742 (1) 2512 (1) 2747 (3) 2502 (4) 2635 (3)100 2826 (1) 2814 (1) 3043 (1) 2652 (4) 2794 (2)

Relaxation time (120591) ps0 4786 (9) 4786 (9) 4786 (9) 4786 (9) 4786 (9)25 4012 (7) 4254 (6) 4836 (9) 3836 (11) 6378 (13)50 2812 (4) 3735 (3) 4889 (6) 2887 (6) 8908 (7)75 2125 (6) 3049 (4) 4978 (5) 1938 (7) 10112 (11)100 1620 (8) 2422 (8) 5089 (7) 1045 (8) 12427 (15)The number in bracket represents error in least significant digit of the corresponding value as obtained by the least squares fit method for example 999 (1)means 999 plusmn 001

0

02

04

06

08

1

0 02 04 06 08 1

Aniline + 2-BEO-CA + 2-BEM-CA + 2-BE

O-A + 2-BEM-A + 2-BEBruggeman line

fB

1206012

Figure 3 Bruggeman factor versus volume fraction of anilines

information about the formation ofmultimers in themixtureThe excess permittivity is defined as [28ndash30] In an idealmixture of polar liquids if the molecules are interactinga nonlinear variation in dielectric constant and relaxationtime occurs This confirms that the intermolecular asso-ciation is taking place in the system The excess propertyrelated to permittivity and relaxation time provides signif-icant information regarding interaction between the polar-polar liquid mixtures The values of (120576119864) are negative for

the whole composition for m-chloroaniline and m-anisidinewith 2-butoxyethanol (Table 3) systems The negative valuesindicate the formation of multimer structures which leads todecrease in the total number of dipoles in the systems In thecase of aniline + 2-butoxyethanol system the excess dielectricconstant values are initially negative and the volume fractionof aniline that increases the values of (120576119864) goes to positive Butin the case of o-chloroaniline + 2-butoxyethanol system thevalues of (120576119864) are positive at the lower volume fraction of ani-lines and negative at the higher volume fraction of anilinesThe (120576119864) values are positive for the whole composition of o-anisidine + 2-butoxyethanol systems Positive values of (120576119864)indicate the formation of monomeric dimeric or polymericstructures which increase the total number of dipoles in thesystem

Excess inverse relaxation time (1120591)119864 values are negativefor all the studied systems except m-chloroaniline with 2-butoxyethanol system which are listed in Table 2 Negativevalues of (1120591)119864 indicate the formation of structures rotatingslowly which may be probably due to dimeric structureof anilines that is the anilines creating a hindering fieldand hence the effective dipoles rotate slowly due to theformation of hydrogen bonded structures But in the caseof m-chloroaniline with 2-butoxyethanol system the excessinverse relaxation time values are positive for the wholecomposition range The positive trend of (1120591)119864 suggeststhe fast rotation of dipoles in the systems This may be dueto the formation of monomeric structure in this regionThe negative trend of (1120591)119864 suggests that the solute-solvent

Advances in Physical Chemistry 5

Table 2 Values of effective and corrective Kirkwood correlation factor (119892eff 119892119891) Bruggeman factor (119891

119861) excess dielectric constant (120576119864) and

excess inverse relaxation time (1120591)119864 of anilines with 2-butoxyethanol binary mixtures 29815 K

1206012

119892eff 119892119891

119891119861

120576119864 (1120591)119864 psAniline + 2-butoxyethanol

0 1939 (1) 1000 1000 0000 00000025 1555 (0) 0818 0759 minus0051 minus0006705 1284 (1) 0793 0534 0007 minus00062075 1040 (3) 0806 0288 0038 minus000431 0898 (2) 1000 0000 0000 00000

o-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1290 (3) 0789 0770 0014 minus0002605 1164 (1) 0871 0563 0097 minus00043075 0944 (1) 0909 0186 minus0169 minus000371 0742 (3) 1000 0000 0000 00000

m-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1128 (2) 0802 0839 minus0297 0000105 0920 (1) 0868 0619 minus0415 00002075 0761 (3) 0934 0313 minus0243 000011 0632 (0) 1000 0000 0000 00000

o-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1419 (1) 0824 0907 0765 minus0014305 1264 (3) 0876 0693 0800 minus00246075 0907 (0) 0844 0320 0105 minus002511 0568 (1) 1000 0000 0000 00000

m-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1394 (3) 0786 0736 minus0015 minus0002005 1350 (2) 0849 0468 minus0030 minus00030075 1230 (1) 0885 0197 minus0045 minus000101 1168 (3) 1000 0000 0000 00000The number in bracket represents error in least significant digit of the corresponding value as obtained by the least squares fit method for example 1939 (1)means 1939 plusmn 001

interaction produces a field such that the effective dipolesrotate slowly Krishna and MadhuMohan [31] have reportedthe negative and positive values (1120591)119864 in N-methylanilinewith alcohols

The excess Helmholtz free energy (Δ119865119864) is a parameterto evaluate the interaction between the components in themixture through breaking mechanism of hydrogen bond andis expressed [32ndash35] as

Δ119865119864= Δ119865119864

0+ Δ119865119864

119903119903+ Δ119865119864

12 (2)

where (Δ1198651198640) represents the excess dipolar energy due to

long range electrostatic interaction (Δ119865119864119903119903) represents the

excess dipolar energy due to short range interaction betweenidentical molecules and (Δ119865119864

12) represents the excess free

energy due to short range interaction between dissimilarmolecules The above terms are given in detail in (2)

Δ119865119864= minus [

119873119860

2][ sum119903=12

1206012

1199031205832

119903(119877119891119903minus 1198770

119891119903)]

+ [ sum119903=12

1206012

1199031205832

119903(119892119903119903minus 1)

times (119877119891119903minus 1198770

119891119903) ]

+ [1206011120601212058311205832(11989212minus 1)

times (1198771198911+ 1198771198912minus 1198770

1198911minus 1198770

1198912)]

6 Advances in Physical Chemistry

Table 3 Values of excess Helmholtz free energy of mixing for anilines + 2-butoxyethanol binary mixtures at 29815 K

1206012

Δ1198651198640119903

JmolΔ119865119864119903119903

JmolΔ11986511986412

JmolΔ119865119864

JmolAniline + 2-butoxyethanol

0 0000 0000 0000 0000025 12667 1195 minus24375 minus1051305 minus12462 3531 minus9455 minus18385075 minus35202 4514 minus0070 minus307581 0000 0000 0000 0000

o-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 5315 2646 minus8528 minus0567050 minus17290 7956 minus3584 minus12918075 minus17337 6199 minus0525 minus116631 0000 0000 0000 0000

m-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 8096 minus7248 5254 610205 44607 minus20755 minus2314 21538075 56248 minus22579 0869 345381 0000 0000 0000 0000

o-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 minus7335 10956 minus43957 minus4033605 minus54914 36394 minus26484 minus45004075 minus82072 43962 0696 minus374141 0000 0000 0000 0000

m-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 3515 minus0395 minus2680 044005 minus0741 minus1016 minus0980 minus2737075 minus3759 minus0971 0646 minus40851 0000 0000 0000 0000

1198770

119891119903= (

8120587119873119860

9119881119903

)(120576119903minus 1) (120576

infin119903+ 2)

(2120576119903+ 120576infin119903)

119877119891119903= (

8120587119873119860

9119881119903

)(120576119898minus 1) (120576

infin119903+ 2)

(2120576119898+ 120576infin119903)

(3)In the case of aniline o-chloroaniline o-anisidine and

m-anisidine with 2-butoxyethanol systems the values of(Δ1198651198640119903) are positive and less negative for o-anisidine + 2-

butoxyethanol at lower concentrations of anilines and neg-ative at higher concentrations of anilines It means thatat initial concentration of anilines there is the existenceof attractive force between the dipoles while at higherconcentrations of anilines there exists repulsive force betweenthe dipoles In the case of m-chloroaniline 2-butoxyethanolsystem the (Δ119865119864

0119903) values are positive for the whole com-

position range This shows the existence of attractive force

between the dipoles The (Δ119865119864119903119903) predicts the information of

the short range interaction and self-association between likemolecules Increase of (Δ119865119864

119903119903) with volume fraction of the

aniline molecules suggests that the strength of the homoint-eraction between aniline molecules increasesThe maximumvalues of (Δ119865119864

119903119903) for the studied systems indicate the strong

short range interaction through hydrogen bonding In oursystems o-anisidine with 2-butoxyethanol has the maximumvalue of (Δ119865119864

119903119903)

The magnitude of (Δ11986511986412) gives information on the

strength of interactions between unlike molecules Accord-ing to Swain and Roy [36] antiparallel alignment leadsto the destruction of angular correlation between dissim-ilar molecules decreasing internal energy and results inthe increase of (Δ119865119864

12) values The (Δ119865119864

12) values aniline

and o-chloroaniline with 2-butoxyethanol systems are com-pletely negative In the case of o-anisidine + 2-butoxyethanol

Advances in Physical Chemistry 7

Table 4 Values of adjustable parameters (119861119896) and the corresponding standard deviations (120590) for excess dielectric constant and excess inverse

relaxation time of anilines + 2-butoxyethanol binary mixtures at 29815 K

Adjustable parameters120590 Error

1198610

1198611

1198612

1198613

1198614

Aniline 120576119864 0026 minus0629 minus0314 0629 0288 247 times 10minus05 0008(1120591)119864 minus0045 0020 minus0024 minus0020 0069 114 times 10

minus05 0004

o-CA 120576119864 0388 1301 minus4158 minus1301 3770 210 times 10minus05 0005(1120591)119864 minus0017 0006 0002 minus0006 0014 366 times 10minus05 0009

m-CA 120576119864 minus1660 minus0391 0620 0391 1040 494 times 10minus06 0001(1120591)119864 0001 0000 0000 0000 0000 467 times 10minus08 0006

o-A 120576119864 3200 4693 minus3626 minus4693 0426 210 times 10

minus05 0008(1120591)119864 minus0094 0084 minus0080 minus0084 0175 112 times 10minus04 0007

m-A 120576119864 minus0120 0213 minus0253 minus0213 0373 166 times 10minus05 0002(1120591)119864 minus0013 minus0004 0016 0004 minus0003 322 times 10minus05 0005

and m-anisidine + 2-butoxyethanol systems the (Δ11986511986412) val-

ues are initially negative and the volume fraction of ani-line that increases the (Δ119865119864

12) values goes to positive It

indicates that the dipoles have parallel orientation in 2-alkoxyethanol rich region and the dipoles have antiparallelorientation in anilines rich region where as in the case ofm-chloroaniline + 2-butoxyethanol system the (Δ119865119864

12) values

are positive for m-chloroaniline and 2-butoxyethanol richregion and negative for equimolar ratio This shows thatthe conversion of multimers leads to the internal energyThe (Δ119865119864

12) values are very small at all concentrations This

shows that interaction does not result in a structure breakingmechanism between dissimilar molecules Hence it maybe concluded that hydrogen bonds between the dissimilarmolecules are not broken by change in the composition of themixture

Finally the total excess Helmholtz free energy (Δ119865119864)values are negative for aniline o-chloroaniline o-anisidineand m-anisidine and positive for m-chloroaniline systemsThe negative values of (Δ119865119864) indicate the formation of 120572-clusters Due to the formation of these 120572-clusters the effectivedipole moment will be increased which increases the internalenergy The positive values of (Δ119865119864) are due to the formationof 120573-clusters and hence the effective dipole moment will bedecreased when compared to the sum of individual systemsand thereby it destructs the angular correlation betweennonideal molecules which may decrease its internal energyHence the dipolar excess free energy or excess Helmholtzfree energy can be considered to be a reflection of the inter-action between the islands of anilines in 2-alkoxyethanols(Figure 4) The excess values are fitted with Redlich-Kister[37] polynomial equation and the average standard deviationvalues are calculated These values are listed in Table 4 Thederived dielectric parameters and excess functions from themeasured properties suggest the presence of strongmolecularinteractions in the solution to obtain binary coefficientsand the standard errors in the Redlich-Kister polynomialequation at 29815 K as a function of composition of themixture

(a)

F = CH3CH2CH2CH2

(b)

X Y = Cl OCH3

(c)

Figure 4 Interaction behaviour of anilines + 2-butoxyethanol

4 Conclusion

The complex permittivity spectra of 2-butoxyethanol inanilines have been studied using time domain reflectometrytechnique in the frequency range 10MHz to 30GHz Anonlinear variation of static dielectric constant and relaxationtime values suggests the heterogeneous interaction between

8 Advances in Physical Chemistry

the unlike molecules The calculated values like Kirkwoodcorrelation factors Bruggeman factor and excess dielectricconstant values confirm the hydrogen bond interactionbetween 2-BE with anilines The negative total excess freeenergies Δ119865119864may be attributed to the H-bonding interactionbetween unlike molecules over the depolymerization of 2-BEby anilines

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledged the School of PhysicalScience SRTM University Nanded Maharashtra for pro-viding the TDR measurements

References

[1] D Balamurugan S Kumar and S Krishnan ldquoDielectric relax-ation studies of higher order alcohol complexes with aminesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 122 no 1ndash3 pp 11ndash14 2005

[2] P Sivagurunathan K Dharmalingam K Ramachandran BPrabhakarUndre PW Khirade and S CMehrotra ldquoDielectricrelaxation study of ethyl acrylate-alcohol mixtures using timedomain Reflectometryrdquo Lithanian Journal of Physics vol 46 no4 pp 441ndash445 2006

[3] Y S Joshi and A C Kumbharkhane ldquoStudy of heterogeneousinteraction in binary mixtures of 2-methoxyethanol-waterusing dielectric relaxation spectroscopyrdquo Journal of MolecularLiquids vol 161 no 3 pp 120ndash124 2011

[4] V A Rana A D Vyas and S C Mehrotra ldquoDielectricrelaxation study of mixtures of 1-propanol with aniline 2-chloroaniline and 3-chloroaniline at different temperaturesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 102 no 1ndash3 pp 379ndash391 2003

[5] T V Krishna and S S Sastry ldquoDielectric and thermodynamicstudies on the hydrogen bonded binary system of isopropylalcohol and anilinerdquo Journal of Solution Chemistry vol 39 no9 pp 1377ndash1393 2010

[6] T Kalaivani and S Krishnan ldquoDielectric relaxation studies ofternary liquid mixtures of aniline and substituted anilines withacrylonitrile in the microwave regionrdquo Indian Journal of Pureand Applied Physics vol 47 no 12 pp 880ndash882 2009

[7] R J Sengwa V Khatri and S Sankhla ldquoDielectric proper-ties and hydrogen bonding interaction behaviour in binarymixtures of glycerol with amides and aminesrdquo Fluid PhaseEquilibria vol 266 no 1-2 pp 54ndash58 2008

[8] A N Prajapati V A Rana and A D Vyas ldquoDielectricdispersion studies of mixtures of aniline and benzonitrile inbenzene solutionsrdquo Journal of Molecular Liquids vol 144 no1-2 pp 1ndash4 2009

[9] K K Gupta A K Bansal P J Singh and K S SharmaldquoStructural change analysis of pyridine and piperidine throughdielectric relaxation studiesrdquo Journal of Molecular Liquids vol108 no 1ndash3 pp 79ndash93 2003

[10] U Becker and M Stockhausen ldquoA dielectric relaxation studyof some mixtures of mono and dihydric alcoholsrdquo Journal ofMolecular Liquids vol 81 no 2 pp 89ndash100 1999

[11] A C Kumbharkhane S M Puranik and S C MehrotraldquoDielectric relaxation study and structural properties of 2-nitroacetophenone-ethanol solutions from 10MHz to 10GHzrdquoJournal of Molecular Liquids vol 51 no 3-4 pp 307ndash319 1992

[12] S M Puranik A C Kumbharkhane and S CMehrotra ldquoDielectric relaxation studies of aqueous NN-dimethylformamide using a picosecond time domaintechniquerdquo Journal of Solution Chemistry vol 22 no 3pp 219ndash229 1993

[13] Y S Joshi P G Hudge A C Kumbharkhane and SC Mehrotra ldquoThe dielectric relaxation study of 2(2-alkoxyethoxy)ethanol-water mixtures using time domainreflectometryrdquo Journal of Molecular Liquids vol 163 no 2 pp70ndash76 2011

[14] P R Bevington Data Reduction and Error Analysis for thePhysical Sciences McGraw Hill New York NY USA 1969

[15] A Chaudhari N M More and S C Mehrotra ldquoStatic dielec-tric constant and relaxation time for the binary mixture ofwater ethanol NN-dimethylformamide dimethylsulphoxideand NN-dimethylacetamide with 2-methoxyethanolrdquo Bulletinof the Korean Chemical Society vol 22 no 4 pp 357ndash361 2001

[16] A C Kumbharkhane S N Helambe S Doraiswamyand S C Mehrotra ldquoDielectric relaxation study ofhexamethylphosphoramide-water mixtures using time domainreflectometryrdquo The Journal of Chemical Physics vol 99 no 4pp 2405ndash2409 1993

[17] B D Achole A V Patil V P Pawar and S C MehrotraldquoStudy of interaction through dielectrics behavior of -OHgroup molecules from 10MHz to 20GHzrdquo Journal of MolecularLiquids vol 159 no 2 pp 152ndash156 2011

[18] L S Gabrielyan and S A Markarian ldquoDielectric relaxationstudy of dipropylsulfoxidewater mixturesrdquo Journal of Molecu-lar Liquids vol 162 no 3 pp 135ndash140 2011

[19] Y S Joshi P G Hudge and A C Kumbharkhane ldquoDielectricrelaxation study of aqueous 2-ethoxyethanol using time domainreflectometry techniquerdquo Indian Journal of Physics vol 85 no11 pp 1603ndash1614 2011

[20] K K Srivastava and J K Vij ldquoDielectric relaxation and molec-ular structure I Dielectric relaxation in substituted anilinesrdquoBulletin of Chemical Society of Japan vol 43 pp 2307ndash23121970

[21] J G Kirkwood ldquoThe dielectric polarization of polar liquidsrdquoThe Journal of Chemical Physics vol 7 no 10 pp 911ndash919 1939

[22] S B Sayyad P B Undre P Yannewar S S Patil P W Khiradeand S C Mehrotra ldquoInvestigations of intermolecular inter-actions between 2-methoxyethanol and nitrobenzene throughdielectric relaxation studyrdquo Lithuanian Journal of Physics vol51 no 1 pp 29ndash37 2011

[23] D A G Bruggeman ldquoThe dielectric constant of a compositematerialrdquo Annals of Physics vol 5 p 636 1935

[24] J B Hasted Aqueous Dielectrics Champan and Hall LondonUK 1973

[25] V P Pawar and S C Mehrotra ldquoDielectric relaxation study ofchlorobenzene with formamide at microwave frequency usingtime domain reflectometryrdquo Journal of Molecular Liquids vol115 no 1 pp 17ndash22 2004

[26] P Undre S N Helambe S B Jagdale P W Khirade and SC Mehrotra ldquoMicrowave dielectric characterization of binary

Advances in Physical Chemistry 9

mixture of formamide with N N-dimethylaminoethanolrdquo Pra-mana vol 68 no 5 pp 851ndash861 2007

[27] D A G Bruggeman ldquoThe dielectric constant of a compositematerial-a problem in classical physicsrdquo Annals of Physics vol24 p 636 1967

[28] A Chaudhari S Ahire M Lokhande and S C MehrotraldquoDielectric study of pyridine- alcohol binary liquids at 25∘CrdquoProceedings of the National Academy of Sciences India Section Avol 1 pp 75ndash83 2001

[29] A Chaudhari C S Patil A G Shankarwar B R Arbad andS C Mehrotra ldquoTemperature dependent dielectric relaxationstudy of aniline in dimethylsulphoxide and dimethylformamideusing time domain techniquerdquo Journal of Korean ChemicalSociety vol 45 pp 201ndash206 2001

[30] S C Mehrotra and J E Boggs ldquoA new approach to time-dependent perturbation theoryrdquo The Journal of ChemicalPhysics vol 64 no 7 pp 2796ndash2803 1976

[31] T V Krishna and T MadhuMohan ldquoStudy of molecularinteractions in the polar binary mixtures of N-methyl ani-line and alcohols using excess dielectric and thermodynamicparametersrdquo Journal of Chemical Thermodynamics vol 47 pp267ndash275 2012

[32] T M Mohan S S Sastry and V R K Murthy ldquoThermo-dynamic dielectric and conformational studies on hydrogenbonded binary mixtures of propan-1-ol with methyl benzoateand ethyl benzoaterdquo Journal of Solution Chemistry vol 40 no1 pp 131ndash146 2011

[33] T Thenappan and U Sankar ldquoStudy of correlation factors anddipolar excess free energies of esters in benzenerdquo Journal ofMolecular Liquids vol 126 no 1ndash3 pp 23ndash28 2006

[34] G Arivazhagan G Parthipan and T Thenappan ldquoSolute-solvent interactions of acid-14-dioxane mixtures-By dielectricFTIR UV-vis and 13C NMR spectrometric methodsrdquo Spec-trochimica Acta A vol 74 no 4 pp 860ndash868 2009

[35] G Parthipan and T Thenappan ldquoDielectric and thermody-namic behavior of binary mixture of anisole with morpholineand aniline at different temperaturesrdquo Journal of MolecularLiquids vol 138 no 1ndash3 pp 20ndash25 2008

[36] B B Swain and G S Roy ldquoDielectric studies of binary mixturesof butanols in nonpolar solvents-solute-solvent interactionsrdquoJournal of Molecular Liquids vol 34 no 4 pp 257ndash268 1987

[37] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: Research Article Dielectric Relaxation Studies of 2

2 Advances in Physical Chemistry

of anilines with 2-butoxyethanol binary mixtures throughdielectric properties It has been measured by using differentdielectric parameters like static dielectric constant relaxationtime Bruggeman factor Kirkwood correlation factors excessdielectric permittivity and excess inverse relaxation time at29815 K

2 Material and Methods

21 Chemicals All compounds used in this work were sup-plied by Loba (purity≫99) chemicals and were used assuchwithout further purificationThepurity of chemicalswaschecked by comparing their densities with literature valuesThe binary mixtures were prepared using airtight stopperedbottles (to avoid evaporation) and themixtureswere preparedat an interval of 25 anilines

22Measurements Thedielectric spectra have been obtainedby the time domain reflectometry (TDR) techniqueThe Tek-tronix model no DSA8200 Digital Serial Analyzer samplingmainframe along with the sampling module 80E08 has beenused for the measurement A repetitive fast rising voltagepulsewith 18 ps incident rise timewas fed through coaxial linesystem of 50Ω impedance Sampling oscilloscope monitorschanges in step pulse after reflection from the end of lineReflected pulse without sample 119877

1(119905) and with sample 119877

119909(119905)

were recorded in the time window of 2 ns and digitizedin 2000 points The Fourier transformation of the pulsesand data analysis were done earlier to determine complexpermittivity spectra 120576lowast(120596) using nonlinear least squares fitmethod [12ndash14] The experimental values of 120576lowast(120596) are fittedwith Debye equation [15ndash17]

120576lowast(120596) = 120576infin +

(1205760minus 120576infin)

1 + 119895120596120591 (1)

where (1205760) (120576infin) and (120591) are fitting parameters In (1) (120576

0) is

the static permittivity (120591) is the relaxation time and (120576infin) is

the permittivity at high frequency

3 Result and Discussion

Figures 1(a) 1(b) 2(a) and 2(b) show the complex permittivity(dielectric permittivity and loss) spectra of aniline and m-anisidine with 2-butoxyethanol binary mixtures at 29815 KIn the case of aniline o-chloroaniline and o-anisidine with2-butoxyethanol systems the position of the peak in theplot of dielectric loss versus log119865 shifts towards higher fre-quency with increasing volume percent of anilines But inm-chloroaniline andm-anisidine with 2-butoxyethanol systemsthe position of the peak in the plot of dielectric loss versuslog119865 shifts towards lower frequency with increasing volumepercent ofm-chloroaniline andm-anisidine This shows thatthe relaxation time decreases with the increasing volumepercent of aniline o-chloroaniline and o-anisidine systemsand the relaxation time increases for the volume percent ofm-chloroaniline andm-anisidine systems [18]Themolecularinteraction taking place in the binary liquid mixtures can beexplained by the measured values of static dielectric constant

(1205760) and relaxation time (120591) A perusal Table 1 contains the

experimental values of static dielectric constant and relax-ation time of anilines with 2-butoxyethanol binary systems at29815 KThe static dielectric constant values decrease for ani-line o-chloroaniline o-anisidine and m-anisidine systemsand increase for m-chloroaniline system The nonlinearitybehaviour of static dielectric constant values in each studiedsystem can be attributed to the appearance of aggregatesin solutions The dielectric constant at an optical frequency(120576infin) values increases with increasing concentration of solutes

(anilines) for all the studied systems The relaxation timedepends critically on the nature of functional groups andvolume of molecule Functional groups that are able to formhydrogen bonding have a strong influence on relaxation time[19] Aniline has the free NH

2group in the benzene ring

But in the case of substituted anilines (o-chloroaniline m-chloroaniline o-anisidine and m-anisidine) the functionalgroup is added to the isomers of benzene ring with respectiveNH2group The relaxation times of aniline o-chloroaniline

m-chloroaniline o-anisidine andm-anisidine at 29815 K are1620 ps 2422 ps 5089 ps 989 ps and 12427 ps respectivelyThis shows that there is a systematic increase in relaxationtime when chlorine and methoxy groups shift from o-to m-position with respect to the amino group From thestudied systems more relaxation effects appear in the form ofMaxwell-Wagner-Sillars relaxation peaks Similar behaviourwas observed by Srivastava andVij [20] in their study of threechloroanilines in dilute benzene solution A regular variationin relaxation time values may be due to the change in themolecular volume or change in the effective length of thedipole involved in the orientation process

The structural information about the liquids from thedielectric relaxation parameter may be obtained by usingthe Kirkwood correlation parameter ldquo119892rdquo [21] This parameteris useful for obtaining information regarding orientationof electric dipoles in polar liquids The structural informa-tion on the interacting species is obtained by correctivecorrelation factor (119892

119891) The (119892

119891) values are deviated from

unity indicating strong intermolecular interactions betweencomponents of the studied systems [22 23] This significantdeviation from unity in the (119892

119891) values of the studied systems

confirms that the effective dipoles in the mixture will be lessthan the corresponding average value in pure liquids and theclustering due to dipole-dipole interaction between the twohetero molecules Modified forms of corrective correlationfactor have been used to study the orientation of electricdipoles in binary mixture of anilines with 2-BE named as theeffective Kirkwood correlation factor (119892eff) [24ndash26]

The effective Kirkwood correlation factor (119892eff) that iscalculated using (3) is given in Table 2 at 29815 K The 119892effvalues will change from 119892

1to 1198922as concentration of molecule

2 will increase from 0 to 100 The information on dipole-dipole correlation in associating polar liquid can be derivedfrom effective correlation factor [22] If the 119892eff values aregreater than unity which indicates the parallel orientation ofdipoles and if less than unity which indicates the antiparallelorientation of dipoles In pure state the 119892eff value of 2-butoxyethanol (1939) is greater than unity indicating parallel

Advances in Physical Chemistry 3

23456789

1011

7 75 8 85 9 95 10 105

Die

lect

ric p

erm

ittiv

ity (120576

998400 )

2-BE

75 2-BE + 25 aniline50 2-BE + 50 aniline25 2-BE + 75 anilineAniline

Log F (Hz)

(a)

0

05

1

15

2

25

3

35

7 75 8 85 9 95 10 105

2-BE

75 2-BE + 25 aniline50 2-BE + 50 aniline

25 2-BE + 75 aniline

Log F (Hz)

Die

lect

ric lo

ss (120576

998400998400)

Aniline

(b)

Figure 1 (a) The dielectric permittivity spectra of aniline + 2-butoxyethanol binary mixtures (b) The dielectric loss spectra of aniline + 2-butoxyethanol binary mixtures

23456789

1011

7 75 8 85 9 95 10 105

Die

lect

ric p

erm

ittiv

ity (120576

998400 )

Log F (Hz)

M-A2-BE

75 2-BE + 25 m-A50 2-BE + 50 m-A25 2-BE + 75 m-A

(a)

0

05

1

15

2

25

3

35

7 75 8 85 9 95 10 105Log F (Hz)

M-A2-BE

75 2-BE + 25 m-A50 2-BE + 50 m-A25 2-BE + 75 m-A

Die

lect

ric lo

ss (120576

998400998400)

(b)

Figure 2 (a) The dielectric permittivity spectra of m-anisidine + 2-butoxyethanol binary mixtures (b) The dielectric loss spectra of m-anisidine + 2-butoxyethanol binary mixtures

orientation of electric dipolesThe 119892eff values of pure anilineslike aniline (0898) o-chloroaniline (0742) m-chloroaniline(0632) and o-anisidine (0568) are less than unity indicatingantiparallel orientation of electric dipoles in the case of m-anisidine the 119892eff value is greater than unity (1168) As thevolume of solute (anilines) increases the 119892eff values aredecreasing It is interesting to note that the 119892eff values aremore deviated from unity and are found to be larger Thisconfirms the greater ability of 2-BE to form hydrogen bondswith aniline molecules

The Bruggeman factor which is the ratio of theoret-ical values of static dielectric constant computed fromBruggeman mixture formula and practically obtained valueshas been obtained (Figure 3)[23] A linear relationship isexpected from the Bruggeman factor values which givesa straight line when 119891

119861plotted against 120601

2 However here

the experimental values of (119891119861) were found to deviate

from the linear relations The nonlinear relation of (119891119861) 2-

butoxyethanol with aniline systems suggests an intermolec-ular interaction taking place in the mixed components Itis assumed that the volume fraction (120601

2) in the mixture is

modified by a factor [119886 minus (119886 minus 1)120601] This modification maybe due to the structural rearrangement of solute (anilines)molecule in the mixtures [27] The values of ldquo119886rdquo containinformation regarding the change in the orientation of thesolute molecules (anilines) in the mixture The values ofldquo119886rdquo are determined from the least square fit method for allthe studied systems The value of ldquo11988610158401015840 = 1 corresponds to theideal Bruggeman mixture formula The deviation from unityrelates to corresponding solute-solute interactionThe valuesof ldquo119886rdquo are 1514 (aniline) 2562 (o-CA) 2843 (m-CA) 3164(o-A) and 0934 (m-A) respectively

The excess properties like excess dielectric constant (120576119864)and excess inverse relaxation time (1120591)119864 provide valuable

4 Advances in Physical Chemistry

Table 1 Values of static dielectric constant (1205760) and relaxation time (120591) of aniline + 2-butoxyethanol binary mixtures at 29815 K

Aniline Aniline + 2-BE o-CA + 2-BE m-CA + 2-BE o-A + 2-BE m-A + 2-BEStatic dielectric constant (120576

0)

0 999 (4) 999 (4) 0999 (4) 999 (4) 999 (4)25 909 (1) 945 (5) 1043 (7) 937 (4) 978 (1)50 830 (6) 898 (7) 1105 (3) 802 (4) 957 (1)75 748 (2) 816 (3) 1196 (8) 594 (4) 936 (3)100 659 (1) 778 (4) 1294 (6) 445 (4) 921 (4)

Dielectric constant at optical frequency (120576infin)

0 1719 (2) 1719 (2) 1719 (2) 1719 (2) 1719 (2)25 2196 (2) 2299 (3) 2342 (1) 2323 (4) 2325 (1)50 2469 (1) 2364 (2) 2506 (4) 2414 (4) 2421 (1)75 2742 (1) 2512 (1) 2747 (3) 2502 (4) 2635 (3)100 2826 (1) 2814 (1) 3043 (1) 2652 (4) 2794 (2)

Relaxation time (120591) ps0 4786 (9) 4786 (9) 4786 (9) 4786 (9) 4786 (9)25 4012 (7) 4254 (6) 4836 (9) 3836 (11) 6378 (13)50 2812 (4) 3735 (3) 4889 (6) 2887 (6) 8908 (7)75 2125 (6) 3049 (4) 4978 (5) 1938 (7) 10112 (11)100 1620 (8) 2422 (8) 5089 (7) 1045 (8) 12427 (15)The number in bracket represents error in least significant digit of the corresponding value as obtained by the least squares fit method for example 999 (1)means 999 plusmn 001

0

02

04

06

08

1

0 02 04 06 08 1

Aniline + 2-BEO-CA + 2-BEM-CA + 2-BE

O-A + 2-BEM-A + 2-BEBruggeman line

fB

1206012

Figure 3 Bruggeman factor versus volume fraction of anilines

information about the formation ofmultimers in themixtureThe excess permittivity is defined as [28ndash30] In an idealmixture of polar liquids if the molecules are interactinga nonlinear variation in dielectric constant and relaxationtime occurs This confirms that the intermolecular asso-ciation is taking place in the system The excess propertyrelated to permittivity and relaxation time provides signif-icant information regarding interaction between the polar-polar liquid mixtures The values of (120576119864) are negative for

the whole composition for m-chloroaniline and m-anisidinewith 2-butoxyethanol (Table 3) systems The negative valuesindicate the formation of multimer structures which leads todecrease in the total number of dipoles in the systems In thecase of aniline + 2-butoxyethanol system the excess dielectricconstant values are initially negative and the volume fractionof aniline that increases the values of (120576119864) goes to positive Butin the case of o-chloroaniline + 2-butoxyethanol system thevalues of (120576119864) are positive at the lower volume fraction of ani-lines and negative at the higher volume fraction of anilinesThe (120576119864) values are positive for the whole composition of o-anisidine + 2-butoxyethanol systems Positive values of (120576119864)indicate the formation of monomeric dimeric or polymericstructures which increase the total number of dipoles in thesystem

Excess inverse relaxation time (1120591)119864 values are negativefor all the studied systems except m-chloroaniline with 2-butoxyethanol system which are listed in Table 2 Negativevalues of (1120591)119864 indicate the formation of structures rotatingslowly which may be probably due to dimeric structureof anilines that is the anilines creating a hindering fieldand hence the effective dipoles rotate slowly due to theformation of hydrogen bonded structures But in the caseof m-chloroaniline with 2-butoxyethanol system the excessinverse relaxation time values are positive for the wholecomposition range The positive trend of (1120591)119864 suggeststhe fast rotation of dipoles in the systems This may be dueto the formation of monomeric structure in this regionThe negative trend of (1120591)119864 suggests that the solute-solvent

Advances in Physical Chemistry 5

Table 2 Values of effective and corrective Kirkwood correlation factor (119892eff 119892119891) Bruggeman factor (119891

119861) excess dielectric constant (120576119864) and

excess inverse relaxation time (1120591)119864 of anilines with 2-butoxyethanol binary mixtures 29815 K

1206012

119892eff 119892119891

119891119861

120576119864 (1120591)119864 psAniline + 2-butoxyethanol

0 1939 (1) 1000 1000 0000 00000025 1555 (0) 0818 0759 minus0051 minus0006705 1284 (1) 0793 0534 0007 minus00062075 1040 (3) 0806 0288 0038 minus000431 0898 (2) 1000 0000 0000 00000

o-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1290 (3) 0789 0770 0014 minus0002605 1164 (1) 0871 0563 0097 minus00043075 0944 (1) 0909 0186 minus0169 minus000371 0742 (3) 1000 0000 0000 00000

m-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1128 (2) 0802 0839 minus0297 0000105 0920 (1) 0868 0619 minus0415 00002075 0761 (3) 0934 0313 minus0243 000011 0632 (0) 1000 0000 0000 00000

o-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1419 (1) 0824 0907 0765 minus0014305 1264 (3) 0876 0693 0800 minus00246075 0907 (0) 0844 0320 0105 minus002511 0568 (1) 1000 0000 0000 00000

m-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1394 (3) 0786 0736 minus0015 minus0002005 1350 (2) 0849 0468 minus0030 minus00030075 1230 (1) 0885 0197 minus0045 minus000101 1168 (3) 1000 0000 0000 00000The number in bracket represents error in least significant digit of the corresponding value as obtained by the least squares fit method for example 1939 (1)means 1939 plusmn 001

interaction produces a field such that the effective dipolesrotate slowly Krishna and MadhuMohan [31] have reportedthe negative and positive values (1120591)119864 in N-methylanilinewith alcohols

The excess Helmholtz free energy (Δ119865119864) is a parameterto evaluate the interaction between the components in themixture through breaking mechanism of hydrogen bond andis expressed [32ndash35] as

Δ119865119864= Δ119865119864

0+ Δ119865119864

119903119903+ Δ119865119864

12 (2)

where (Δ1198651198640) represents the excess dipolar energy due to

long range electrostatic interaction (Δ119865119864119903119903) represents the

excess dipolar energy due to short range interaction betweenidentical molecules and (Δ119865119864

12) represents the excess free

energy due to short range interaction between dissimilarmolecules The above terms are given in detail in (2)

Δ119865119864= minus [

119873119860

2][ sum119903=12

1206012

1199031205832

119903(119877119891119903minus 1198770

119891119903)]

+ [ sum119903=12

1206012

1199031205832

119903(119892119903119903minus 1)

times (119877119891119903minus 1198770

119891119903) ]

+ [1206011120601212058311205832(11989212minus 1)

times (1198771198911+ 1198771198912minus 1198770

1198911minus 1198770

1198912)]

6 Advances in Physical Chemistry

Table 3 Values of excess Helmholtz free energy of mixing for anilines + 2-butoxyethanol binary mixtures at 29815 K

1206012

Δ1198651198640119903

JmolΔ119865119864119903119903

JmolΔ11986511986412

JmolΔ119865119864

JmolAniline + 2-butoxyethanol

0 0000 0000 0000 0000025 12667 1195 minus24375 minus1051305 minus12462 3531 minus9455 minus18385075 minus35202 4514 minus0070 minus307581 0000 0000 0000 0000

o-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 5315 2646 minus8528 minus0567050 minus17290 7956 minus3584 minus12918075 minus17337 6199 minus0525 minus116631 0000 0000 0000 0000

m-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 8096 minus7248 5254 610205 44607 minus20755 minus2314 21538075 56248 minus22579 0869 345381 0000 0000 0000 0000

o-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 minus7335 10956 minus43957 minus4033605 minus54914 36394 minus26484 minus45004075 minus82072 43962 0696 minus374141 0000 0000 0000 0000

m-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 3515 minus0395 minus2680 044005 minus0741 minus1016 minus0980 minus2737075 minus3759 minus0971 0646 minus40851 0000 0000 0000 0000

1198770

119891119903= (

8120587119873119860

9119881119903

)(120576119903minus 1) (120576

infin119903+ 2)

(2120576119903+ 120576infin119903)

119877119891119903= (

8120587119873119860

9119881119903

)(120576119898minus 1) (120576

infin119903+ 2)

(2120576119898+ 120576infin119903)

(3)In the case of aniline o-chloroaniline o-anisidine and

m-anisidine with 2-butoxyethanol systems the values of(Δ1198651198640119903) are positive and less negative for o-anisidine + 2-

butoxyethanol at lower concentrations of anilines and neg-ative at higher concentrations of anilines It means thatat initial concentration of anilines there is the existenceof attractive force between the dipoles while at higherconcentrations of anilines there exists repulsive force betweenthe dipoles In the case of m-chloroaniline 2-butoxyethanolsystem the (Δ119865119864

0119903) values are positive for the whole com-

position range This shows the existence of attractive force

between the dipoles The (Δ119865119864119903119903) predicts the information of

the short range interaction and self-association between likemolecules Increase of (Δ119865119864

119903119903) with volume fraction of the

aniline molecules suggests that the strength of the homoint-eraction between aniline molecules increasesThe maximumvalues of (Δ119865119864

119903119903) for the studied systems indicate the strong

short range interaction through hydrogen bonding In oursystems o-anisidine with 2-butoxyethanol has the maximumvalue of (Δ119865119864

119903119903)

The magnitude of (Δ11986511986412) gives information on the

strength of interactions between unlike molecules Accord-ing to Swain and Roy [36] antiparallel alignment leadsto the destruction of angular correlation between dissim-ilar molecules decreasing internal energy and results inthe increase of (Δ119865119864

12) values The (Δ119865119864

12) values aniline

and o-chloroaniline with 2-butoxyethanol systems are com-pletely negative In the case of o-anisidine + 2-butoxyethanol

Advances in Physical Chemistry 7

Table 4 Values of adjustable parameters (119861119896) and the corresponding standard deviations (120590) for excess dielectric constant and excess inverse

relaxation time of anilines + 2-butoxyethanol binary mixtures at 29815 K

Adjustable parameters120590 Error

1198610

1198611

1198612

1198613

1198614

Aniline 120576119864 0026 minus0629 minus0314 0629 0288 247 times 10minus05 0008(1120591)119864 minus0045 0020 minus0024 minus0020 0069 114 times 10

minus05 0004

o-CA 120576119864 0388 1301 minus4158 minus1301 3770 210 times 10minus05 0005(1120591)119864 minus0017 0006 0002 minus0006 0014 366 times 10minus05 0009

m-CA 120576119864 minus1660 minus0391 0620 0391 1040 494 times 10minus06 0001(1120591)119864 0001 0000 0000 0000 0000 467 times 10minus08 0006

o-A 120576119864 3200 4693 minus3626 minus4693 0426 210 times 10

minus05 0008(1120591)119864 minus0094 0084 minus0080 minus0084 0175 112 times 10minus04 0007

m-A 120576119864 minus0120 0213 minus0253 minus0213 0373 166 times 10minus05 0002(1120591)119864 minus0013 minus0004 0016 0004 minus0003 322 times 10minus05 0005

and m-anisidine + 2-butoxyethanol systems the (Δ11986511986412) val-

ues are initially negative and the volume fraction of ani-line that increases the (Δ119865119864

12) values goes to positive It

indicates that the dipoles have parallel orientation in 2-alkoxyethanol rich region and the dipoles have antiparallelorientation in anilines rich region where as in the case ofm-chloroaniline + 2-butoxyethanol system the (Δ119865119864

12) values

are positive for m-chloroaniline and 2-butoxyethanol richregion and negative for equimolar ratio This shows thatthe conversion of multimers leads to the internal energyThe (Δ119865119864

12) values are very small at all concentrations This

shows that interaction does not result in a structure breakingmechanism between dissimilar molecules Hence it maybe concluded that hydrogen bonds between the dissimilarmolecules are not broken by change in the composition of themixture

Finally the total excess Helmholtz free energy (Δ119865119864)values are negative for aniline o-chloroaniline o-anisidineand m-anisidine and positive for m-chloroaniline systemsThe negative values of (Δ119865119864) indicate the formation of 120572-clusters Due to the formation of these 120572-clusters the effectivedipole moment will be increased which increases the internalenergy The positive values of (Δ119865119864) are due to the formationof 120573-clusters and hence the effective dipole moment will bedecreased when compared to the sum of individual systemsand thereby it destructs the angular correlation betweennonideal molecules which may decrease its internal energyHence the dipolar excess free energy or excess Helmholtzfree energy can be considered to be a reflection of the inter-action between the islands of anilines in 2-alkoxyethanols(Figure 4) The excess values are fitted with Redlich-Kister[37] polynomial equation and the average standard deviationvalues are calculated These values are listed in Table 4 Thederived dielectric parameters and excess functions from themeasured properties suggest the presence of strongmolecularinteractions in the solution to obtain binary coefficientsand the standard errors in the Redlich-Kister polynomialequation at 29815 K as a function of composition of themixture

(a)

F = CH3CH2CH2CH2

(b)

X Y = Cl OCH3

(c)

Figure 4 Interaction behaviour of anilines + 2-butoxyethanol

4 Conclusion

The complex permittivity spectra of 2-butoxyethanol inanilines have been studied using time domain reflectometrytechnique in the frequency range 10MHz to 30GHz Anonlinear variation of static dielectric constant and relaxationtime values suggests the heterogeneous interaction between

8 Advances in Physical Chemistry

the unlike molecules The calculated values like Kirkwoodcorrelation factors Bruggeman factor and excess dielectricconstant values confirm the hydrogen bond interactionbetween 2-BE with anilines The negative total excess freeenergies Δ119865119864may be attributed to the H-bonding interactionbetween unlike molecules over the depolymerization of 2-BEby anilines

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledged the School of PhysicalScience SRTM University Nanded Maharashtra for pro-viding the TDR measurements

References

[1] D Balamurugan S Kumar and S Krishnan ldquoDielectric relax-ation studies of higher order alcohol complexes with aminesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 122 no 1ndash3 pp 11ndash14 2005

[2] P Sivagurunathan K Dharmalingam K Ramachandran BPrabhakarUndre PW Khirade and S CMehrotra ldquoDielectricrelaxation study of ethyl acrylate-alcohol mixtures using timedomain Reflectometryrdquo Lithanian Journal of Physics vol 46 no4 pp 441ndash445 2006

[3] Y S Joshi and A C Kumbharkhane ldquoStudy of heterogeneousinteraction in binary mixtures of 2-methoxyethanol-waterusing dielectric relaxation spectroscopyrdquo Journal of MolecularLiquids vol 161 no 3 pp 120ndash124 2011

[4] V A Rana A D Vyas and S C Mehrotra ldquoDielectricrelaxation study of mixtures of 1-propanol with aniline 2-chloroaniline and 3-chloroaniline at different temperaturesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 102 no 1ndash3 pp 379ndash391 2003

[5] T V Krishna and S S Sastry ldquoDielectric and thermodynamicstudies on the hydrogen bonded binary system of isopropylalcohol and anilinerdquo Journal of Solution Chemistry vol 39 no9 pp 1377ndash1393 2010

[6] T Kalaivani and S Krishnan ldquoDielectric relaxation studies ofternary liquid mixtures of aniline and substituted anilines withacrylonitrile in the microwave regionrdquo Indian Journal of Pureand Applied Physics vol 47 no 12 pp 880ndash882 2009

[7] R J Sengwa V Khatri and S Sankhla ldquoDielectric proper-ties and hydrogen bonding interaction behaviour in binarymixtures of glycerol with amides and aminesrdquo Fluid PhaseEquilibria vol 266 no 1-2 pp 54ndash58 2008

[8] A N Prajapati V A Rana and A D Vyas ldquoDielectricdispersion studies of mixtures of aniline and benzonitrile inbenzene solutionsrdquo Journal of Molecular Liquids vol 144 no1-2 pp 1ndash4 2009

[9] K K Gupta A K Bansal P J Singh and K S SharmaldquoStructural change analysis of pyridine and piperidine throughdielectric relaxation studiesrdquo Journal of Molecular Liquids vol108 no 1ndash3 pp 79ndash93 2003

[10] U Becker and M Stockhausen ldquoA dielectric relaxation studyof some mixtures of mono and dihydric alcoholsrdquo Journal ofMolecular Liquids vol 81 no 2 pp 89ndash100 1999

[11] A C Kumbharkhane S M Puranik and S C MehrotraldquoDielectric relaxation study and structural properties of 2-nitroacetophenone-ethanol solutions from 10MHz to 10GHzrdquoJournal of Molecular Liquids vol 51 no 3-4 pp 307ndash319 1992

[12] S M Puranik A C Kumbharkhane and S CMehrotra ldquoDielectric relaxation studies of aqueous NN-dimethylformamide using a picosecond time domaintechniquerdquo Journal of Solution Chemistry vol 22 no 3pp 219ndash229 1993

[13] Y S Joshi P G Hudge A C Kumbharkhane and SC Mehrotra ldquoThe dielectric relaxation study of 2(2-alkoxyethoxy)ethanol-water mixtures using time domainreflectometryrdquo Journal of Molecular Liquids vol 163 no 2 pp70ndash76 2011

[14] P R Bevington Data Reduction and Error Analysis for thePhysical Sciences McGraw Hill New York NY USA 1969

[15] A Chaudhari N M More and S C Mehrotra ldquoStatic dielec-tric constant and relaxation time for the binary mixture ofwater ethanol NN-dimethylformamide dimethylsulphoxideand NN-dimethylacetamide with 2-methoxyethanolrdquo Bulletinof the Korean Chemical Society vol 22 no 4 pp 357ndash361 2001

[16] A C Kumbharkhane S N Helambe S Doraiswamyand S C Mehrotra ldquoDielectric relaxation study ofhexamethylphosphoramide-water mixtures using time domainreflectometryrdquo The Journal of Chemical Physics vol 99 no 4pp 2405ndash2409 1993

[17] B D Achole A V Patil V P Pawar and S C MehrotraldquoStudy of interaction through dielectrics behavior of -OHgroup molecules from 10MHz to 20GHzrdquo Journal of MolecularLiquids vol 159 no 2 pp 152ndash156 2011

[18] L S Gabrielyan and S A Markarian ldquoDielectric relaxationstudy of dipropylsulfoxidewater mixturesrdquo Journal of Molecu-lar Liquids vol 162 no 3 pp 135ndash140 2011

[19] Y S Joshi P G Hudge and A C Kumbharkhane ldquoDielectricrelaxation study of aqueous 2-ethoxyethanol using time domainreflectometry techniquerdquo Indian Journal of Physics vol 85 no11 pp 1603ndash1614 2011

[20] K K Srivastava and J K Vij ldquoDielectric relaxation and molec-ular structure I Dielectric relaxation in substituted anilinesrdquoBulletin of Chemical Society of Japan vol 43 pp 2307ndash23121970

[21] J G Kirkwood ldquoThe dielectric polarization of polar liquidsrdquoThe Journal of Chemical Physics vol 7 no 10 pp 911ndash919 1939

[22] S B Sayyad P B Undre P Yannewar S S Patil P W Khiradeand S C Mehrotra ldquoInvestigations of intermolecular inter-actions between 2-methoxyethanol and nitrobenzene throughdielectric relaxation studyrdquo Lithuanian Journal of Physics vol51 no 1 pp 29ndash37 2011

[23] D A G Bruggeman ldquoThe dielectric constant of a compositematerialrdquo Annals of Physics vol 5 p 636 1935

[24] J B Hasted Aqueous Dielectrics Champan and Hall LondonUK 1973

[25] V P Pawar and S C Mehrotra ldquoDielectric relaxation study ofchlorobenzene with formamide at microwave frequency usingtime domain reflectometryrdquo Journal of Molecular Liquids vol115 no 1 pp 17ndash22 2004

[26] P Undre S N Helambe S B Jagdale P W Khirade and SC Mehrotra ldquoMicrowave dielectric characterization of binary

Advances in Physical Chemistry 9

mixture of formamide with N N-dimethylaminoethanolrdquo Pra-mana vol 68 no 5 pp 851ndash861 2007

[27] D A G Bruggeman ldquoThe dielectric constant of a compositematerial-a problem in classical physicsrdquo Annals of Physics vol24 p 636 1967

[28] A Chaudhari S Ahire M Lokhande and S C MehrotraldquoDielectric study of pyridine- alcohol binary liquids at 25∘CrdquoProceedings of the National Academy of Sciences India Section Avol 1 pp 75ndash83 2001

[29] A Chaudhari C S Patil A G Shankarwar B R Arbad andS C Mehrotra ldquoTemperature dependent dielectric relaxationstudy of aniline in dimethylsulphoxide and dimethylformamideusing time domain techniquerdquo Journal of Korean ChemicalSociety vol 45 pp 201ndash206 2001

[30] S C Mehrotra and J E Boggs ldquoA new approach to time-dependent perturbation theoryrdquo The Journal of ChemicalPhysics vol 64 no 7 pp 2796ndash2803 1976

[31] T V Krishna and T MadhuMohan ldquoStudy of molecularinteractions in the polar binary mixtures of N-methyl ani-line and alcohols using excess dielectric and thermodynamicparametersrdquo Journal of Chemical Thermodynamics vol 47 pp267ndash275 2012

[32] T M Mohan S S Sastry and V R K Murthy ldquoThermo-dynamic dielectric and conformational studies on hydrogenbonded binary mixtures of propan-1-ol with methyl benzoateand ethyl benzoaterdquo Journal of Solution Chemistry vol 40 no1 pp 131ndash146 2011

[33] T Thenappan and U Sankar ldquoStudy of correlation factors anddipolar excess free energies of esters in benzenerdquo Journal ofMolecular Liquids vol 126 no 1ndash3 pp 23ndash28 2006

[34] G Arivazhagan G Parthipan and T Thenappan ldquoSolute-solvent interactions of acid-14-dioxane mixtures-By dielectricFTIR UV-vis and 13C NMR spectrometric methodsrdquo Spec-trochimica Acta A vol 74 no 4 pp 860ndash868 2009

[35] G Parthipan and T Thenappan ldquoDielectric and thermody-namic behavior of binary mixture of anisole with morpholineand aniline at different temperaturesrdquo Journal of MolecularLiquids vol 138 no 1ndash3 pp 20ndash25 2008

[36] B B Swain and G S Roy ldquoDielectric studies of binary mixturesof butanols in nonpolar solvents-solute-solvent interactionsrdquoJournal of Molecular Liquids vol 34 no 4 pp 257ndash268 1987

[37] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: Research Article Dielectric Relaxation Studies of 2

Advances in Physical Chemistry 3

23456789

1011

7 75 8 85 9 95 10 105

Die

lect

ric p

erm

ittiv

ity (120576

998400 )

2-BE

75 2-BE + 25 aniline50 2-BE + 50 aniline25 2-BE + 75 anilineAniline

Log F (Hz)

(a)

0

05

1

15

2

25

3

35

7 75 8 85 9 95 10 105

2-BE

75 2-BE + 25 aniline50 2-BE + 50 aniline

25 2-BE + 75 aniline

Log F (Hz)

Die

lect

ric lo

ss (120576

998400998400)

Aniline

(b)

Figure 1 (a) The dielectric permittivity spectra of aniline + 2-butoxyethanol binary mixtures (b) The dielectric loss spectra of aniline + 2-butoxyethanol binary mixtures

23456789

1011

7 75 8 85 9 95 10 105

Die

lect

ric p

erm

ittiv

ity (120576

998400 )

Log F (Hz)

M-A2-BE

75 2-BE + 25 m-A50 2-BE + 50 m-A25 2-BE + 75 m-A

(a)

0

05

1

15

2

25

3

35

7 75 8 85 9 95 10 105Log F (Hz)

M-A2-BE

75 2-BE + 25 m-A50 2-BE + 50 m-A25 2-BE + 75 m-A

Die

lect

ric lo

ss (120576

998400998400)

(b)

Figure 2 (a) The dielectric permittivity spectra of m-anisidine + 2-butoxyethanol binary mixtures (b) The dielectric loss spectra of m-anisidine + 2-butoxyethanol binary mixtures

orientation of electric dipolesThe 119892eff values of pure anilineslike aniline (0898) o-chloroaniline (0742) m-chloroaniline(0632) and o-anisidine (0568) are less than unity indicatingantiparallel orientation of electric dipoles in the case of m-anisidine the 119892eff value is greater than unity (1168) As thevolume of solute (anilines) increases the 119892eff values aredecreasing It is interesting to note that the 119892eff values aremore deviated from unity and are found to be larger Thisconfirms the greater ability of 2-BE to form hydrogen bondswith aniline molecules

The Bruggeman factor which is the ratio of theoret-ical values of static dielectric constant computed fromBruggeman mixture formula and practically obtained valueshas been obtained (Figure 3)[23] A linear relationship isexpected from the Bruggeman factor values which givesa straight line when 119891

119861plotted against 120601

2 However here

the experimental values of (119891119861) were found to deviate

from the linear relations The nonlinear relation of (119891119861) 2-

butoxyethanol with aniline systems suggests an intermolec-ular interaction taking place in the mixed components Itis assumed that the volume fraction (120601

2) in the mixture is

modified by a factor [119886 minus (119886 minus 1)120601] This modification maybe due to the structural rearrangement of solute (anilines)molecule in the mixtures [27] The values of ldquo119886rdquo containinformation regarding the change in the orientation of thesolute molecules (anilines) in the mixture The values ofldquo119886rdquo are determined from the least square fit method for allthe studied systems The value of ldquo11988610158401015840 = 1 corresponds to theideal Bruggeman mixture formula The deviation from unityrelates to corresponding solute-solute interactionThe valuesof ldquo119886rdquo are 1514 (aniline) 2562 (o-CA) 2843 (m-CA) 3164(o-A) and 0934 (m-A) respectively

The excess properties like excess dielectric constant (120576119864)and excess inverse relaxation time (1120591)119864 provide valuable

4 Advances in Physical Chemistry

Table 1 Values of static dielectric constant (1205760) and relaxation time (120591) of aniline + 2-butoxyethanol binary mixtures at 29815 K

Aniline Aniline + 2-BE o-CA + 2-BE m-CA + 2-BE o-A + 2-BE m-A + 2-BEStatic dielectric constant (120576

0)

0 999 (4) 999 (4) 0999 (4) 999 (4) 999 (4)25 909 (1) 945 (5) 1043 (7) 937 (4) 978 (1)50 830 (6) 898 (7) 1105 (3) 802 (4) 957 (1)75 748 (2) 816 (3) 1196 (8) 594 (4) 936 (3)100 659 (1) 778 (4) 1294 (6) 445 (4) 921 (4)

Dielectric constant at optical frequency (120576infin)

0 1719 (2) 1719 (2) 1719 (2) 1719 (2) 1719 (2)25 2196 (2) 2299 (3) 2342 (1) 2323 (4) 2325 (1)50 2469 (1) 2364 (2) 2506 (4) 2414 (4) 2421 (1)75 2742 (1) 2512 (1) 2747 (3) 2502 (4) 2635 (3)100 2826 (1) 2814 (1) 3043 (1) 2652 (4) 2794 (2)

Relaxation time (120591) ps0 4786 (9) 4786 (9) 4786 (9) 4786 (9) 4786 (9)25 4012 (7) 4254 (6) 4836 (9) 3836 (11) 6378 (13)50 2812 (4) 3735 (3) 4889 (6) 2887 (6) 8908 (7)75 2125 (6) 3049 (4) 4978 (5) 1938 (7) 10112 (11)100 1620 (8) 2422 (8) 5089 (7) 1045 (8) 12427 (15)The number in bracket represents error in least significant digit of the corresponding value as obtained by the least squares fit method for example 999 (1)means 999 plusmn 001

0

02

04

06

08

1

0 02 04 06 08 1

Aniline + 2-BEO-CA + 2-BEM-CA + 2-BE

O-A + 2-BEM-A + 2-BEBruggeman line

fB

1206012

Figure 3 Bruggeman factor versus volume fraction of anilines

information about the formation ofmultimers in themixtureThe excess permittivity is defined as [28ndash30] In an idealmixture of polar liquids if the molecules are interactinga nonlinear variation in dielectric constant and relaxationtime occurs This confirms that the intermolecular asso-ciation is taking place in the system The excess propertyrelated to permittivity and relaxation time provides signif-icant information regarding interaction between the polar-polar liquid mixtures The values of (120576119864) are negative for

the whole composition for m-chloroaniline and m-anisidinewith 2-butoxyethanol (Table 3) systems The negative valuesindicate the formation of multimer structures which leads todecrease in the total number of dipoles in the systems In thecase of aniline + 2-butoxyethanol system the excess dielectricconstant values are initially negative and the volume fractionof aniline that increases the values of (120576119864) goes to positive Butin the case of o-chloroaniline + 2-butoxyethanol system thevalues of (120576119864) are positive at the lower volume fraction of ani-lines and negative at the higher volume fraction of anilinesThe (120576119864) values are positive for the whole composition of o-anisidine + 2-butoxyethanol systems Positive values of (120576119864)indicate the formation of monomeric dimeric or polymericstructures which increase the total number of dipoles in thesystem

Excess inverse relaxation time (1120591)119864 values are negativefor all the studied systems except m-chloroaniline with 2-butoxyethanol system which are listed in Table 2 Negativevalues of (1120591)119864 indicate the formation of structures rotatingslowly which may be probably due to dimeric structureof anilines that is the anilines creating a hindering fieldand hence the effective dipoles rotate slowly due to theformation of hydrogen bonded structures But in the caseof m-chloroaniline with 2-butoxyethanol system the excessinverse relaxation time values are positive for the wholecomposition range The positive trend of (1120591)119864 suggeststhe fast rotation of dipoles in the systems This may be dueto the formation of monomeric structure in this regionThe negative trend of (1120591)119864 suggests that the solute-solvent

Advances in Physical Chemistry 5

Table 2 Values of effective and corrective Kirkwood correlation factor (119892eff 119892119891) Bruggeman factor (119891

119861) excess dielectric constant (120576119864) and

excess inverse relaxation time (1120591)119864 of anilines with 2-butoxyethanol binary mixtures 29815 K

1206012

119892eff 119892119891

119891119861

120576119864 (1120591)119864 psAniline + 2-butoxyethanol

0 1939 (1) 1000 1000 0000 00000025 1555 (0) 0818 0759 minus0051 minus0006705 1284 (1) 0793 0534 0007 minus00062075 1040 (3) 0806 0288 0038 minus000431 0898 (2) 1000 0000 0000 00000

o-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1290 (3) 0789 0770 0014 minus0002605 1164 (1) 0871 0563 0097 minus00043075 0944 (1) 0909 0186 minus0169 minus000371 0742 (3) 1000 0000 0000 00000

m-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1128 (2) 0802 0839 minus0297 0000105 0920 (1) 0868 0619 minus0415 00002075 0761 (3) 0934 0313 minus0243 000011 0632 (0) 1000 0000 0000 00000

o-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1419 (1) 0824 0907 0765 minus0014305 1264 (3) 0876 0693 0800 minus00246075 0907 (0) 0844 0320 0105 minus002511 0568 (1) 1000 0000 0000 00000

m-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1394 (3) 0786 0736 minus0015 minus0002005 1350 (2) 0849 0468 minus0030 minus00030075 1230 (1) 0885 0197 minus0045 minus000101 1168 (3) 1000 0000 0000 00000The number in bracket represents error in least significant digit of the corresponding value as obtained by the least squares fit method for example 1939 (1)means 1939 plusmn 001

interaction produces a field such that the effective dipolesrotate slowly Krishna and MadhuMohan [31] have reportedthe negative and positive values (1120591)119864 in N-methylanilinewith alcohols

The excess Helmholtz free energy (Δ119865119864) is a parameterto evaluate the interaction between the components in themixture through breaking mechanism of hydrogen bond andis expressed [32ndash35] as

Δ119865119864= Δ119865119864

0+ Δ119865119864

119903119903+ Δ119865119864

12 (2)

where (Δ1198651198640) represents the excess dipolar energy due to

long range electrostatic interaction (Δ119865119864119903119903) represents the

excess dipolar energy due to short range interaction betweenidentical molecules and (Δ119865119864

12) represents the excess free

energy due to short range interaction between dissimilarmolecules The above terms are given in detail in (2)

Δ119865119864= minus [

119873119860

2][ sum119903=12

1206012

1199031205832

119903(119877119891119903minus 1198770

119891119903)]

+ [ sum119903=12

1206012

1199031205832

119903(119892119903119903minus 1)

times (119877119891119903minus 1198770

119891119903) ]

+ [1206011120601212058311205832(11989212minus 1)

times (1198771198911+ 1198771198912minus 1198770

1198911minus 1198770

1198912)]

6 Advances in Physical Chemistry

Table 3 Values of excess Helmholtz free energy of mixing for anilines + 2-butoxyethanol binary mixtures at 29815 K

1206012

Δ1198651198640119903

JmolΔ119865119864119903119903

JmolΔ11986511986412

JmolΔ119865119864

JmolAniline + 2-butoxyethanol

0 0000 0000 0000 0000025 12667 1195 minus24375 minus1051305 minus12462 3531 minus9455 minus18385075 minus35202 4514 minus0070 minus307581 0000 0000 0000 0000

o-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 5315 2646 minus8528 minus0567050 minus17290 7956 minus3584 minus12918075 minus17337 6199 minus0525 minus116631 0000 0000 0000 0000

m-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 8096 minus7248 5254 610205 44607 minus20755 minus2314 21538075 56248 minus22579 0869 345381 0000 0000 0000 0000

o-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 minus7335 10956 minus43957 minus4033605 minus54914 36394 minus26484 minus45004075 minus82072 43962 0696 minus374141 0000 0000 0000 0000

m-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 3515 minus0395 minus2680 044005 minus0741 minus1016 minus0980 minus2737075 minus3759 minus0971 0646 minus40851 0000 0000 0000 0000

1198770

119891119903= (

8120587119873119860

9119881119903

)(120576119903minus 1) (120576

infin119903+ 2)

(2120576119903+ 120576infin119903)

119877119891119903= (

8120587119873119860

9119881119903

)(120576119898minus 1) (120576

infin119903+ 2)

(2120576119898+ 120576infin119903)

(3)In the case of aniline o-chloroaniline o-anisidine and

m-anisidine with 2-butoxyethanol systems the values of(Δ1198651198640119903) are positive and less negative for o-anisidine + 2-

butoxyethanol at lower concentrations of anilines and neg-ative at higher concentrations of anilines It means thatat initial concentration of anilines there is the existenceof attractive force between the dipoles while at higherconcentrations of anilines there exists repulsive force betweenthe dipoles In the case of m-chloroaniline 2-butoxyethanolsystem the (Δ119865119864

0119903) values are positive for the whole com-

position range This shows the existence of attractive force

between the dipoles The (Δ119865119864119903119903) predicts the information of

the short range interaction and self-association between likemolecules Increase of (Δ119865119864

119903119903) with volume fraction of the

aniline molecules suggests that the strength of the homoint-eraction between aniline molecules increasesThe maximumvalues of (Δ119865119864

119903119903) for the studied systems indicate the strong

short range interaction through hydrogen bonding In oursystems o-anisidine with 2-butoxyethanol has the maximumvalue of (Δ119865119864

119903119903)

The magnitude of (Δ11986511986412) gives information on the

strength of interactions between unlike molecules Accord-ing to Swain and Roy [36] antiparallel alignment leadsto the destruction of angular correlation between dissim-ilar molecules decreasing internal energy and results inthe increase of (Δ119865119864

12) values The (Δ119865119864

12) values aniline

and o-chloroaniline with 2-butoxyethanol systems are com-pletely negative In the case of o-anisidine + 2-butoxyethanol

Advances in Physical Chemistry 7

Table 4 Values of adjustable parameters (119861119896) and the corresponding standard deviations (120590) for excess dielectric constant and excess inverse

relaxation time of anilines + 2-butoxyethanol binary mixtures at 29815 K

Adjustable parameters120590 Error

1198610

1198611

1198612

1198613

1198614

Aniline 120576119864 0026 minus0629 minus0314 0629 0288 247 times 10minus05 0008(1120591)119864 minus0045 0020 minus0024 minus0020 0069 114 times 10

minus05 0004

o-CA 120576119864 0388 1301 minus4158 minus1301 3770 210 times 10minus05 0005(1120591)119864 minus0017 0006 0002 minus0006 0014 366 times 10minus05 0009

m-CA 120576119864 minus1660 minus0391 0620 0391 1040 494 times 10minus06 0001(1120591)119864 0001 0000 0000 0000 0000 467 times 10minus08 0006

o-A 120576119864 3200 4693 minus3626 minus4693 0426 210 times 10

minus05 0008(1120591)119864 minus0094 0084 minus0080 minus0084 0175 112 times 10minus04 0007

m-A 120576119864 minus0120 0213 minus0253 minus0213 0373 166 times 10minus05 0002(1120591)119864 minus0013 minus0004 0016 0004 minus0003 322 times 10minus05 0005

and m-anisidine + 2-butoxyethanol systems the (Δ11986511986412) val-

ues are initially negative and the volume fraction of ani-line that increases the (Δ119865119864

12) values goes to positive It

indicates that the dipoles have parallel orientation in 2-alkoxyethanol rich region and the dipoles have antiparallelorientation in anilines rich region where as in the case ofm-chloroaniline + 2-butoxyethanol system the (Δ119865119864

12) values

are positive for m-chloroaniline and 2-butoxyethanol richregion and negative for equimolar ratio This shows thatthe conversion of multimers leads to the internal energyThe (Δ119865119864

12) values are very small at all concentrations This

shows that interaction does not result in a structure breakingmechanism between dissimilar molecules Hence it maybe concluded that hydrogen bonds between the dissimilarmolecules are not broken by change in the composition of themixture

Finally the total excess Helmholtz free energy (Δ119865119864)values are negative for aniline o-chloroaniline o-anisidineand m-anisidine and positive for m-chloroaniline systemsThe negative values of (Δ119865119864) indicate the formation of 120572-clusters Due to the formation of these 120572-clusters the effectivedipole moment will be increased which increases the internalenergy The positive values of (Δ119865119864) are due to the formationof 120573-clusters and hence the effective dipole moment will bedecreased when compared to the sum of individual systemsand thereby it destructs the angular correlation betweennonideal molecules which may decrease its internal energyHence the dipolar excess free energy or excess Helmholtzfree energy can be considered to be a reflection of the inter-action between the islands of anilines in 2-alkoxyethanols(Figure 4) The excess values are fitted with Redlich-Kister[37] polynomial equation and the average standard deviationvalues are calculated These values are listed in Table 4 Thederived dielectric parameters and excess functions from themeasured properties suggest the presence of strongmolecularinteractions in the solution to obtain binary coefficientsand the standard errors in the Redlich-Kister polynomialequation at 29815 K as a function of composition of themixture

(a)

F = CH3CH2CH2CH2

(b)

X Y = Cl OCH3

(c)

Figure 4 Interaction behaviour of anilines + 2-butoxyethanol

4 Conclusion

The complex permittivity spectra of 2-butoxyethanol inanilines have been studied using time domain reflectometrytechnique in the frequency range 10MHz to 30GHz Anonlinear variation of static dielectric constant and relaxationtime values suggests the heterogeneous interaction between

8 Advances in Physical Chemistry

the unlike molecules The calculated values like Kirkwoodcorrelation factors Bruggeman factor and excess dielectricconstant values confirm the hydrogen bond interactionbetween 2-BE with anilines The negative total excess freeenergies Δ119865119864may be attributed to the H-bonding interactionbetween unlike molecules over the depolymerization of 2-BEby anilines

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledged the School of PhysicalScience SRTM University Nanded Maharashtra for pro-viding the TDR measurements

References

[1] D Balamurugan S Kumar and S Krishnan ldquoDielectric relax-ation studies of higher order alcohol complexes with aminesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 122 no 1ndash3 pp 11ndash14 2005

[2] P Sivagurunathan K Dharmalingam K Ramachandran BPrabhakarUndre PW Khirade and S CMehrotra ldquoDielectricrelaxation study of ethyl acrylate-alcohol mixtures using timedomain Reflectometryrdquo Lithanian Journal of Physics vol 46 no4 pp 441ndash445 2006

[3] Y S Joshi and A C Kumbharkhane ldquoStudy of heterogeneousinteraction in binary mixtures of 2-methoxyethanol-waterusing dielectric relaxation spectroscopyrdquo Journal of MolecularLiquids vol 161 no 3 pp 120ndash124 2011

[4] V A Rana A D Vyas and S C Mehrotra ldquoDielectricrelaxation study of mixtures of 1-propanol with aniline 2-chloroaniline and 3-chloroaniline at different temperaturesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 102 no 1ndash3 pp 379ndash391 2003

[5] T V Krishna and S S Sastry ldquoDielectric and thermodynamicstudies on the hydrogen bonded binary system of isopropylalcohol and anilinerdquo Journal of Solution Chemistry vol 39 no9 pp 1377ndash1393 2010

[6] T Kalaivani and S Krishnan ldquoDielectric relaxation studies ofternary liquid mixtures of aniline and substituted anilines withacrylonitrile in the microwave regionrdquo Indian Journal of Pureand Applied Physics vol 47 no 12 pp 880ndash882 2009

[7] R J Sengwa V Khatri and S Sankhla ldquoDielectric proper-ties and hydrogen bonding interaction behaviour in binarymixtures of glycerol with amides and aminesrdquo Fluid PhaseEquilibria vol 266 no 1-2 pp 54ndash58 2008

[8] A N Prajapati V A Rana and A D Vyas ldquoDielectricdispersion studies of mixtures of aniline and benzonitrile inbenzene solutionsrdquo Journal of Molecular Liquids vol 144 no1-2 pp 1ndash4 2009

[9] K K Gupta A K Bansal P J Singh and K S SharmaldquoStructural change analysis of pyridine and piperidine throughdielectric relaxation studiesrdquo Journal of Molecular Liquids vol108 no 1ndash3 pp 79ndash93 2003

[10] U Becker and M Stockhausen ldquoA dielectric relaxation studyof some mixtures of mono and dihydric alcoholsrdquo Journal ofMolecular Liquids vol 81 no 2 pp 89ndash100 1999

[11] A C Kumbharkhane S M Puranik and S C MehrotraldquoDielectric relaxation study and structural properties of 2-nitroacetophenone-ethanol solutions from 10MHz to 10GHzrdquoJournal of Molecular Liquids vol 51 no 3-4 pp 307ndash319 1992

[12] S M Puranik A C Kumbharkhane and S CMehrotra ldquoDielectric relaxation studies of aqueous NN-dimethylformamide using a picosecond time domaintechniquerdquo Journal of Solution Chemistry vol 22 no 3pp 219ndash229 1993

[13] Y S Joshi P G Hudge A C Kumbharkhane and SC Mehrotra ldquoThe dielectric relaxation study of 2(2-alkoxyethoxy)ethanol-water mixtures using time domainreflectometryrdquo Journal of Molecular Liquids vol 163 no 2 pp70ndash76 2011

[14] P R Bevington Data Reduction and Error Analysis for thePhysical Sciences McGraw Hill New York NY USA 1969

[15] A Chaudhari N M More and S C Mehrotra ldquoStatic dielec-tric constant and relaxation time for the binary mixture ofwater ethanol NN-dimethylformamide dimethylsulphoxideand NN-dimethylacetamide with 2-methoxyethanolrdquo Bulletinof the Korean Chemical Society vol 22 no 4 pp 357ndash361 2001

[16] A C Kumbharkhane S N Helambe S Doraiswamyand S C Mehrotra ldquoDielectric relaxation study ofhexamethylphosphoramide-water mixtures using time domainreflectometryrdquo The Journal of Chemical Physics vol 99 no 4pp 2405ndash2409 1993

[17] B D Achole A V Patil V P Pawar and S C MehrotraldquoStudy of interaction through dielectrics behavior of -OHgroup molecules from 10MHz to 20GHzrdquo Journal of MolecularLiquids vol 159 no 2 pp 152ndash156 2011

[18] L S Gabrielyan and S A Markarian ldquoDielectric relaxationstudy of dipropylsulfoxidewater mixturesrdquo Journal of Molecu-lar Liquids vol 162 no 3 pp 135ndash140 2011

[19] Y S Joshi P G Hudge and A C Kumbharkhane ldquoDielectricrelaxation study of aqueous 2-ethoxyethanol using time domainreflectometry techniquerdquo Indian Journal of Physics vol 85 no11 pp 1603ndash1614 2011

[20] K K Srivastava and J K Vij ldquoDielectric relaxation and molec-ular structure I Dielectric relaxation in substituted anilinesrdquoBulletin of Chemical Society of Japan vol 43 pp 2307ndash23121970

[21] J G Kirkwood ldquoThe dielectric polarization of polar liquidsrdquoThe Journal of Chemical Physics vol 7 no 10 pp 911ndash919 1939

[22] S B Sayyad P B Undre P Yannewar S S Patil P W Khiradeand S C Mehrotra ldquoInvestigations of intermolecular inter-actions between 2-methoxyethanol and nitrobenzene throughdielectric relaxation studyrdquo Lithuanian Journal of Physics vol51 no 1 pp 29ndash37 2011

[23] D A G Bruggeman ldquoThe dielectric constant of a compositematerialrdquo Annals of Physics vol 5 p 636 1935

[24] J B Hasted Aqueous Dielectrics Champan and Hall LondonUK 1973

[25] V P Pawar and S C Mehrotra ldquoDielectric relaxation study ofchlorobenzene with formamide at microwave frequency usingtime domain reflectometryrdquo Journal of Molecular Liquids vol115 no 1 pp 17ndash22 2004

[26] P Undre S N Helambe S B Jagdale P W Khirade and SC Mehrotra ldquoMicrowave dielectric characterization of binary

Advances in Physical Chemistry 9

mixture of formamide with N N-dimethylaminoethanolrdquo Pra-mana vol 68 no 5 pp 851ndash861 2007

[27] D A G Bruggeman ldquoThe dielectric constant of a compositematerial-a problem in classical physicsrdquo Annals of Physics vol24 p 636 1967

[28] A Chaudhari S Ahire M Lokhande and S C MehrotraldquoDielectric study of pyridine- alcohol binary liquids at 25∘CrdquoProceedings of the National Academy of Sciences India Section Avol 1 pp 75ndash83 2001

[29] A Chaudhari C S Patil A G Shankarwar B R Arbad andS C Mehrotra ldquoTemperature dependent dielectric relaxationstudy of aniline in dimethylsulphoxide and dimethylformamideusing time domain techniquerdquo Journal of Korean ChemicalSociety vol 45 pp 201ndash206 2001

[30] S C Mehrotra and J E Boggs ldquoA new approach to time-dependent perturbation theoryrdquo The Journal of ChemicalPhysics vol 64 no 7 pp 2796ndash2803 1976

[31] T V Krishna and T MadhuMohan ldquoStudy of molecularinteractions in the polar binary mixtures of N-methyl ani-line and alcohols using excess dielectric and thermodynamicparametersrdquo Journal of Chemical Thermodynamics vol 47 pp267ndash275 2012

[32] T M Mohan S S Sastry and V R K Murthy ldquoThermo-dynamic dielectric and conformational studies on hydrogenbonded binary mixtures of propan-1-ol with methyl benzoateand ethyl benzoaterdquo Journal of Solution Chemistry vol 40 no1 pp 131ndash146 2011

[33] T Thenappan and U Sankar ldquoStudy of correlation factors anddipolar excess free energies of esters in benzenerdquo Journal ofMolecular Liquids vol 126 no 1ndash3 pp 23ndash28 2006

[34] G Arivazhagan G Parthipan and T Thenappan ldquoSolute-solvent interactions of acid-14-dioxane mixtures-By dielectricFTIR UV-vis and 13C NMR spectrometric methodsrdquo Spec-trochimica Acta A vol 74 no 4 pp 860ndash868 2009

[35] G Parthipan and T Thenappan ldquoDielectric and thermody-namic behavior of binary mixture of anisole with morpholineand aniline at different temperaturesrdquo Journal of MolecularLiquids vol 138 no 1ndash3 pp 20ndash25 2008

[36] B B Swain and G S Roy ldquoDielectric studies of binary mixturesof butanols in nonpolar solvents-solute-solvent interactionsrdquoJournal of Molecular Liquids vol 34 no 4 pp 257ndash268 1987

[37] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: Research Article Dielectric Relaxation Studies of 2

4 Advances in Physical Chemistry

Table 1 Values of static dielectric constant (1205760) and relaxation time (120591) of aniline + 2-butoxyethanol binary mixtures at 29815 K

Aniline Aniline + 2-BE o-CA + 2-BE m-CA + 2-BE o-A + 2-BE m-A + 2-BEStatic dielectric constant (120576

0)

0 999 (4) 999 (4) 0999 (4) 999 (4) 999 (4)25 909 (1) 945 (5) 1043 (7) 937 (4) 978 (1)50 830 (6) 898 (7) 1105 (3) 802 (4) 957 (1)75 748 (2) 816 (3) 1196 (8) 594 (4) 936 (3)100 659 (1) 778 (4) 1294 (6) 445 (4) 921 (4)

Dielectric constant at optical frequency (120576infin)

0 1719 (2) 1719 (2) 1719 (2) 1719 (2) 1719 (2)25 2196 (2) 2299 (3) 2342 (1) 2323 (4) 2325 (1)50 2469 (1) 2364 (2) 2506 (4) 2414 (4) 2421 (1)75 2742 (1) 2512 (1) 2747 (3) 2502 (4) 2635 (3)100 2826 (1) 2814 (1) 3043 (1) 2652 (4) 2794 (2)

Relaxation time (120591) ps0 4786 (9) 4786 (9) 4786 (9) 4786 (9) 4786 (9)25 4012 (7) 4254 (6) 4836 (9) 3836 (11) 6378 (13)50 2812 (4) 3735 (3) 4889 (6) 2887 (6) 8908 (7)75 2125 (6) 3049 (4) 4978 (5) 1938 (7) 10112 (11)100 1620 (8) 2422 (8) 5089 (7) 1045 (8) 12427 (15)The number in bracket represents error in least significant digit of the corresponding value as obtained by the least squares fit method for example 999 (1)means 999 plusmn 001

0

02

04

06

08

1

0 02 04 06 08 1

Aniline + 2-BEO-CA + 2-BEM-CA + 2-BE

O-A + 2-BEM-A + 2-BEBruggeman line

fB

1206012

Figure 3 Bruggeman factor versus volume fraction of anilines

information about the formation ofmultimers in themixtureThe excess permittivity is defined as [28ndash30] In an idealmixture of polar liquids if the molecules are interactinga nonlinear variation in dielectric constant and relaxationtime occurs This confirms that the intermolecular asso-ciation is taking place in the system The excess propertyrelated to permittivity and relaxation time provides signif-icant information regarding interaction between the polar-polar liquid mixtures The values of (120576119864) are negative for

the whole composition for m-chloroaniline and m-anisidinewith 2-butoxyethanol (Table 3) systems The negative valuesindicate the formation of multimer structures which leads todecrease in the total number of dipoles in the systems In thecase of aniline + 2-butoxyethanol system the excess dielectricconstant values are initially negative and the volume fractionof aniline that increases the values of (120576119864) goes to positive Butin the case of o-chloroaniline + 2-butoxyethanol system thevalues of (120576119864) are positive at the lower volume fraction of ani-lines and negative at the higher volume fraction of anilinesThe (120576119864) values are positive for the whole composition of o-anisidine + 2-butoxyethanol systems Positive values of (120576119864)indicate the formation of monomeric dimeric or polymericstructures which increase the total number of dipoles in thesystem

Excess inverse relaxation time (1120591)119864 values are negativefor all the studied systems except m-chloroaniline with 2-butoxyethanol system which are listed in Table 2 Negativevalues of (1120591)119864 indicate the formation of structures rotatingslowly which may be probably due to dimeric structureof anilines that is the anilines creating a hindering fieldand hence the effective dipoles rotate slowly due to theformation of hydrogen bonded structures But in the caseof m-chloroaniline with 2-butoxyethanol system the excessinverse relaxation time values are positive for the wholecomposition range The positive trend of (1120591)119864 suggeststhe fast rotation of dipoles in the systems This may be dueto the formation of monomeric structure in this regionThe negative trend of (1120591)119864 suggests that the solute-solvent

Advances in Physical Chemistry 5

Table 2 Values of effective and corrective Kirkwood correlation factor (119892eff 119892119891) Bruggeman factor (119891

119861) excess dielectric constant (120576119864) and

excess inverse relaxation time (1120591)119864 of anilines with 2-butoxyethanol binary mixtures 29815 K

1206012

119892eff 119892119891

119891119861

120576119864 (1120591)119864 psAniline + 2-butoxyethanol

0 1939 (1) 1000 1000 0000 00000025 1555 (0) 0818 0759 minus0051 minus0006705 1284 (1) 0793 0534 0007 minus00062075 1040 (3) 0806 0288 0038 minus000431 0898 (2) 1000 0000 0000 00000

o-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1290 (3) 0789 0770 0014 minus0002605 1164 (1) 0871 0563 0097 minus00043075 0944 (1) 0909 0186 minus0169 minus000371 0742 (3) 1000 0000 0000 00000

m-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1128 (2) 0802 0839 minus0297 0000105 0920 (1) 0868 0619 minus0415 00002075 0761 (3) 0934 0313 minus0243 000011 0632 (0) 1000 0000 0000 00000

o-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1419 (1) 0824 0907 0765 minus0014305 1264 (3) 0876 0693 0800 minus00246075 0907 (0) 0844 0320 0105 minus002511 0568 (1) 1000 0000 0000 00000

m-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1394 (3) 0786 0736 minus0015 minus0002005 1350 (2) 0849 0468 minus0030 minus00030075 1230 (1) 0885 0197 minus0045 minus000101 1168 (3) 1000 0000 0000 00000The number in bracket represents error in least significant digit of the corresponding value as obtained by the least squares fit method for example 1939 (1)means 1939 plusmn 001

interaction produces a field such that the effective dipolesrotate slowly Krishna and MadhuMohan [31] have reportedthe negative and positive values (1120591)119864 in N-methylanilinewith alcohols

The excess Helmholtz free energy (Δ119865119864) is a parameterto evaluate the interaction between the components in themixture through breaking mechanism of hydrogen bond andis expressed [32ndash35] as

Δ119865119864= Δ119865119864

0+ Δ119865119864

119903119903+ Δ119865119864

12 (2)

where (Δ1198651198640) represents the excess dipolar energy due to

long range electrostatic interaction (Δ119865119864119903119903) represents the

excess dipolar energy due to short range interaction betweenidentical molecules and (Δ119865119864

12) represents the excess free

energy due to short range interaction between dissimilarmolecules The above terms are given in detail in (2)

Δ119865119864= minus [

119873119860

2][ sum119903=12

1206012

1199031205832

119903(119877119891119903minus 1198770

119891119903)]

+ [ sum119903=12

1206012

1199031205832

119903(119892119903119903minus 1)

times (119877119891119903minus 1198770

119891119903) ]

+ [1206011120601212058311205832(11989212minus 1)

times (1198771198911+ 1198771198912minus 1198770

1198911minus 1198770

1198912)]

6 Advances in Physical Chemistry

Table 3 Values of excess Helmholtz free energy of mixing for anilines + 2-butoxyethanol binary mixtures at 29815 K

1206012

Δ1198651198640119903

JmolΔ119865119864119903119903

JmolΔ11986511986412

JmolΔ119865119864

JmolAniline + 2-butoxyethanol

0 0000 0000 0000 0000025 12667 1195 minus24375 minus1051305 minus12462 3531 minus9455 minus18385075 minus35202 4514 minus0070 minus307581 0000 0000 0000 0000

o-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 5315 2646 minus8528 minus0567050 minus17290 7956 minus3584 minus12918075 minus17337 6199 minus0525 minus116631 0000 0000 0000 0000

m-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 8096 minus7248 5254 610205 44607 minus20755 minus2314 21538075 56248 minus22579 0869 345381 0000 0000 0000 0000

o-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 minus7335 10956 minus43957 minus4033605 minus54914 36394 minus26484 minus45004075 minus82072 43962 0696 minus374141 0000 0000 0000 0000

m-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 3515 minus0395 minus2680 044005 minus0741 minus1016 minus0980 minus2737075 minus3759 minus0971 0646 minus40851 0000 0000 0000 0000

1198770

119891119903= (

8120587119873119860

9119881119903

)(120576119903minus 1) (120576

infin119903+ 2)

(2120576119903+ 120576infin119903)

119877119891119903= (

8120587119873119860

9119881119903

)(120576119898minus 1) (120576

infin119903+ 2)

(2120576119898+ 120576infin119903)

(3)In the case of aniline o-chloroaniline o-anisidine and

m-anisidine with 2-butoxyethanol systems the values of(Δ1198651198640119903) are positive and less negative for o-anisidine + 2-

butoxyethanol at lower concentrations of anilines and neg-ative at higher concentrations of anilines It means thatat initial concentration of anilines there is the existenceof attractive force between the dipoles while at higherconcentrations of anilines there exists repulsive force betweenthe dipoles In the case of m-chloroaniline 2-butoxyethanolsystem the (Δ119865119864

0119903) values are positive for the whole com-

position range This shows the existence of attractive force

between the dipoles The (Δ119865119864119903119903) predicts the information of

the short range interaction and self-association between likemolecules Increase of (Δ119865119864

119903119903) with volume fraction of the

aniline molecules suggests that the strength of the homoint-eraction between aniline molecules increasesThe maximumvalues of (Δ119865119864

119903119903) for the studied systems indicate the strong

short range interaction through hydrogen bonding In oursystems o-anisidine with 2-butoxyethanol has the maximumvalue of (Δ119865119864

119903119903)

The magnitude of (Δ11986511986412) gives information on the

strength of interactions between unlike molecules Accord-ing to Swain and Roy [36] antiparallel alignment leadsto the destruction of angular correlation between dissim-ilar molecules decreasing internal energy and results inthe increase of (Δ119865119864

12) values The (Δ119865119864

12) values aniline

and o-chloroaniline with 2-butoxyethanol systems are com-pletely negative In the case of o-anisidine + 2-butoxyethanol

Advances in Physical Chemistry 7

Table 4 Values of adjustable parameters (119861119896) and the corresponding standard deviations (120590) for excess dielectric constant and excess inverse

relaxation time of anilines + 2-butoxyethanol binary mixtures at 29815 K

Adjustable parameters120590 Error

1198610

1198611

1198612

1198613

1198614

Aniline 120576119864 0026 minus0629 minus0314 0629 0288 247 times 10minus05 0008(1120591)119864 minus0045 0020 minus0024 minus0020 0069 114 times 10

minus05 0004

o-CA 120576119864 0388 1301 minus4158 minus1301 3770 210 times 10minus05 0005(1120591)119864 minus0017 0006 0002 minus0006 0014 366 times 10minus05 0009

m-CA 120576119864 minus1660 minus0391 0620 0391 1040 494 times 10minus06 0001(1120591)119864 0001 0000 0000 0000 0000 467 times 10minus08 0006

o-A 120576119864 3200 4693 minus3626 minus4693 0426 210 times 10

minus05 0008(1120591)119864 minus0094 0084 minus0080 minus0084 0175 112 times 10minus04 0007

m-A 120576119864 minus0120 0213 minus0253 minus0213 0373 166 times 10minus05 0002(1120591)119864 minus0013 minus0004 0016 0004 minus0003 322 times 10minus05 0005

and m-anisidine + 2-butoxyethanol systems the (Δ11986511986412) val-

ues are initially negative and the volume fraction of ani-line that increases the (Δ119865119864

12) values goes to positive It

indicates that the dipoles have parallel orientation in 2-alkoxyethanol rich region and the dipoles have antiparallelorientation in anilines rich region where as in the case ofm-chloroaniline + 2-butoxyethanol system the (Δ119865119864

12) values

are positive for m-chloroaniline and 2-butoxyethanol richregion and negative for equimolar ratio This shows thatthe conversion of multimers leads to the internal energyThe (Δ119865119864

12) values are very small at all concentrations This

shows that interaction does not result in a structure breakingmechanism between dissimilar molecules Hence it maybe concluded that hydrogen bonds between the dissimilarmolecules are not broken by change in the composition of themixture

Finally the total excess Helmholtz free energy (Δ119865119864)values are negative for aniline o-chloroaniline o-anisidineand m-anisidine and positive for m-chloroaniline systemsThe negative values of (Δ119865119864) indicate the formation of 120572-clusters Due to the formation of these 120572-clusters the effectivedipole moment will be increased which increases the internalenergy The positive values of (Δ119865119864) are due to the formationof 120573-clusters and hence the effective dipole moment will bedecreased when compared to the sum of individual systemsand thereby it destructs the angular correlation betweennonideal molecules which may decrease its internal energyHence the dipolar excess free energy or excess Helmholtzfree energy can be considered to be a reflection of the inter-action between the islands of anilines in 2-alkoxyethanols(Figure 4) The excess values are fitted with Redlich-Kister[37] polynomial equation and the average standard deviationvalues are calculated These values are listed in Table 4 Thederived dielectric parameters and excess functions from themeasured properties suggest the presence of strongmolecularinteractions in the solution to obtain binary coefficientsand the standard errors in the Redlich-Kister polynomialequation at 29815 K as a function of composition of themixture

(a)

F = CH3CH2CH2CH2

(b)

X Y = Cl OCH3

(c)

Figure 4 Interaction behaviour of anilines + 2-butoxyethanol

4 Conclusion

The complex permittivity spectra of 2-butoxyethanol inanilines have been studied using time domain reflectometrytechnique in the frequency range 10MHz to 30GHz Anonlinear variation of static dielectric constant and relaxationtime values suggests the heterogeneous interaction between

8 Advances in Physical Chemistry

the unlike molecules The calculated values like Kirkwoodcorrelation factors Bruggeman factor and excess dielectricconstant values confirm the hydrogen bond interactionbetween 2-BE with anilines The negative total excess freeenergies Δ119865119864may be attributed to the H-bonding interactionbetween unlike molecules over the depolymerization of 2-BEby anilines

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledged the School of PhysicalScience SRTM University Nanded Maharashtra for pro-viding the TDR measurements

References

[1] D Balamurugan S Kumar and S Krishnan ldquoDielectric relax-ation studies of higher order alcohol complexes with aminesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 122 no 1ndash3 pp 11ndash14 2005

[2] P Sivagurunathan K Dharmalingam K Ramachandran BPrabhakarUndre PW Khirade and S CMehrotra ldquoDielectricrelaxation study of ethyl acrylate-alcohol mixtures using timedomain Reflectometryrdquo Lithanian Journal of Physics vol 46 no4 pp 441ndash445 2006

[3] Y S Joshi and A C Kumbharkhane ldquoStudy of heterogeneousinteraction in binary mixtures of 2-methoxyethanol-waterusing dielectric relaxation spectroscopyrdquo Journal of MolecularLiquids vol 161 no 3 pp 120ndash124 2011

[4] V A Rana A D Vyas and S C Mehrotra ldquoDielectricrelaxation study of mixtures of 1-propanol with aniline 2-chloroaniline and 3-chloroaniline at different temperaturesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 102 no 1ndash3 pp 379ndash391 2003

[5] T V Krishna and S S Sastry ldquoDielectric and thermodynamicstudies on the hydrogen bonded binary system of isopropylalcohol and anilinerdquo Journal of Solution Chemistry vol 39 no9 pp 1377ndash1393 2010

[6] T Kalaivani and S Krishnan ldquoDielectric relaxation studies ofternary liquid mixtures of aniline and substituted anilines withacrylonitrile in the microwave regionrdquo Indian Journal of Pureand Applied Physics vol 47 no 12 pp 880ndash882 2009

[7] R J Sengwa V Khatri and S Sankhla ldquoDielectric proper-ties and hydrogen bonding interaction behaviour in binarymixtures of glycerol with amides and aminesrdquo Fluid PhaseEquilibria vol 266 no 1-2 pp 54ndash58 2008

[8] A N Prajapati V A Rana and A D Vyas ldquoDielectricdispersion studies of mixtures of aniline and benzonitrile inbenzene solutionsrdquo Journal of Molecular Liquids vol 144 no1-2 pp 1ndash4 2009

[9] K K Gupta A K Bansal P J Singh and K S SharmaldquoStructural change analysis of pyridine and piperidine throughdielectric relaxation studiesrdquo Journal of Molecular Liquids vol108 no 1ndash3 pp 79ndash93 2003

[10] U Becker and M Stockhausen ldquoA dielectric relaxation studyof some mixtures of mono and dihydric alcoholsrdquo Journal ofMolecular Liquids vol 81 no 2 pp 89ndash100 1999

[11] A C Kumbharkhane S M Puranik and S C MehrotraldquoDielectric relaxation study and structural properties of 2-nitroacetophenone-ethanol solutions from 10MHz to 10GHzrdquoJournal of Molecular Liquids vol 51 no 3-4 pp 307ndash319 1992

[12] S M Puranik A C Kumbharkhane and S CMehrotra ldquoDielectric relaxation studies of aqueous NN-dimethylformamide using a picosecond time domaintechniquerdquo Journal of Solution Chemistry vol 22 no 3pp 219ndash229 1993

[13] Y S Joshi P G Hudge A C Kumbharkhane and SC Mehrotra ldquoThe dielectric relaxation study of 2(2-alkoxyethoxy)ethanol-water mixtures using time domainreflectometryrdquo Journal of Molecular Liquids vol 163 no 2 pp70ndash76 2011

[14] P R Bevington Data Reduction and Error Analysis for thePhysical Sciences McGraw Hill New York NY USA 1969

[15] A Chaudhari N M More and S C Mehrotra ldquoStatic dielec-tric constant and relaxation time for the binary mixture ofwater ethanol NN-dimethylformamide dimethylsulphoxideand NN-dimethylacetamide with 2-methoxyethanolrdquo Bulletinof the Korean Chemical Society vol 22 no 4 pp 357ndash361 2001

[16] A C Kumbharkhane S N Helambe S Doraiswamyand S C Mehrotra ldquoDielectric relaxation study ofhexamethylphosphoramide-water mixtures using time domainreflectometryrdquo The Journal of Chemical Physics vol 99 no 4pp 2405ndash2409 1993

[17] B D Achole A V Patil V P Pawar and S C MehrotraldquoStudy of interaction through dielectrics behavior of -OHgroup molecules from 10MHz to 20GHzrdquo Journal of MolecularLiquids vol 159 no 2 pp 152ndash156 2011

[18] L S Gabrielyan and S A Markarian ldquoDielectric relaxationstudy of dipropylsulfoxidewater mixturesrdquo Journal of Molecu-lar Liquids vol 162 no 3 pp 135ndash140 2011

[19] Y S Joshi P G Hudge and A C Kumbharkhane ldquoDielectricrelaxation study of aqueous 2-ethoxyethanol using time domainreflectometry techniquerdquo Indian Journal of Physics vol 85 no11 pp 1603ndash1614 2011

[20] K K Srivastava and J K Vij ldquoDielectric relaxation and molec-ular structure I Dielectric relaxation in substituted anilinesrdquoBulletin of Chemical Society of Japan vol 43 pp 2307ndash23121970

[21] J G Kirkwood ldquoThe dielectric polarization of polar liquidsrdquoThe Journal of Chemical Physics vol 7 no 10 pp 911ndash919 1939

[22] S B Sayyad P B Undre P Yannewar S S Patil P W Khiradeand S C Mehrotra ldquoInvestigations of intermolecular inter-actions between 2-methoxyethanol and nitrobenzene throughdielectric relaxation studyrdquo Lithuanian Journal of Physics vol51 no 1 pp 29ndash37 2011

[23] D A G Bruggeman ldquoThe dielectric constant of a compositematerialrdquo Annals of Physics vol 5 p 636 1935

[24] J B Hasted Aqueous Dielectrics Champan and Hall LondonUK 1973

[25] V P Pawar and S C Mehrotra ldquoDielectric relaxation study ofchlorobenzene with formamide at microwave frequency usingtime domain reflectometryrdquo Journal of Molecular Liquids vol115 no 1 pp 17ndash22 2004

[26] P Undre S N Helambe S B Jagdale P W Khirade and SC Mehrotra ldquoMicrowave dielectric characterization of binary

Advances in Physical Chemistry 9

mixture of formamide with N N-dimethylaminoethanolrdquo Pra-mana vol 68 no 5 pp 851ndash861 2007

[27] D A G Bruggeman ldquoThe dielectric constant of a compositematerial-a problem in classical physicsrdquo Annals of Physics vol24 p 636 1967

[28] A Chaudhari S Ahire M Lokhande and S C MehrotraldquoDielectric study of pyridine- alcohol binary liquids at 25∘CrdquoProceedings of the National Academy of Sciences India Section Avol 1 pp 75ndash83 2001

[29] A Chaudhari C S Patil A G Shankarwar B R Arbad andS C Mehrotra ldquoTemperature dependent dielectric relaxationstudy of aniline in dimethylsulphoxide and dimethylformamideusing time domain techniquerdquo Journal of Korean ChemicalSociety vol 45 pp 201ndash206 2001

[30] S C Mehrotra and J E Boggs ldquoA new approach to time-dependent perturbation theoryrdquo The Journal of ChemicalPhysics vol 64 no 7 pp 2796ndash2803 1976

[31] T V Krishna and T MadhuMohan ldquoStudy of molecularinteractions in the polar binary mixtures of N-methyl ani-line and alcohols using excess dielectric and thermodynamicparametersrdquo Journal of Chemical Thermodynamics vol 47 pp267ndash275 2012

[32] T M Mohan S S Sastry and V R K Murthy ldquoThermo-dynamic dielectric and conformational studies on hydrogenbonded binary mixtures of propan-1-ol with methyl benzoateand ethyl benzoaterdquo Journal of Solution Chemistry vol 40 no1 pp 131ndash146 2011

[33] T Thenappan and U Sankar ldquoStudy of correlation factors anddipolar excess free energies of esters in benzenerdquo Journal ofMolecular Liquids vol 126 no 1ndash3 pp 23ndash28 2006

[34] G Arivazhagan G Parthipan and T Thenappan ldquoSolute-solvent interactions of acid-14-dioxane mixtures-By dielectricFTIR UV-vis and 13C NMR spectrometric methodsrdquo Spec-trochimica Acta A vol 74 no 4 pp 860ndash868 2009

[35] G Parthipan and T Thenappan ldquoDielectric and thermody-namic behavior of binary mixture of anisole with morpholineand aniline at different temperaturesrdquo Journal of MolecularLiquids vol 138 no 1ndash3 pp 20ndash25 2008

[36] B B Swain and G S Roy ldquoDielectric studies of binary mixturesof butanols in nonpolar solvents-solute-solvent interactionsrdquoJournal of Molecular Liquids vol 34 no 4 pp 257ndash268 1987

[37] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: Research Article Dielectric Relaxation Studies of 2

Advances in Physical Chemistry 5

Table 2 Values of effective and corrective Kirkwood correlation factor (119892eff 119892119891) Bruggeman factor (119891

119861) excess dielectric constant (120576119864) and

excess inverse relaxation time (1120591)119864 of anilines with 2-butoxyethanol binary mixtures 29815 K

1206012

119892eff 119892119891

119891119861

120576119864 (1120591)119864 psAniline + 2-butoxyethanol

0 1939 (1) 1000 1000 0000 00000025 1555 (0) 0818 0759 minus0051 minus0006705 1284 (1) 0793 0534 0007 minus00062075 1040 (3) 0806 0288 0038 minus000431 0898 (2) 1000 0000 0000 00000

o-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1290 (3) 0789 0770 0014 minus0002605 1164 (1) 0871 0563 0097 minus00043075 0944 (1) 0909 0186 minus0169 minus000371 0742 (3) 1000 0000 0000 00000

m-Chloroaniline + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1128 (2) 0802 0839 minus0297 0000105 0920 (1) 0868 0619 minus0415 00002075 0761 (3) 0934 0313 minus0243 000011 0632 (0) 1000 0000 0000 00000

o-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1419 (1) 0824 0907 0765 minus0014305 1264 (3) 0876 0693 0800 minus00246075 0907 (0) 0844 0320 0105 minus002511 0568 (1) 1000 0000 0000 00000

m-Anisidine + 2-butoxyethanol0 1939 (1) 1000 1000 0000 00000025 1394 (3) 0786 0736 minus0015 minus0002005 1350 (2) 0849 0468 minus0030 minus00030075 1230 (1) 0885 0197 minus0045 minus000101 1168 (3) 1000 0000 0000 00000The number in bracket represents error in least significant digit of the corresponding value as obtained by the least squares fit method for example 1939 (1)means 1939 plusmn 001

interaction produces a field such that the effective dipolesrotate slowly Krishna and MadhuMohan [31] have reportedthe negative and positive values (1120591)119864 in N-methylanilinewith alcohols

The excess Helmholtz free energy (Δ119865119864) is a parameterto evaluate the interaction between the components in themixture through breaking mechanism of hydrogen bond andis expressed [32ndash35] as

Δ119865119864= Δ119865119864

0+ Δ119865119864

119903119903+ Δ119865119864

12 (2)

where (Δ1198651198640) represents the excess dipolar energy due to

long range electrostatic interaction (Δ119865119864119903119903) represents the

excess dipolar energy due to short range interaction betweenidentical molecules and (Δ119865119864

12) represents the excess free

energy due to short range interaction between dissimilarmolecules The above terms are given in detail in (2)

Δ119865119864= minus [

119873119860

2][ sum119903=12

1206012

1199031205832

119903(119877119891119903minus 1198770

119891119903)]

+ [ sum119903=12

1206012

1199031205832

119903(119892119903119903minus 1)

times (119877119891119903minus 1198770

119891119903) ]

+ [1206011120601212058311205832(11989212minus 1)

times (1198771198911+ 1198771198912minus 1198770

1198911minus 1198770

1198912)]

6 Advances in Physical Chemistry

Table 3 Values of excess Helmholtz free energy of mixing for anilines + 2-butoxyethanol binary mixtures at 29815 K

1206012

Δ1198651198640119903

JmolΔ119865119864119903119903

JmolΔ11986511986412

JmolΔ119865119864

JmolAniline + 2-butoxyethanol

0 0000 0000 0000 0000025 12667 1195 minus24375 minus1051305 minus12462 3531 minus9455 minus18385075 minus35202 4514 minus0070 minus307581 0000 0000 0000 0000

o-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 5315 2646 minus8528 minus0567050 minus17290 7956 minus3584 minus12918075 minus17337 6199 minus0525 minus116631 0000 0000 0000 0000

m-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 8096 minus7248 5254 610205 44607 minus20755 minus2314 21538075 56248 minus22579 0869 345381 0000 0000 0000 0000

o-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 minus7335 10956 minus43957 minus4033605 minus54914 36394 minus26484 minus45004075 minus82072 43962 0696 minus374141 0000 0000 0000 0000

m-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 3515 minus0395 minus2680 044005 minus0741 minus1016 minus0980 minus2737075 minus3759 minus0971 0646 minus40851 0000 0000 0000 0000

1198770

119891119903= (

8120587119873119860

9119881119903

)(120576119903minus 1) (120576

infin119903+ 2)

(2120576119903+ 120576infin119903)

119877119891119903= (

8120587119873119860

9119881119903

)(120576119898minus 1) (120576

infin119903+ 2)

(2120576119898+ 120576infin119903)

(3)In the case of aniline o-chloroaniline o-anisidine and

m-anisidine with 2-butoxyethanol systems the values of(Δ1198651198640119903) are positive and less negative for o-anisidine + 2-

butoxyethanol at lower concentrations of anilines and neg-ative at higher concentrations of anilines It means thatat initial concentration of anilines there is the existenceof attractive force between the dipoles while at higherconcentrations of anilines there exists repulsive force betweenthe dipoles In the case of m-chloroaniline 2-butoxyethanolsystem the (Δ119865119864

0119903) values are positive for the whole com-

position range This shows the existence of attractive force

between the dipoles The (Δ119865119864119903119903) predicts the information of

the short range interaction and self-association between likemolecules Increase of (Δ119865119864

119903119903) with volume fraction of the

aniline molecules suggests that the strength of the homoint-eraction between aniline molecules increasesThe maximumvalues of (Δ119865119864

119903119903) for the studied systems indicate the strong

short range interaction through hydrogen bonding In oursystems o-anisidine with 2-butoxyethanol has the maximumvalue of (Δ119865119864

119903119903)

The magnitude of (Δ11986511986412) gives information on the

strength of interactions between unlike molecules Accord-ing to Swain and Roy [36] antiparallel alignment leadsto the destruction of angular correlation between dissim-ilar molecules decreasing internal energy and results inthe increase of (Δ119865119864

12) values The (Δ119865119864

12) values aniline

and o-chloroaniline with 2-butoxyethanol systems are com-pletely negative In the case of o-anisidine + 2-butoxyethanol

Advances in Physical Chemistry 7

Table 4 Values of adjustable parameters (119861119896) and the corresponding standard deviations (120590) for excess dielectric constant and excess inverse

relaxation time of anilines + 2-butoxyethanol binary mixtures at 29815 K

Adjustable parameters120590 Error

1198610

1198611

1198612

1198613

1198614

Aniline 120576119864 0026 minus0629 minus0314 0629 0288 247 times 10minus05 0008(1120591)119864 minus0045 0020 minus0024 minus0020 0069 114 times 10

minus05 0004

o-CA 120576119864 0388 1301 minus4158 minus1301 3770 210 times 10minus05 0005(1120591)119864 minus0017 0006 0002 minus0006 0014 366 times 10minus05 0009

m-CA 120576119864 minus1660 minus0391 0620 0391 1040 494 times 10minus06 0001(1120591)119864 0001 0000 0000 0000 0000 467 times 10minus08 0006

o-A 120576119864 3200 4693 minus3626 minus4693 0426 210 times 10

minus05 0008(1120591)119864 minus0094 0084 minus0080 minus0084 0175 112 times 10minus04 0007

m-A 120576119864 minus0120 0213 minus0253 minus0213 0373 166 times 10minus05 0002(1120591)119864 minus0013 minus0004 0016 0004 minus0003 322 times 10minus05 0005

and m-anisidine + 2-butoxyethanol systems the (Δ11986511986412) val-

ues are initially negative and the volume fraction of ani-line that increases the (Δ119865119864

12) values goes to positive It

indicates that the dipoles have parallel orientation in 2-alkoxyethanol rich region and the dipoles have antiparallelorientation in anilines rich region where as in the case ofm-chloroaniline + 2-butoxyethanol system the (Δ119865119864

12) values

are positive for m-chloroaniline and 2-butoxyethanol richregion and negative for equimolar ratio This shows thatthe conversion of multimers leads to the internal energyThe (Δ119865119864

12) values are very small at all concentrations This

shows that interaction does not result in a structure breakingmechanism between dissimilar molecules Hence it maybe concluded that hydrogen bonds between the dissimilarmolecules are not broken by change in the composition of themixture

Finally the total excess Helmholtz free energy (Δ119865119864)values are negative for aniline o-chloroaniline o-anisidineand m-anisidine and positive for m-chloroaniline systemsThe negative values of (Δ119865119864) indicate the formation of 120572-clusters Due to the formation of these 120572-clusters the effectivedipole moment will be increased which increases the internalenergy The positive values of (Δ119865119864) are due to the formationof 120573-clusters and hence the effective dipole moment will bedecreased when compared to the sum of individual systemsand thereby it destructs the angular correlation betweennonideal molecules which may decrease its internal energyHence the dipolar excess free energy or excess Helmholtzfree energy can be considered to be a reflection of the inter-action between the islands of anilines in 2-alkoxyethanols(Figure 4) The excess values are fitted with Redlich-Kister[37] polynomial equation and the average standard deviationvalues are calculated These values are listed in Table 4 Thederived dielectric parameters and excess functions from themeasured properties suggest the presence of strongmolecularinteractions in the solution to obtain binary coefficientsand the standard errors in the Redlich-Kister polynomialequation at 29815 K as a function of composition of themixture

(a)

F = CH3CH2CH2CH2

(b)

X Y = Cl OCH3

(c)

Figure 4 Interaction behaviour of anilines + 2-butoxyethanol

4 Conclusion

The complex permittivity spectra of 2-butoxyethanol inanilines have been studied using time domain reflectometrytechnique in the frequency range 10MHz to 30GHz Anonlinear variation of static dielectric constant and relaxationtime values suggests the heterogeneous interaction between

8 Advances in Physical Chemistry

the unlike molecules The calculated values like Kirkwoodcorrelation factors Bruggeman factor and excess dielectricconstant values confirm the hydrogen bond interactionbetween 2-BE with anilines The negative total excess freeenergies Δ119865119864may be attributed to the H-bonding interactionbetween unlike molecules over the depolymerization of 2-BEby anilines

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledged the School of PhysicalScience SRTM University Nanded Maharashtra for pro-viding the TDR measurements

References

[1] D Balamurugan S Kumar and S Krishnan ldquoDielectric relax-ation studies of higher order alcohol complexes with aminesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 122 no 1ndash3 pp 11ndash14 2005

[2] P Sivagurunathan K Dharmalingam K Ramachandran BPrabhakarUndre PW Khirade and S CMehrotra ldquoDielectricrelaxation study of ethyl acrylate-alcohol mixtures using timedomain Reflectometryrdquo Lithanian Journal of Physics vol 46 no4 pp 441ndash445 2006

[3] Y S Joshi and A C Kumbharkhane ldquoStudy of heterogeneousinteraction in binary mixtures of 2-methoxyethanol-waterusing dielectric relaxation spectroscopyrdquo Journal of MolecularLiquids vol 161 no 3 pp 120ndash124 2011

[4] V A Rana A D Vyas and S C Mehrotra ldquoDielectricrelaxation study of mixtures of 1-propanol with aniline 2-chloroaniline and 3-chloroaniline at different temperaturesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 102 no 1ndash3 pp 379ndash391 2003

[5] T V Krishna and S S Sastry ldquoDielectric and thermodynamicstudies on the hydrogen bonded binary system of isopropylalcohol and anilinerdquo Journal of Solution Chemistry vol 39 no9 pp 1377ndash1393 2010

[6] T Kalaivani and S Krishnan ldquoDielectric relaxation studies ofternary liquid mixtures of aniline and substituted anilines withacrylonitrile in the microwave regionrdquo Indian Journal of Pureand Applied Physics vol 47 no 12 pp 880ndash882 2009

[7] R J Sengwa V Khatri and S Sankhla ldquoDielectric proper-ties and hydrogen bonding interaction behaviour in binarymixtures of glycerol with amides and aminesrdquo Fluid PhaseEquilibria vol 266 no 1-2 pp 54ndash58 2008

[8] A N Prajapati V A Rana and A D Vyas ldquoDielectricdispersion studies of mixtures of aniline and benzonitrile inbenzene solutionsrdquo Journal of Molecular Liquids vol 144 no1-2 pp 1ndash4 2009

[9] K K Gupta A K Bansal P J Singh and K S SharmaldquoStructural change analysis of pyridine and piperidine throughdielectric relaxation studiesrdquo Journal of Molecular Liquids vol108 no 1ndash3 pp 79ndash93 2003

[10] U Becker and M Stockhausen ldquoA dielectric relaxation studyof some mixtures of mono and dihydric alcoholsrdquo Journal ofMolecular Liquids vol 81 no 2 pp 89ndash100 1999

[11] A C Kumbharkhane S M Puranik and S C MehrotraldquoDielectric relaxation study and structural properties of 2-nitroacetophenone-ethanol solutions from 10MHz to 10GHzrdquoJournal of Molecular Liquids vol 51 no 3-4 pp 307ndash319 1992

[12] S M Puranik A C Kumbharkhane and S CMehrotra ldquoDielectric relaxation studies of aqueous NN-dimethylformamide using a picosecond time domaintechniquerdquo Journal of Solution Chemistry vol 22 no 3pp 219ndash229 1993

[13] Y S Joshi P G Hudge A C Kumbharkhane and SC Mehrotra ldquoThe dielectric relaxation study of 2(2-alkoxyethoxy)ethanol-water mixtures using time domainreflectometryrdquo Journal of Molecular Liquids vol 163 no 2 pp70ndash76 2011

[14] P R Bevington Data Reduction and Error Analysis for thePhysical Sciences McGraw Hill New York NY USA 1969

[15] A Chaudhari N M More and S C Mehrotra ldquoStatic dielec-tric constant and relaxation time for the binary mixture ofwater ethanol NN-dimethylformamide dimethylsulphoxideand NN-dimethylacetamide with 2-methoxyethanolrdquo Bulletinof the Korean Chemical Society vol 22 no 4 pp 357ndash361 2001

[16] A C Kumbharkhane S N Helambe S Doraiswamyand S C Mehrotra ldquoDielectric relaxation study ofhexamethylphosphoramide-water mixtures using time domainreflectometryrdquo The Journal of Chemical Physics vol 99 no 4pp 2405ndash2409 1993

[17] B D Achole A V Patil V P Pawar and S C MehrotraldquoStudy of interaction through dielectrics behavior of -OHgroup molecules from 10MHz to 20GHzrdquo Journal of MolecularLiquids vol 159 no 2 pp 152ndash156 2011

[18] L S Gabrielyan and S A Markarian ldquoDielectric relaxationstudy of dipropylsulfoxidewater mixturesrdquo Journal of Molecu-lar Liquids vol 162 no 3 pp 135ndash140 2011

[19] Y S Joshi P G Hudge and A C Kumbharkhane ldquoDielectricrelaxation study of aqueous 2-ethoxyethanol using time domainreflectometry techniquerdquo Indian Journal of Physics vol 85 no11 pp 1603ndash1614 2011

[20] K K Srivastava and J K Vij ldquoDielectric relaxation and molec-ular structure I Dielectric relaxation in substituted anilinesrdquoBulletin of Chemical Society of Japan vol 43 pp 2307ndash23121970

[21] J G Kirkwood ldquoThe dielectric polarization of polar liquidsrdquoThe Journal of Chemical Physics vol 7 no 10 pp 911ndash919 1939

[22] S B Sayyad P B Undre P Yannewar S S Patil P W Khiradeand S C Mehrotra ldquoInvestigations of intermolecular inter-actions between 2-methoxyethanol and nitrobenzene throughdielectric relaxation studyrdquo Lithuanian Journal of Physics vol51 no 1 pp 29ndash37 2011

[23] D A G Bruggeman ldquoThe dielectric constant of a compositematerialrdquo Annals of Physics vol 5 p 636 1935

[24] J B Hasted Aqueous Dielectrics Champan and Hall LondonUK 1973

[25] V P Pawar and S C Mehrotra ldquoDielectric relaxation study ofchlorobenzene with formamide at microwave frequency usingtime domain reflectometryrdquo Journal of Molecular Liquids vol115 no 1 pp 17ndash22 2004

[26] P Undre S N Helambe S B Jagdale P W Khirade and SC Mehrotra ldquoMicrowave dielectric characterization of binary

Advances in Physical Chemistry 9

mixture of formamide with N N-dimethylaminoethanolrdquo Pra-mana vol 68 no 5 pp 851ndash861 2007

[27] D A G Bruggeman ldquoThe dielectric constant of a compositematerial-a problem in classical physicsrdquo Annals of Physics vol24 p 636 1967

[28] A Chaudhari S Ahire M Lokhande and S C MehrotraldquoDielectric study of pyridine- alcohol binary liquids at 25∘CrdquoProceedings of the National Academy of Sciences India Section Avol 1 pp 75ndash83 2001

[29] A Chaudhari C S Patil A G Shankarwar B R Arbad andS C Mehrotra ldquoTemperature dependent dielectric relaxationstudy of aniline in dimethylsulphoxide and dimethylformamideusing time domain techniquerdquo Journal of Korean ChemicalSociety vol 45 pp 201ndash206 2001

[30] S C Mehrotra and J E Boggs ldquoA new approach to time-dependent perturbation theoryrdquo The Journal of ChemicalPhysics vol 64 no 7 pp 2796ndash2803 1976

[31] T V Krishna and T MadhuMohan ldquoStudy of molecularinteractions in the polar binary mixtures of N-methyl ani-line and alcohols using excess dielectric and thermodynamicparametersrdquo Journal of Chemical Thermodynamics vol 47 pp267ndash275 2012

[32] T M Mohan S S Sastry and V R K Murthy ldquoThermo-dynamic dielectric and conformational studies on hydrogenbonded binary mixtures of propan-1-ol with methyl benzoateand ethyl benzoaterdquo Journal of Solution Chemistry vol 40 no1 pp 131ndash146 2011

[33] T Thenappan and U Sankar ldquoStudy of correlation factors anddipolar excess free energies of esters in benzenerdquo Journal ofMolecular Liquids vol 126 no 1ndash3 pp 23ndash28 2006

[34] G Arivazhagan G Parthipan and T Thenappan ldquoSolute-solvent interactions of acid-14-dioxane mixtures-By dielectricFTIR UV-vis and 13C NMR spectrometric methodsrdquo Spec-trochimica Acta A vol 74 no 4 pp 860ndash868 2009

[35] G Parthipan and T Thenappan ldquoDielectric and thermody-namic behavior of binary mixture of anisole with morpholineand aniline at different temperaturesrdquo Journal of MolecularLiquids vol 138 no 1ndash3 pp 20ndash25 2008

[36] B B Swain and G S Roy ldquoDielectric studies of binary mixturesof butanols in nonpolar solvents-solute-solvent interactionsrdquoJournal of Molecular Liquids vol 34 no 4 pp 257ndash268 1987

[37] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 6: Research Article Dielectric Relaxation Studies of 2

6 Advances in Physical Chemistry

Table 3 Values of excess Helmholtz free energy of mixing for anilines + 2-butoxyethanol binary mixtures at 29815 K

1206012

Δ1198651198640119903

JmolΔ119865119864119903119903

JmolΔ11986511986412

JmolΔ119865119864

JmolAniline + 2-butoxyethanol

0 0000 0000 0000 0000025 12667 1195 minus24375 minus1051305 minus12462 3531 minus9455 minus18385075 minus35202 4514 minus0070 minus307581 0000 0000 0000 0000

o-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 5315 2646 minus8528 minus0567050 minus17290 7956 minus3584 minus12918075 minus17337 6199 minus0525 minus116631 0000 0000 0000 0000

m-Chloroaniline + 2-butoxyethanol0 0000 0000 0000 0000025 8096 minus7248 5254 610205 44607 minus20755 minus2314 21538075 56248 minus22579 0869 345381 0000 0000 0000 0000

o-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 minus7335 10956 minus43957 minus4033605 minus54914 36394 minus26484 minus45004075 minus82072 43962 0696 minus374141 0000 0000 0000 0000

m-Anisidine + 2-butoxyethanol0 0000 0000 0000 0000025 3515 minus0395 minus2680 044005 minus0741 minus1016 minus0980 minus2737075 minus3759 minus0971 0646 minus40851 0000 0000 0000 0000

1198770

119891119903= (

8120587119873119860

9119881119903

)(120576119903minus 1) (120576

infin119903+ 2)

(2120576119903+ 120576infin119903)

119877119891119903= (

8120587119873119860

9119881119903

)(120576119898minus 1) (120576

infin119903+ 2)

(2120576119898+ 120576infin119903)

(3)In the case of aniline o-chloroaniline o-anisidine and

m-anisidine with 2-butoxyethanol systems the values of(Δ1198651198640119903) are positive and less negative for o-anisidine + 2-

butoxyethanol at lower concentrations of anilines and neg-ative at higher concentrations of anilines It means thatat initial concentration of anilines there is the existenceof attractive force between the dipoles while at higherconcentrations of anilines there exists repulsive force betweenthe dipoles In the case of m-chloroaniline 2-butoxyethanolsystem the (Δ119865119864

0119903) values are positive for the whole com-

position range This shows the existence of attractive force

between the dipoles The (Δ119865119864119903119903) predicts the information of

the short range interaction and self-association between likemolecules Increase of (Δ119865119864

119903119903) with volume fraction of the

aniline molecules suggests that the strength of the homoint-eraction between aniline molecules increasesThe maximumvalues of (Δ119865119864

119903119903) for the studied systems indicate the strong

short range interaction through hydrogen bonding In oursystems o-anisidine with 2-butoxyethanol has the maximumvalue of (Δ119865119864

119903119903)

The magnitude of (Δ11986511986412) gives information on the

strength of interactions between unlike molecules Accord-ing to Swain and Roy [36] antiparallel alignment leadsto the destruction of angular correlation between dissim-ilar molecules decreasing internal energy and results inthe increase of (Δ119865119864

12) values The (Δ119865119864

12) values aniline

and o-chloroaniline with 2-butoxyethanol systems are com-pletely negative In the case of o-anisidine + 2-butoxyethanol

Advances in Physical Chemistry 7

Table 4 Values of adjustable parameters (119861119896) and the corresponding standard deviations (120590) for excess dielectric constant and excess inverse

relaxation time of anilines + 2-butoxyethanol binary mixtures at 29815 K

Adjustable parameters120590 Error

1198610

1198611

1198612

1198613

1198614

Aniline 120576119864 0026 minus0629 minus0314 0629 0288 247 times 10minus05 0008(1120591)119864 minus0045 0020 minus0024 minus0020 0069 114 times 10

minus05 0004

o-CA 120576119864 0388 1301 minus4158 minus1301 3770 210 times 10minus05 0005(1120591)119864 minus0017 0006 0002 minus0006 0014 366 times 10minus05 0009

m-CA 120576119864 minus1660 minus0391 0620 0391 1040 494 times 10minus06 0001(1120591)119864 0001 0000 0000 0000 0000 467 times 10minus08 0006

o-A 120576119864 3200 4693 minus3626 minus4693 0426 210 times 10

minus05 0008(1120591)119864 minus0094 0084 minus0080 minus0084 0175 112 times 10minus04 0007

m-A 120576119864 minus0120 0213 minus0253 minus0213 0373 166 times 10minus05 0002(1120591)119864 minus0013 minus0004 0016 0004 minus0003 322 times 10minus05 0005

and m-anisidine + 2-butoxyethanol systems the (Δ11986511986412) val-

ues are initially negative and the volume fraction of ani-line that increases the (Δ119865119864

12) values goes to positive It

indicates that the dipoles have parallel orientation in 2-alkoxyethanol rich region and the dipoles have antiparallelorientation in anilines rich region where as in the case ofm-chloroaniline + 2-butoxyethanol system the (Δ119865119864

12) values

are positive for m-chloroaniline and 2-butoxyethanol richregion and negative for equimolar ratio This shows thatthe conversion of multimers leads to the internal energyThe (Δ119865119864

12) values are very small at all concentrations This

shows that interaction does not result in a structure breakingmechanism between dissimilar molecules Hence it maybe concluded that hydrogen bonds between the dissimilarmolecules are not broken by change in the composition of themixture

Finally the total excess Helmholtz free energy (Δ119865119864)values are negative for aniline o-chloroaniline o-anisidineand m-anisidine and positive for m-chloroaniline systemsThe negative values of (Δ119865119864) indicate the formation of 120572-clusters Due to the formation of these 120572-clusters the effectivedipole moment will be increased which increases the internalenergy The positive values of (Δ119865119864) are due to the formationof 120573-clusters and hence the effective dipole moment will bedecreased when compared to the sum of individual systemsand thereby it destructs the angular correlation betweennonideal molecules which may decrease its internal energyHence the dipolar excess free energy or excess Helmholtzfree energy can be considered to be a reflection of the inter-action between the islands of anilines in 2-alkoxyethanols(Figure 4) The excess values are fitted with Redlich-Kister[37] polynomial equation and the average standard deviationvalues are calculated These values are listed in Table 4 Thederived dielectric parameters and excess functions from themeasured properties suggest the presence of strongmolecularinteractions in the solution to obtain binary coefficientsand the standard errors in the Redlich-Kister polynomialequation at 29815 K as a function of composition of themixture

(a)

F = CH3CH2CH2CH2

(b)

X Y = Cl OCH3

(c)

Figure 4 Interaction behaviour of anilines + 2-butoxyethanol

4 Conclusion

The complex permittivity spectra of 2-butoxyethanol inanilines have been studied using time domain reflectometrytechnique in the frequency range 10MHz to 30GHz Anonlinear variation of static dielectric constant and relaxationtime values suggests the heterogeneous interaction between

8 Advances in Physical Chemistry

the unlike molecules The calculated values like Kirkwoodcorrelation factors Bruggeman factor and excess dielectricconstant values confirm the hydrogen bond interactionbetween 2-BE with anilines The negative total excess freeenergies Δ119865119864may be attributed to the H-bonding interactionbetween unlike molecules over the depolymerization of 2-BEby anilines

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledged the School of PhysicalScience SRTM University Nanded Maharashtra for pro-viding the TDR measurements

References

[1] D Balamurugan S Kumar and S Krishnan ldquoDielectric relax-ation studies of higher order alcohol complexes with aminesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 122 no 1ndash3 pp 11ndash14 2005

[2] P Sivagurunathan K Dharmalingam K Ramachandran BPrabhakarUndre PW Khirade and S CMehrotra ldquoDielectricrelaxation study of ethyl acrylate-alcohol mixtures using timedomain Reflectometryrdquo Lithanian Journal of Physics vol 46 no4 pp 441ndash445 2006

[3] Y S Joshi and A C Kumbharkhane ldquoStudy of heterogeneousinteraction in binary mixtures of 2-methoxyethanol-waterusing dielectric relaxation spectroscopyrdquo Journal of MolecularLiquids vol 161 no 3 pp 120ndash124 2011

[4] V A Rana A D Vyas and S C Mehrotra ldquoDielectricrelaxation study of mixtures of 1-propanol with aniline 2-chloroaniline and 3-chloroaniline at different temperaturesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 102 no 1ndash3 pp 379ndash391 2003

[5] T V Krishna and S S Sastry ldquoDielectric and thermodynamicstudies on the hydrogen bonded binary system of isopropylalcohol and anilinerdquo Journal of Solution Chemistry vol 39 no9 pp 1377ndash1393 2010

[6] T Kalaivani and S Krishnan ldquoDielectric relaxation studies ofternary liquid mixtures of aniline and substituted anilines withacrylonitrile in the microwave regionrdquo Indian Journal of Pureand Applied Physics vol 47 no 12 pp 880ndash882 2009

[7] R J Sengwa V Khatri and S Sankhla ldquoDielectric proper-ties and hydrogen bonding interaction behaviour in binarymixtures of glycerol with amides and aminesrdquo Fluid PhaseEquilibria vol 266 no 1-2 pp 54ndash58 2008

[8] A N Prajapati V A Rana and A D Vyas ldquoDielectricdispersion studies of mixtures of aniline and benzonitrile inbenzene solutionsrdquo Journal of Molecular Liquids vol 144 no1-2 pp 1ndash4 2009

[9] K K Gupta A K Bansal P J Singh and K S SharmaldquoStructural change analysis of pyridine and piperidine throughdielectric relaxation studiesrdquo Journal of Molecular Liquids vol108 no 1ndash3 pp 79ndash93 2003

[10] U Becker and M Stockhausen ldquoA dielectric relaxation studyof some mixtures of mono and dihydric alcoholsrdquo Journal ofMolecular Liquids vol 81 no 2 pp 89ndash100 1999

[11] A C Kumbharkhane S M Puranik and S C MehrotraldquoDielectric relaxation study and structural properties of 2-nitroacetophenone-ethanol solutions from 10MHz to 10GHzrdquoJournal of Molecular Liquids vol 51 no 3-4 pp 307ndash319 1992

[12] S M Puranik A C Kumbharkhane and S CMehrotra ldquoDielectric relaxation studies of aqueous NN-dimethylformamide using a picosecond time domaintechniquerdquo Journal of Solution Chemistry vol 22 no 3pp 219ndash229 1993

[13] Y S Joshi P G Hudge A C Kumbharkhane and SC Mehrotra ldquoThe dielectric relaxation study of 2(2-alkoxyethoxy)ethanol-water mixtures using time domainreflectometryrdquo Journal of Molecular Liquids vol 163 no 2 pp70ndash76 2011

[14] P R Bevington Data Reduction and Error Analysis for thePhysical Sciences McGraw Hill New York NY USA 1969

[15] A Chaudhari N M More and S C Mehrotra ldquoStatic dielec-tric constant and relaxation time for the binary mixture ofwater ethanol NN-dimethylformamide dimethylsulphoxideand NN-dimethylacetamide with 2-methoxyethanolrdquo Bulletinof the Korean Chemical Society vol 22 no 4 pp 357ndash361 2001

[16] A C Kumbharkhane S N Helambe S Doraiswamyand S C Mehrotra ldquoDielectric relaxation study ofhexamethylphosphoramide-water mixtures using time domainreflectometryrdquo The Journal of Chemical Physics vol 99 no 4pp 2405ndash2409 1993

[17] B D Achole A V Patil V P Pawar and S C MehrotraldquoStudy of interaction through dielectrics behavior of -OHgroup molecules from 10MHz to 20GHzrdquo Journal of MolecularLiquids vol 159 no 2 pp 152ndash156 2011

[18] L S Gabrielyan and S A Markarian ldquoDielectric relaxationstudy of dipropylsulfoxidewater mixturesrdquo Journal of Molecu-lar Liquids vol 162 no 3 pp 135ndash140 2011

[19] Y S Joshi P G Hudge and A C Kumbharkhane ldquoDielectricrelaxation study of aqueous 2-ethoxyethanol using time domainreflectometry techniquerdquo Indian Journal of Physics vol 85 no11 pp 1603ndash1614 2011

[20] K K Srivastava and J K Vij ldquoDielectric relaxation and molec-ular structure I Dielectric relaxation in substituted anilinesrdquoBulletin of Chemical Society of Japan vol 43 pp 2307ndash23121970

[21] J G Kirkwood ldquoThe dielectric polarization of polar liquidsrdquoThe Journal of Chemical Physics vol 7 no 10 pp 911ndash919 1939

[22] S B Sayyad P B Undre P Yannewar S S Patil P W Khiradeand S C Mehrotra ldquoInvestigations of intermolecular inter-actions between 2-methoxyethanol and nitrobenzene throughdielectric relaxation studyrdquo Lithuanian Journal of Physics vol51 no 1 pp 29ndash37 2011

[23] D A G Bruggeman ldquoThe dielectric constant of a compositematerialrdquo Annals of Physics vol 5 p 636 1935

[24] J B Hasted Aqueous Dielectrics Champan and Hall LondonUK 1973

[25] V P Pawar and S C Mehrotra ldquoDielectric relaxation study ofchlorobenzene with formamide at microwave frequency usingtime domain reflectometryrdquo Journal of Molecular Liquids vol115 no 1 pp 17ndash22 2004

[26] P Undre S N Helambe S B Jagdale P W Khirade and SC Mehrotra ldquoMicrowave dielectric characterization of binary

Advances in Physical Chemistry 9

mixture of formamide with N N-dimethylaminoethanolrdquo Pra-mana vol 68 no 5 pp 851ndash861 2007

[27] D A G Bruggeman ldquoThe dielectric constant of a compositematerial-a problem in classical physicsrdquo Annals of Physics vol24 p 636 1967

[28] A Chaudhari S Ahire M Lokhande and S C MehrotraldquoDielectric study of pyridine- alcohol binary liquids at 25∘CrdquoProceedings of the National Academy of Sciences India Section Avol 1 pp 75ndash83 2001

[29] A Chaudhari C S Patil A G Shankarwar B R Arbad andS C Mehrotra ldquoTemperature dependent dielectric relaxationstudy of aniline in dimethylsulphoxide and dimethylformamideusing time domain techniquerdquo Journal of Korean ChemicalSociety vol 45 pp 201ndash206 2001

[30] S C Mehrotra and J E Boggs ldquoA new approach to time-dependent perturbation theoryrdquo The Journal of ChemicalPhysics vol 64 no 7 pp 2796ndash2803 1976

[31] T V Krishna and T MadhuMohan ldquoStudy of molecularinteractions in the polar binary mixtures of N-methyl ani-line and alcohols using excess dielectric and thermodynamicparametersrdquo Journal of Chemical Thermodynamics vol 47 pp267ndash275 2012

[32] T M Mohan S S Sastry and V R K Murthy ldquoThermo-dynamic dielectric and conformational studies on hydrogenbonded binary mixtures of propan-1-ol with methyl benzoateand ethyl benzoaterdquo Journal of Solution Chemistry vol 40 no1 pp 131ndash146 2011

[33] T Thenappan and U Sankar ldquoStudy of correlation factors anddipolar excess free energies of esters in benzenerdquo Journal ofMolecular Liquids vol 126 no 1ndash3 pp 23ndash28 2006

[34] G Arivazhagan G Parthipan and T Thenappan ldquoSolute-solvent interactions of acid-14-dioxane mixtures-By dielectricFTIR UV-vis and 13C NMR spectrometric methodsrdquo Spec-trochimica Acta A vol 74 no 4 pp 860ndash868 2009

[35] G Parthipan and T Thenappan ldquoDielectric and thermody-namic behavior of binary mixture of anisole with morpholineand aniline at different temperaturesrdquo Journal of MolecularLiquids vol 138 no 1ndash3 pp 20ndash25 2008

[36] B B Swain and G S Roy ldquoDielectric studies of binary mixturesof butanols in nonpolar solvents-solute-solvent interactionsrdquoJournal of Molecular Liquids vol 34 no 4 pp 257ndash268 1987

[37] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 7: Research Article Dielectric Relaxation Studies of 2

Advances in Physical Chemistry 7

Table 4 Values of adjustable parameters (119861119896) and the corresponding standard deviations (120590) for excess dielectric constant and excess inverse

relaxation time of anilines + 2-butoxyethanol binary mixtures at 29815 K

Adjustable parameters120590 Error

1198610

1198611

1198612

1198613

1198614

Aniline 120576119864 0026 minus0629 minus0314 0629 0288 247 times 10minus05 0008(1120591)119864 minus0045 0020 minus0024 minus0020 0069 114 times 10

minus05 0004

o-CA 120576119864 0388 1301 minus4158 minus1301 3770 210 times 10minus05 0005(1120591)119864 minus0017 0006 0002 minus0006 0014 366 times 10minus05 0009

m-CA 120576119864 minus1660 minus0391 0620 0391 1040 494 times 10minus06 0001(1120591)119864 0001 0000 0000 0000 0000 467 times 10minus08 0006

o-A 120576119864 3200 4693 minus3626 minus4693 0426 210 times 10

minus05 0008(1120591)119864 minus0094 0084 minus0080 minus0084 0175 112 times 10minus04 0007

m-A 120576119864 minus0120 0213 minus0253 minus0213 0373 166 times 10minus05 0002(1120591)119864 minus0013 minus0004 0016 0004 minus0003 322 times 10minus05 0005

and m-anisidine + 2-butoxyethanol systems the (Δ11986511986412) val-

ues are initially negative and the volume fraction of ani-line that increases the (Δ119865119864

12) values goes to positive It

indicates that the dipoles have parallel orientation in 2-alkoxyethanol rich region and the dipoles have antiparallelorientation in anilines rich region where as in the case ofm-chloroaniline + 2-butoxyethanol system the (Δ119865119864

12) values

are positive for m-chloroaniline and 2-butoxyethanol richregion and negative for equimolar ratio This shows thatthe conversion of multimers leads to the internal energyThe (Δ119865119864

12) values are very small at all concentrations This

shows that interaction does not result in a structure breakingmechanism between dissimilar molecules Hence it maybe concluded that hydrogen bonds between the dissimilarmolecules are not broken by change in the composition of themixture

Finally the total excess Helmholtz free energy (Δ119865119864)values are negative for aniline o-chloroaniline o-anisidineand m-anisidine and positive for m-chloroaniline systemsThe negative values of (Δ119865119864) indicate the formation of 120572-clusters Due to the formation of these 120572-clusters the effectivedipole moment will be increased which increases the internalenergy The positive values of (Δ119865119864) are due to the formationof 120573-clusters and hence the effective dipole moment will bedecreased when compared to the sum of individual systemsand thereby it destructs the angular correlation betweennonideal molecules which may decrease its internal energyHence the dipolar excess free energy or excess Helmholtzfree energy can be considered to be a reflection of the inter-action between the islands of anilines in 2-alkoxyethanols(Figure 4) The excess values are fitted with Redlich-Kister[37] polynomial equation and the average standard deviationvalues are calculated These values are listed in Table 4 Thederived dielectric parameters and excess functions from themeasured properties suggest the presence of strongmolecularinteractions in the solution to obtain binary coefficientsand the standard errors in the Redlich-Kister polynomialequation at 29815 K as a function of composition of themixture

(a)

F = CH3CH2CH2CH2

(b)

X Y = Cl OCH3

(c)

Figure 4 Interaction behaviour of anilines + 2-butoxyethanol

4 Conclusion

The complex permittivity spectra of 2-butoxyethanol inanilines have been studied using time domain reflectometrytechnique in the frequency range 10MHz to 30GHz Anonlinear variation of static dielectric constant and relaxationtime values suggests the heterogeneous interaction between

8 Advances in Physical Chemistry

the unlike molecules The calculated values like Kirkwoodcorrelation factors Bruggeman factor and excess dielectricconstant values confirm the hydrogen bond interactionbetween 2-BE with anilines The negative total excess freeenergies Δ119865119864may be attributed to the H-bonding interactionbetween unlike molecules over the depolymerization of 2-BEby anilines

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledged the School of PhysicalScience SRTM University Nanded Maharashtra for pro-viding the TDR measurements

References

[1] D Balamurugan S Kumar and S Krishnan ldquoDielectric relax-ation studies of higher order alcohol complexes with aminesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 122 no 1ndash3 pp 11ndash14 2005

[2] P Sivagurunathan K Dharmalingam K Ramachandran BPrabhakarUndre PW Khirade and S CMehrotra ldquoDielectricrelaxation study of ethyl acrylate-alcohol mixtures using timedomain Reflectometryrdquo Lithanian Journal of Physics vol 46 no4 pp 441ndash445 2006

[3] Y S Joshi and A C Kumbharkhane ldquoStudy of heterogeneousinteraction in binary mixtures of 2-methoxyethanol-waterusing dielectric relaxation spectroscopyrdquo Journal of MolecularLiquids vol 161 no 3 pp 120ndash124 2011

[4] V A Rana A D Vyas and S C Mehrotra ldquoDielectricrelaxation study of mixtures of 1-propanol with aniline 2-chloroaniline and 3-chloroaniline at different temperaturesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 102 no 1ndash3 pp 379ndash391 2003

[5] T V Krishna and S S Sastry ldquoDielectric and thermodynamicstudies on the hydrogen bonded binary system of isopropylalcohol and anilinerdquo Journal of Solution Chemistry vol 39 no9 pp 1377ndash1393 2010

[6] T Kalaivani and S Krishnan ldquoDielectric relaxation studies ofternary liquid mixtures of aniline and substituted anilines withacrylonitrile in the microwave regionrdquo Indian Journal of Pureand Applied Physics vol 47 no 12 pp 880ndash882 2009

[7] R J Sengwa V Khatri and S Sankhla ldquoDielectric proper-ties and hydrogen bonding interaction behaviour in binarymixtures of glycerol with amides and aminesrdquo Fluid PhaseEquilibria vol 266 no 1-2 pp 54ndash58 2008

[8] A N Prajapati V A Rana and A D Vyas ldquoDielectricdispersion studies of mixtures of aniline and benzonitrile inbenzene solutionsrdquo Journal of Molecular Liquids vol 144 no1-2 pp 1ndash4 2009

[9] K K Gupta A K Bansal P J Singh and K S SharmaldquoStructural change analysis of pyridine and piperidine throughdielectric relaxation studiesrdquo Journal of Molecular Liquids vol108 no 1ndash3 pp 79ndash93 2003

[10] U Becker and M Stockhausen ldquoA dielectric relaxation studyof some mixtures of mono and dihydric alcoholsrdquo Journal ofMolecular Liquids vol 81 no 2 pp 89ndash100 1999

[11] A C Kumbharkhane S M Puranik and S C MehrotraldquoDielectric relaxation study and structural properties of 2-nitroacetophenone-ethanol solutions from 10MHz to 10GHzrdquoJournal of Molecular Liquids vol 51 no 3-4 pp 307ndash319 1992

[12] S M Puranik A C Kumbharkhane and S CMehrotra ldquoDielectric relaxation studies of aqueous NN-dimethylformamide using a picosecond time domaintechniquerdquo Journal of Solution Chemistry vol 22 no 3pp 219ndash229 1993

[13] Y S Joshi P G Hudge A C Kumbharkhane and SC Mehrotra ldquoThe dielectric relaxation study of 2(2-alkoxyethoxy)ethanol-water mixtures using time domainreflectometryrdquo Journal of Molecular Liquids vol 163 no 2 pp70ndash76 2011

[14] P R Bevington Data Reduction and Error Analysis for thePhysical Sciences McGraw Hill New York NY USA 1969

[15] A Chaudhari N M More and S C Mehrotra ldquoStatic dielec-tric constant and relaxation time for the binary mixture ofwater ethanol NN-dimethylformamide dimethylsulphoxideand NN-dimethylacetamide with 2-methoxyethanolrdquo Bulletinof the Korean Chemical Society vol 22 no 4 pp 357ndash361 2001

[16] A C Kumbharkhane S N Helambe S Doraiswamyand S C Mehrotra ldquoDielectric relaxation study ofhexamethylphosphoramide-water mixtures using time domainreflectometryrdquo The Journal of Chemical Physics vol 99 no 4pp 2405ndash2409 1993

[17] B D Achole A V Patil V P Pawar and S C MehrotraldquoStudy of interaction through dielectrics behavior of -OHgroup molecules from 10MHz to 20GHzrdquo Journal of MolecularLiquids vol 159 no 2 pp 152ndash156 2011

[18] L S Gabrielyan and S A Markarian ldquoDielectric relaxationstudy of dipropylsulfoxidewater mixturesrdquo Journal of Molecu-lar Liquids vol 162 no 3 pp 135ndash140 2011

[19] Y S Joshi P G Hudge and A C Kumbharkhane ldquoDielectricrelaxation study of aqueous 2-ethoxyethanol using time domainreflectometry techniquerdquo Indian Journal of Physics vol 85 no11 pp 1603ndash1614 2011

[20] K K Srivastava and J K Vij ldquoDielectric relaxation and molec-ular structure I Dielectric relaxation in substituted anilinesrdquoBulletin of Chemical Society of Japan vol 43 pp 2307ndash23121970

[21] J G Kirkwood ldquoThe dielectric polarization of polar liquidsrdquoThe Journal of Chemical Physics vol 7 no 10 pp 911ndash919 1939

[22] S B Sayyad P B Undre P Yannewar S S Patil P W Khiradeand S C Mehrotra ldquoInvestigations of intermolecular inter-actions between 2-methoxyethanol and nitrobenzene throughdielectric relaxation studyrdquo Lithuanian Journal of Physics vol51 no 1 pp 29ndash37 2011

[23] D A G Bruggeman ldquoThe dielectric constant of a compositematerialrdquo Annals of Physics vol 5 p 636 1935

[24] J B Hasted Aqueous Dielectrics Champan and Hall LondonUK 1973

[25] V P Pawar and S C Mehrotra ldquoDielectric relaxation study ofchlorobenzene with formamide at microwave frequency usingtime domain reflectometryrdquo Journal of Molecular Liquids vol115 no 1 pp 17ndash22 2004

[26] P Undre S N Helambe S B Jagdale P W Khirade and SC Mehrotra ldquoMicrowave dielectric characterization of binary

Advances in Physical Chemistry 9

mixture of formamide with N N-dimethylaminoethanolrdquo Pra-mana vol 68 no 5 pp 851ndash861 2007

[27] D A G Bruggeman ldquoThe dielectric constant of a compositematerial-a problem in classical physicsrdquo Annals of Physics vol24 p 636 1967

[28] A Chaudhari S Ahire M Lokhande and S C MehrotraldquoDielectric study of pyridine- alcohol binary liquids at 25∘CrdquoProceedings of the National Academy of Sciences India Section Avol 1 pp 75ndash83 2001

[29] A Chaudhari C S Patil A G Shankarwar B R Arbad andS C Mehrotra ldquoTemperature dependent dielectric relaxationstudy of aniline in dimethylsulphoxide and dimethylformamideusing time domain techniquerdquo Journal of Korean ChemicalSociety vol 45 pp 201ndash206 2001

[30] S C Mehrotra and J E Boggs ldquoA new approach to time-dependent perturbation theoryrdquo The Journal of ChemicalPhysics vol 64 no 7 pp 2796ndash2803 1976

[31] T V Krishna and T MadhuMohan ldquoStudy of molecularinteractions in the polar binary mixtures of N-methyl ani-line and alcohols using excess dielectric and thermodynamicparametersrdquo Journal of Chemical Thermodynamics vol 47 pp267ndash275 2012

[32] T M Mohan S S Sastry and V R K Murthy ldquoThermo-dynamic dielectric and conformational studies on hydrogenbonded binary mixtures of propan-1-ol with methyl benzoateand ethyl benzoaterdquo Journal of Solution Chemistry vol 40 no1 pp 131ndash146 2011

[33] T Thenappan and U Sankar ldquoStudy of correlation factors anddipolar excess free energies of esters in benzenerdquo Journal ofMolecular Liquids vol 126 no 1ndash3 pp 23ndash28 2006

[34] G Arivazhagan G Parthipan and T Thenappan ldquoSolute-solvent interactions of acid-14-dioxane mixtures-By dielectricFTIR UV-vis and 13C NMR spectrometric methodsrdquo Spec-trochimica Acta A vol 74 no 4 pp 860ndash868 2009

[35] G Parthipan and T Thenappan ldquoDielectric and thermody-namic behavior of binary mixture of anisole with morpholineand aniline at different temperaturesrdquo Journal of MolecularLiquids vol 138 no 1ndash3 pp 20ndash25 2008

[36] B B Swain and G S Roy ldquoDielectric studies of binary mixturesof butanols in nonpolar solvents-solute-solvent interactionsrdquoJournal of Molecular Liquids vol 34 no 4 pp 257ndash268 1987

[37] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 8: Research Article Dielectric Relaxation Studies of 2

8 Advances in Physical Chemistry

the unlike molecules The calculated values like Kirkwoodcorrelation factors Bruggeman factor and excess dielectricconstant values confirm the hydrogen bond interactionbetween 2-BE with anilines The negative total excess freeenergies Δ119865119864may be attributed to the H-bonding interactionbetween unlike molecules over the depolymerization of 2-BEby anilines

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors gratefully acknowledged the School of PhysicalScience SRTM University Nanded Maharashtra for pro-viding the TDR measurements

References

[1] D Balamurugan S Kumar and S Krishnan ldquoDielectric relax-ation studies of higher order alcohol complexes with aminesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 122 no 1ndash3 pp 11ndash14 2005

[2] P Sivagurunathan K Dharmalingam K Ramachandran BPrabhakarUndre PW Khirade and S CMehrotra ldquoDielectricrelaxation study of ethyl acrylate-alcohol mixtures using timedomain Reflectometryrdquo Lithanian Journal of Physics vol 46 no4 pp 441ndash445 2006

[3] Y S Joshi and A C Kumbharkhane ldquoStudy of heterogeneousinteraction in binary mixtures of 2-methoxyethanol-waterusing dielectric relaxation spectroscopyrdquo Journal of MolecularLiquids vol 161 no 3 pp 120ndash124 2011

[4] V A Rana A D Vyas and S C Mehrotra ldquoDielectricrelaxation study of mixtures of 1-propanol with aniline 2-chloroaniline and 3-chloroaniline at different temperaturesusing time domain reflectometryrdquo Journal of Molecular Liquidsvol 102 no 1ndash3 pp 379ndash391 2003

[5] T V Krishna and S S Sastry ldquoDielectric and thermodynamicstudies on the hydrogen bonded binary system of isopropylalcohol and anilinerdquo Journal of Solution Chemistry vol 39 no9 pp 1377ndash1393 2010

[6] T Kalaivani and S Krishnan ldquoDielectric relaxation studies ofternary liquid mixtures of aniline and substituted anilines withacrylonitrile in the microwave regionrdquo Indian Journal of Pureand Applied Physics vol 47 no 12 pp 880ndash882 2009

[7] R J Sengwa V Khatri and S Sankhla ldquoDielectric proper-ties and hydrogen bonding interaction behaviour in binarymixtures of glycerol with amides and aminesrdquo Fluid PhaseEquilibria vol 266 no 1-2 pp 54ndash58 2008

[8] A N Prajapati V A Rana and A D Vyas ldquoDielectricdispersion studies of mixtures of aniline and benzonitrile inbenzene solutionsrdquo Journal of Molecular Liquids vol 144 no1-2 pp 1ndash4 2009

[9] K K Gupta A K Bansal P J Singh and K S SharmaldquoStructural change analysis of pyridine and piperidine throughdielectric relaxation studiesrdquo Journal of Molecular Liquids vol108 no 1ndash3 pp 79ndash93 2003

[10] U Becker and M Stockhausen ldquoA dielectric relaxation studyof some mixtures of mono and dihydric alcoholsrdquo Journal ofMolecular Liquids vol 81 no 2 pp 89ndash100 1999

[11] A C Kumbharkhane S M Puranik and S C MehrotraldquoDielectric relaxation study and structural properties of 2-nitroacetophenone-ethanol solutions from 10MHz to 10GHzrdquoJournal of Molecular Liquids vol 51 no 3-4 pp 307ndash319 1992

[12] S M Puranik A C Kumbharkhane and S CMehrotra ldquoDielectric relaxation studies of aqueous NN-dimethylformamide using a picosecond time domaintechniquerdquo Journal of Solution Chemistry vol 22 no 3pp 219ndash229 1993

[13] Y S Joshi P G Hudge A C Kumbharkhane and SC Mehrotra ldquoThe dielectric relaxation study of 2(2-alkoxyethoxy)ethanol-water mixtures using time domainreflectometryrdquo Journal of Molecular Liquids vol 163 no 2 pp70ndash76 2011

[14] P R Bevington Data Reduction and Error Analysis for thePhysical Sciences McGraw Hill New York NY USA 1969

[15] A Chaudhari N M More and S C Mehrotra ldquoStatic dielec-tric constant and relaxation time for the binary mixture ofwater ethanol NN-dimethylformamide dimethylsulphoxideand NN-dimethylacetamide with 2-methoxyethanolrdquo Bulletinof the Korean Chemical Society vol 22 no 4 pp 357ndash361 2001

[16] A C Kumbharkhane S N Helambe S Doraiswamyand S C Mehrotra ldquoDielectric relaxation study ofhexamethylphosphoramide-water mixtures using time domainreflectometryrdquo The Journal of Chemical Physics vol 99 no 4pp 2405ndash2409 1993

[17] B D Achole A V Patil V P Pawar and S C MehrotraldquoStudy of interaction through dielectrics behavior of -OHgroup molecules from 10MHz to 20GHzrdquo Journal of MolecularLiquids vol 159 no 2 pp 152ndash156 2011

[18] L S Gabrielyan and S A Markarian ldquoDielectric relaxationstudy of dipropylsulfoxidewater mixturesrdquo Journal of Molecu-lar Liquids vol 162 no 3 pp 135ndash140 2011

[19] Y S Joshi P G Hudge and A C Kumbharkhane ldquoDielectricrelaxation study of aqueous 2-ethoxyethanol using time domainreflectometry techniquerdquo Indian Journal of Physics vol 85 no11 pp 1603ndash1614 2011

[20] K K Srivastava and J K Vij ldquoDielectric relaxation and molec-ular structure I Dielectric relaxation in substituted anilinesrdquoBulletin of Chemical Society of Japan vol 43 pp 2307ndash23121970

[21] J G Kirkwood ldquoThe dielectric polarization of polar liquidsrdquoThe Journal of Chemical Physics vol 7 no 10 pp 911ndash919 1939

[22] S B Sayyad P B Undre P Yannewar S S Patil P W Khiradeand S C Mehrotra ldquoInvestigations of intermolecular inter-actions between 2-methoxyethanol and nitrobenzene throughdielectric relaxation studyrdquo Lithuanian Journal of Physics vol51 no 1 pp 29ndash37 2011

[23] D A G Bruggeman ldquoThe dielectric constant of a compositematerialrdquo Annals of Physics vol 5 p 636 1935

[24] J B Hasted Aqueous Dielectrics Champan and Hall LondonUK 1973

[25] V P Pawar and S C Mehrotra ldquoDielectric relaxation study ofchlorobenzene with formamide at microwave frequency usingtime domain reflectometryrdquo Journal of Molecular Liquids vol115 no 1 pp 17ndash22 2004

[26] P Undre S N Helambe S B Jagdale P W Khirade and SC Mehrotra ldquoMicrowave dielectric characterization of binary

Advances in Physical Chemistry 9

mixture of formamide with N N-dimethylaminoethanolrdquo Pra-mana vol 68 no 5 pp 851ndash861 2007

[27] D A G Bruggeman ldquoThe dielectric constant of a compositematerial-a problem in classical physicsrdquo Annals of Physics vol24 p 636 1967

[28] A Chaudhari S Ahire M Lokhande and S C MehrotraldquoDielectric study of pyridine- alcohol binary liquids at 25∘CrdquoProceedings of the National Academy of Sciences India Section Avol 1 pp 75ndash83 2001

[29] A Chaudhari C S Patil A G Shankarwar B R Arbad andS C Mehrotra ldquoTemperature dependent dielectric relaxationstudy of aniline in dimethylsulphoxide and dimethylformamideusing time domain techniquerdquo Journal of Korean ChemicalSociety vol 45 pp 201ndash206 2001

[30] S C Mehrotra and J E Boggs ldquoA new approach to time-dependent perturbation theoryrdquo The Journal of ChemicalPhysics vol 64 no 7 pp 2796ndash2803 1976

[31] T V Krishna and T MadhuMohan ldquoStudy of molecularinteractions in the polar binary mixtures of N-methyl ani-line and alcohols using excess dielectric and thermodynamicparametersrdquo Journal of Chemical Thermodynamics vol 47 pp267ndash275 2012

[32] T M Mohan S S Sastry and V R K Murthy ldquoThermo-dynamic dielectric and conformational studies on hydrogenbonded binary mixtures of propan-1-ol with methyl benzoateand ethyl benzoaterdquo Journal of Solution Chemistry vol 40 no1 pp 131ndash146 2011

[33] T Thenappan and U Sankar ldquoStudy of correlation factors anddipolar excess free energies of esters in benzenerdquo Journal ofMolecular Liquids vol 126 no 1ndash3 pp 23ndash28 2006

[34] G Arivazhagan G Parthipan and T Thenappan ldquoSolute-solvent interactions of acid-14-dioxane mixtures-By dielectricFTIR UV-vis and 13C NMR spectrometric methodsrdquo Spec-trochimica Acta A vol 74 no 4 pp 860ndash868 2009

[35] G Parthipan and T Thenappan ldquoDielectric and thermody-namic behavior of binary mixture of anisole with morpholineand aniline at different temperaturesrdquo Journal of MolecularLiquids vol 138 no 1ndash3 pp 20ndash25 2008

[36] B B Swain and G S Roy ldquoDielectric studies of binary mixturesof butanols in nonpolar solvents-solute-solvent interactionsrdquoJournal of Molecular Liquids vol 34 no 4 pp 257ndash268 1987

[37] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 9: Research Article Dielectric Relaxation Studies of 2

Advances in Physical Chemistry 9

mixture of formamide with N N-dimethylaminoethanolrdquo Pra-mana vol 68 no 5 pp 851ndash861 2007

[27] D A G Bruggeman ldquoThe dielectric constant of a compositematerial-a problem in classical physicsrdquo Annals of Physics vol24 p 636 1967

[28] A Chaudhari S Ahire M Lokhande and S C MehrotraldquoDielectric study of pyridine- alcohol binary liquids at 25∘CrdquoProceedings of the National Academy of Sciences India Section Avol 1 pp 75ndash83 2001

[29] A Chaudhari C S Patil A G Shankarwar B R Arbad andS C Mehrotra ldquoTemperature dependent dielectric relaxationstudy of aniline in dimethylsulphoxide and dimethylformamideusing time domain techniquerdquo Journal of Korean ChemicalSociety vol 45 pp 201ndash206 2001

[30] S C Mehrotra and J E Boggs ldquoA new approach to time-dependent perturbation theoryrdquo The Journal of ChemicalPhysics vol 64 no 7 pp 2796ndash2803 1976

[31] T V Krishna and T MadhuMohan ldquoStudy of molecularinteractions in the polar binary mixtures of N-methyl ani-line and alcohols using excess dielectric and thermodynamicparametersrdquo Journal of Chemical Thermodynamics vol 47 pp267ndash275 2012

[32] T M Mohan S S Sastry and V R K Murthy ldquoThermo-dynamic dielectric and conformational studies on hydrogenbonded binary mixtures of propan-1-ol with methyl benzoateand ethyl benzoaterdquo Journal of Solution Chemistry vol 40 no1 pp 131ndash146 2011

[33] T Thenappan and U Sankar ldquoStudy of correlation factors anddipolar excess free energies of esters in benzenerdquo Journal ofMolecular Liquids vol 126 no 1ndash3 pp 23ndash28 2006

[34] G Arivazhagan G Parthipan and T Thenappan ldquoSolute-solvent interactions of acid-14-dioxane mixtures-By dielectricFTIR UV-vis and 13C NMR spectrometric methodsrdquo Spec-trochimica Acta A vol 74 no 4 pp 860ndash868 2009

[35] G Parthipan and T Thenappan ldquoDielectric and thermody-namic behavior of binary mixture of anisole with morpholineand aniline at different temperaturesrdquo Journal of MolecularLiquids vol 138 no 1ndash3 pp 20ndash25 2008

[36] B B Swain and G S Roy ldquoDielectric studies of binary mixturesof butanols in nonpolar solvents-solute-solvent interactionsrdquoJournal of Molecular Liquids vol 34 no 4 pp 257ndash268 1987

[37] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial and Engineering Chemistry vol 40 no 2 pp 345ndash348 1948

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 10: Research Article Dielectric Relaxation Studies of 2

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of