22
Phytochemistry ISSN 1819-3471 www.academicjournals.com Research Journal of

Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Embed Size (px)

Citation preview

Page 1: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

PhytochemistryISSN 1819-3471

www.academicjournals.com

Research Journal of

Page 2: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

OPEN ACCESS Research Journal of Phytochemistry

ISSN 1819-3471DOI: 10.3923/rjphyto.2017.90.110

Research ArticleAnti-diabetic Activity of Endophytic Fungi, Penicillium Species ofTabebuia argentea; in Silico and Experimental Analysis1Kumar Kalavathi Murugan, 2Chandrappa Chinna Poojari, 3Channabasava Ryavalad,4Ramachandra Yarappa Lakshmikantha, 5Padmalatha Rai Satwadi, 6Ravishankar Rai Vittal and1Govindappa Melappa

1Department of Biotechnology, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout,560 078 Bengaluru, India2Department of Biotechnology, Shridevi Institute of Engineering and Technology, Sira Road, 572 106 Tumkur, Karnataka, India3Bioneeds India Private Limited, Devarahosahally, Sompura Hobli, Nelamangala Taluk, Bangalore Rural District 562111, Karnataka, India4Department of P.G. Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Jnana Sahyadri,Shankaraghatta 577 451, Shivamogga, Karnataka, India5Academics, School Of Life Sciences, Manipal University, Karnataka, India6Department of Studies in Microbiology, University of Mysore, Manasa Gangothri, 570006 Mysore, India

AbstractBackground and Objective: The plant and microbial phytochemicals possessing many biological activities with less toxic effects. Hence, presentresearch was aimed to identify phytochemicals in Penicillium species extract and their role in diabetic activity. Materials and Methods: Themethanolic extract of endophytic fungi Penicillium species of Tabebuia argentea was used to analyse phytochemical constituents by GasChromatography Mass Spectrometry (GC-MS). The same extract was used to evaluate the in vitro anti-diabetic activity. The phytochemicals profileobtained from GC-MS was used for in silico anti-diabetic activity against 21 different diabetic proteins/enzymes and ADMET(Absorption, Dissolution, Metabolism, Excretion and Toxicity). The analysis of variance was used to determine the significance of differencebetween treatment groups two-way (ANOVA) followed by SPSS2 (MRX version). Results: The methanol extract of Penicillium species consistedof 18 different phytochemicals and they inhibited the activity of "-amylase, $-glucosidase and dipeptidyl peptidase IV at maximum level. Out of18 phytochemicals, the octadecanoic acid methyl ester and 3 phthalates have shown more interaction with all the 21 diabetic proteins/enzymestested. The octadecanoic acid has shown more interaction with 1dhk, 1nu6, 2wy1, 4y14, 3i2m, 3k35, 4j5t and 5td4. The di-isobutyl isophthalate,dioctyl phthalate and bis-2-ethylhexyl phthalate have shown high interaction with 1m1j, 1ogs and 4acd. The overall observation of present studyshowed that octadecanoic acid is responsible for inducing anti-diabetic activity and the compound has the ability to interact with all the diabeticproteins and inactivate their activity. The in silico investigation clearly indicates how tested compounds interact with different diabeticproteins/enzymes, their role was identified and they were non-toxic and non-carcinogens. Conclusion: The Penicillium species represented potentbioactive compounds in their extract and are responsible for significant in vitro and in silico anti-diabetic activity.

Key words: Penicillium species, phytochemicals, anti-diabetic, molecular docking, ADMET

Received: January 17, 2017 Accepted: February 23, 2017 Published: March 15, 2017

Citation: Kumar Kalavathi Murugan, Chandrappa Chinna Poojari, Channabasava Ryavalad, Ramachandra Yarappa Lakshmikantha, Padmalatha Rai Satwadi,Ravishankar Rai Vittal and Govindappa Melappa, 2017. Anti-diabetic activity of endophytic fungi, Penicillium species of Tabebuia argentea; in silico andexperimental analysis. Res. J. Phytochem., 11: 90-110.

Corresponding Author: Govindappa Melappa, Department of Biotechnology, Dayananda Sagar College of Engineering, 560078 Bengaluru, IndiaTel: +01-7338601980 Fax: +91-80-26660789

Copyright: © 2017 Kumar Kalavathi Murugan et al. This is an open access article distributed under the terms of the creative commons attribution License,which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

Page 3: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

INTRODUCTION

World is having problems in disease management inrelated to pathogens resistance, usage of same drugs andcost. The scientists are working on finding available drugsin cheaper cost or finding new drugs at less cost. A search fornewer and more effective agents to deal with diseaseproblems is now under way and endophytes are a novelsource of potentially useful medicinal compounds.Endophytes comprise a large but little-explored share offungal diversity1,2.

The endophytes may provide protection and survivalconditions to their host plant by producing a plethora ofsubstances which, once isolated and characterized, may alsohave potential for use in industry, agriculture and medicine3.At present, endophytes are producing biologically importantbioactive compounds using to manage many infectious andnon-infectious diseases.

Endophytic fungi are of biotechnological interest due totheir potential as a source of secondary metabolites that havebeen proven useful for novel drug discovery4.

Endophytic fungi have been shown to produceseveral pharmacologically important compounds such asantimycotics steroid 22-triene-3b-ol5, anticancer cajanol6,podophyllotoxin and kaempferol7, anti-inflammatoryergoflavin8, antioxidant lectin9, insecticidal heptelidic acid10,immunosuppressive sydoxanthone A, B11 and cytotoxicradicicol12.

Plants used in traditional medicine have played a veryimportant role in the search for new bioactive strains ofendophytic fungi, as it is possible that their beneficialcharacteristics are a result of the metabolites produced bytheir endophytic community13,14.

Tabebuia argentea (Bignoniaceae) is an extensive andyellow blossoming tree and have turned out to be a richwellspring of numerous natural mixes, particularly, of phenolicand polyphenolic nature. The plant is able to produceanticancer agent, lapachol, it has the ability to interfere withthe bioactivities of enzymes known as, topoisomerases, agroup of enzymes that are critical for DNA replication in cells15.The antitumor activity of Lapachol may be due to itsinteraction with nucleic acids and the interaction of thenaphthoquinone moiety between base pairs of the DNA helixoccurs with subsequent inhibition of DNA replication and RNA synthesis16. Other biological activities of Lapachol areantimetastatic activity17, anti-microbial and antifungal18,antiviral19, anti-inflammatory20, antiparasitic16, leishmanicidal21

and molluscicidal activity22. Only three reports are available inthe identification of Lapachol producing endophytes ofTabebuia argentea from our lab research22-24.

Some research works believed to producepharmacologically important bioactive compounds, in thiscontext, the aims of the present study were to characterize thephytochemical profile of fungal endophyte, Penicilliumspecies associated with Tabebuia argentea and to detectanti-diabetic activities and in silico prediction.

MATERIALS AND METHODS

Collection and extraction of phytochemicals fromendophytic fungi, Penicillium species: The endophytic fungi,Penicillium species of Tabebuia argentea were collected fromstock culture unit of Department of Biotechnology,Shridevi Institute of Engineering and Technology, Tumakuru,Karnataka, Bengaluru in September, 2016 and grown in250 mL Erlenmeyer flask containing 100 mL of roseBengal-yeast extract-sucrose broth for 2 weeks at 26+2EC withperiodical shaking at 150 rpm. After the incubation period, theculture was separated from the broth and was extracted usingmethanol as organic solvent. Extraction was done using themycelial mat for the metabolites with methanol. Added theequal volume of the solvent to the filtrate, mixed well for10 min and kept for 5 min till the two clear immiscible layersformed. The upper layer of the solvent containing theextracted compounds was separated using separating funnel.Evaporated the solvent and the resultant compound was driedin rotator vacuum evaporator to yield the crude metabolites25.Then, the extract was dissolved with dimethyl sulphoxideat 1 mg mLG1 of concentration and kept at 4EC.

Phytochemical analysis: The preliminary phytochemicalanalysis of the crude extracts of Penicillium species was doneto know alkaloids, flavonoids, tannins, phenols, saponins,terpenoids and carbohydrates using standard methods25,26.

Detection of bioactive compounds by GC-MS analysis: Themethanol crude extract was subjected to GC-MS analysis toidentify the bioactive compounds. The GS-MS analysis of thecrude extract was carried out in a Shimadzu GC-MS-QP 2010Plus fitted with RTX-5 (60 m×0-25 mm×0.25 µm) capillarycolumn in IISc, Bengaluru. The instrument was set to an initialtemperature of 70EC and maintained at this temperature for2 min. At the end of this period, the oven temperature wasrose up to 2800EC, at the rate of an increase of 50EC minG1 andmaintained for 9 min. An injection port as 1 mL miG1. Theionization voltage was 70 eV. The sample was injected as 10:1.Mass spectral scan range was set at 45-450 (m/z). Theidentification of bioactive compounds present in the extractswas performed by comparing the mass spectra with data fromNIST05 (National Institute of Standards and Technology, US)

91

Page 4: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

Fig. 1: GC-MS analysis showing different phytochemicals identified based on retention time in methanol extract of endophyticfungi Penicillium species

library. The name, molecular weight and structure of thecomponents of the test material were ascertained based onretention time.

Anti-diabetic activity"-glucosidase activity: A 36 µL of phosphate buffer solution,30 mL sample solution with various concentrations (10, 25, 50,100 and 150 µg mLG1) and 17 µL of 4-nitrophenyl-"-D-glycopyranoside (PNPG) substrate as the concentration of5 mM were put in 37EC for 5 min. After 5 min, 17 µL of"-glucosidase solution 0.15 U mLG1 was added to each well toobtain a total volume of 100 mL. The mixture was incubatedfor 15 min, the reaction was spotted by adding 100 µL ofsodium carbonate 200 mM. Absorbance was measured at405 nm using a microplate reader. Each test was repeatedthrice27. The calculation was done based on Elya et al.28.

"-amylase assay: A 250 mL of 500 µg mLG1 extract, 250 µL ofstarch 2.0% (w.v) and 250 µL of 1 U mLG1 "-amylase solutionwas homogeneously mixed into a test tube. After incubatedat 20EC for 3 min, 500 µL of color reagent (dinitrosalicylic acid)was added to stop the enzymatic reaction. The mixture waskept into boiled water and 250 µL of 1 U mLG1 "-amylase wasadded immediately. The mixture was heated up to 15 min.Further, the solution was removed from the heating processand cooked at room temperature (-26+20EC) for 3 min. A4500 µL aqua dest was added to obtain a total volume of6000 µL. The solution was homogenized using a vortex.

The "-amylase activity was determined at 540 nm usingspectrophotometry to measure product absorbance (maltose)which reduces DNS. The produced absorbance was comparedwith a blank. Percent inhibition was calculated using theequation of Elya et al.28.

Dipeptidyl peptidase IV assay: A 25 µL extract was added to50 µL Dipeptidyl peptidase (DPP-IV) (500 µg mLG1). Themixture was incubated at 37EC for 5 min. A 100 µLGly-Pro-P-Nitroanilide (GPPN) (2 mM) was added to the wellscontaining extract and enzyme. Incubation was contained for15 min. The reaction was terminated by adding 25 µLglacial acetic acid (25%). The absorbance was measured at λ = 405 nm29.

In silico antidiabetic activityBioactive compound preparation: Most of the 3D(3 Dimensions) structures of drug molecules identified in themethanol extract of endophytic fungi, Penicillium specieswere downloaded from PubChem Compound section ofNational Center for Biotechnology Information (NCBI)30.Ligands during this process also being checked for Torsioncount to detect currently active bonds with default settings.Importantly, amide bonds were checked and treated asnon-rotatable. Ligands were also utilized to merge non-polarhydrogens. The 2D structures of 18 ligands are illustrated inTable 1 and Fig. 1. The 3D structures of these 18 ligands wereelucidated.

92

Time (min)

Are

a (%

) 8500000

8000000

7500000

7000000

6500000

6000000

5500000

5000000

4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

0 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Page 5: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

93

Table 1: Id

entif

ied ph

ytoc

hem

icals i

n Pe

nicillium

spec

ies e

xtract and

their s

ynon

ymou

s, iden

tified ba

sed on

rete

ntion tim

e in G

C-MS

Peak

No.

Rete

ntion tim

e (m

in)

Extrac

ted ionic pe

aks

Iden

tified co

mpo

und na

me

Syno

nym

s1

16.681

191.1, 57, 206

.1, 1

92.1, 4

1Ph

enol, 2

,4-b

is (1,1-d

imet

hyleth

yl)-

1.Ph

enol, 2

,4-d

i-ter

t-bu

tyl-

2.2,4-

Di-t

ert-bu

tylphe

nol

3.2,4-

di-t-B

utylph

enol

4.1-

Hyd

roxy

-2,4-d

i-ter

t-bu

tylben

zene

5.2,4-

Bis (

1,1-

dim

ethy

leth

yl) p

heno

l6.

2,4-

Bis (

tert-b

utyl) p

heno

l7.

2,4-

tert-b

utylph

enol

8.2,4-

bis (

1,1-

dim

ethy

leth

yl) p

heno

l2

19.469

121, 91, 41, 93, 77

12-A

zabicy

clo [9.2.2] p

entade

ca-1

(13),

1.12

-aza

bicy

clo[

9.2.2]pe

ntad

eca-1(13

),11,14

-trie

n-13

-am

ine

11,14-

trien-

13-ylam

ine

320

.601

164, 208

, 165

, 190

, 78

1H-2

-Ben

zopy

ran-

1-on

e, 3,4-d

ihyd

ro-

1.(3R)

-8-H

ydro

xy-6

-met

hoxy

-3-m

ethy

l-3,4-d

ihyd

ro-1

H-is

ochr

omen

-1-o

ne8-

hydr

oxy-6-

met

hoxy

-3-m

ethy

l-, (R

)-2.

(3R)

-8-H

ydro

xy-6

-mét

hoxy

-3-m

éthy

l-3,4-d

ihyd

ro-1

H-is

ochr

omén

-1-o

ne

3.1H

-2-B

enzo

pyran-

1-on

e, 3,4-d

ihyd

ro-8

-hyd

roxy

-6-m

etho

xy-3

-met

hyl-, (3

R)-

4.1H

-2-B

enzo

pyran-

1-on

e, 3,4-d

ihyd

ro-8

-hyd

roxy

-6-m

etho

xy-3

-met

hyl-, (R

)-5.

Isoc

oum

arin, 3

,4-d

ihyd

ro-8

-hyd

roxy

-6-m

etho

xy-3

-met

hyl-, (R

)-(-)-

6.(3R)

-8-H

ydro

xy-6

-met

hoxy

-3-m

ethy

l-3,4-d

ihyd

ro-1

H-is

ochr

omen

-1-o

ne

7.(R

)-(-)-

6-m

etho

xym

ellein

8.(R

)-6-m

etho

xym

ellein

9.2,4-

Dihyd

ro-8

-hyd

roxy

-6-m

etho

xy-3

-met

hyl-1

H-2

-ben

zopy

ran-

1-on

e4

20.744

148.9, 57, 41, 150

, 104

1,2-

Benz

ened

icarbo

xylic

acid,

1.Ph

thalic acid, diis

obut

yl ester

bis (

2-m

ethy

lpro

pyl) es

ter

2.Diis

obut

yl pht

halate

; Hex

aplas M

/1B

3.Isob

utyl pht

halate

; Palatinol IC

4.Diis

obut

yles

ter k

yseliny fta

love

5.1,2-

Benz

ened

icarbo

xylic

acid, di (2-

met

hylpro

pyl) es

ter

6.1,2-

Benz

ened

icarbo

xylic

acid, 1,2-b

is (2-m

ethy

lpro

pyl) es

ter

7.Bis (

2-m

ethy

lpro

pyl) ph

thalate

8.Isob

utyl-o

-pht

halate

9.di-2

-met

hylpro

pyl p

htha

late

521

.358

74, 8

7, 43, 55, 41

Hex

adec

anoic ac

id, m

ethy

l ester

1.Pa

lmitic ac

id, m

ethy

l ester

2.n-

Hex

adec

anoic ac

id m

ethy

l ester

3.Met

hyl h

exad

ecan

oate

4.Met

hyl n

-hex

adec

anoa

te5.

Met

hyl p

alm

itate

6.Ac

ide he

xade

cano

ique

met

hyl e

ster

622

.387

163, 148

, 70, 181

, 77

Phth

alic acid, m

ethy

l octyl ester

1.1,2-

Benz

ened

icarbo

xylic

acid m

ethy

l octyl ester

2.

1,2-

Benz

ened

icarbo

xylic

acid, octyl m

ethy

l ester

3.Met

hyl o

ctyl pht

halate

723

.027

67, 8

1, 55, 95, 41

10,13-

Octad

ecad

ieno

ic acid, m

ethy

l ester

1.Met

hyl (10

E,13

E)-1

0,13

octad

ecad

ieno

ate

2.Met

hyl (10

E,13

E)-o

ctad

eca-10

,13-

dien

oate

823

.312

74, 8

7, 43, 55, 41

Octad

ecan

oic ac

id, m

ethy

l ester

1.Met

hyl s

tearate

2.Met

hyl o

ctad

ecan

oate

3.Octad

ecan

oic ac

id, m

ethy

l ester

4.St

earic

acid, m

ethy

l ester

5.St

earic

acid m

ethy

l ester

6.Met

hyl n

-octad

ecan

oate

7.n-

Octad

ecan

oic ac

id m

ethy

l ester

mak
Cross-Out
Page 6: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

94

Table 1: Con

tinue

Peak

No.

Rete

ntion tim

e (m

in)

Extrac

ted ionic pe

aks

Iden

tified co

mpo

und na

me

Syno

nym

s9

24.476

87, 1

48.9, 4

1, 45, 43

Unk

nown co

mpo

und

Unk

nown

1025

.925

287.1, 302

.1, 2

09,

Unk

nown co

mpo

und

Unk

nown

105, 165

1126

.054

287.1, 302

.1, 2

09,

Phen

ol, 2

,4-b

is(1-

phen

ylet

hyl)-

1.2,4-

Bis (

1-ph

enylet

hyl) ph

enol

105, 165

2.2,4-

Bis ("-m

ethy

lben

zyl) ph

enol

3.Ph

enol, 2

,4-b

is(1-

phen

ylet

hyl)-

4.

2,4-

Bis (

1-ph

enylet

hyl) ph

enol

1226

.443

148.9, 57, 166

.9,

Bis (

2-et

hylhex

yl) p

htha

late

1.Ph

thalic acid, Bis

(2-e

thylhe

xyl) es

ter

71, 4

32.

Bis (

2-et

hylhex

yl) 1

,2-b

enze

nedica

rbox

ylate

3.Di (et

hylhex

yl) p

htha

late

4.Di (2-

ethy

lhex

yl) p

htha

late

5.Dioctyl pht

halate

6.Octyl pht

halate

; 2-Eth

ylhe

xyl p

htha

late

7.Ph

thalic acid di (2

-eth

ylhe

xyl) es

ter

8.di-is

o-Octyl pht

halate

9.Di (2-

ethy

lhex

yl) o

-pht

halate

10.

Di-s

ec-o

ctyl pht

halate

11.

Di (2-

ethy

lhex

yl) o

rtho

phth

alate

12.

Bis (

2-et

hylhex

yl) o

-pht

halate

13.

1,2-

Benz

ened

icarbo

xylic

acid, Bis

(2-e

thylhe

xyl) es

terB

is (2-e

thylhe

xyl)

este

r pht

halic

acid

14.

1,2-

Benz

ened

icarbo

xylic

acid, 1,2-B

is (2-e

thylhe

xyl) es

ter

1326

.514

287.1, 302

.1, 1

05,

Phen

ol, 2

,4-B

is (1-p

heny

leth

yl)-

1.2,4-

Bis (

1-ph

enylet

hyl) ph

enol

288.1, 209

2.2,4-

Bis ("-m

ethy

lben

zyl) ph

enol

3.Ph

enol, 2

,4-B

is (1-p

heny

leth

yl)-

4.2,4-

Bis (

1-ph

enylet

hyl)p

heno

l 14

26.604

95, 8

1, 91, 55, 107

Phen

ol, 2

,6-B

is (1,1-d

imet

hyleth

yl)

1.

Mes

itol,

-4-[(

4-hy

drox

y-3,5-

dim

ethy

lphe

nyl)

2.alph

a.4-

(3,5-d

i-ter

t-bu

tyl-4

-hyd

roxy

phen

yl)-,

met

hyl]-

3.4-

[(3,5-d

itert-b

utyl-4

-hyd

roxy

phen

yl) m

ethy

l]-2,6-

dim

ethy

lphe

nol

1526

.863

149, 167

, 57.1,

1,2-

Benz

ened

icarbo

xylic

acid,

1.Di-iso

octyl p

htha

late

; Hex

aplas M

/O71

.1, 4

3.1

diiso

octyl e

ster

2.Iso-

octyl p

htha

late

3.Flex

ol plasticizer

diop

4.Ph

thalic acid, Bis

(6-m

ethy

lhep

tyl) es

ter

5.Ph

thalic acid, diis

ooctyl ester

6.Bis (

6-m

ethy

lhep

tyl) ph

thalate

1627

.335

55, 9

5, 81, 41, 43

Nap

htha

lene

, dec

ahyd

ro-1

,8a-dim

ethy

l-1.

4.be

ta.H

,5.alpha

.-Ere

mop

hilane

7-(1-m

ethy

leth

yl)-, [1

R-(1.alpha

.,4a.be

ta.,

2.10

.alpha

.-Ere

mop

hilane

7.be

ta.,8

a.alph

a.)]-

3.7-

Isop

ropy

l-1,8a-dim

ethy

ldec

ahyd

rona

phth

alen

e4.

1,8a

-dim

ethy

l-7-(p

ropa

n-2-

yl) d

ecah

ydro

naph

thalen

e5.

1,8a

-dim

ethy

l-7-p

ropa

n-2-

yl-2

,3,4,4a,5,6,7,8-

octahy

dro-

1H-n

apht

halene

6.Nap

htha

lene

, dec

ahyd

ro-1

,8a-dim

ethy

l-7-(1

-met

hyleth

yl)-

7. [1

R-(1.alpha

.,4a.be

ta.,7

.bet

a.,8a.alph

a.)]-

1728

.066

95, 1

94.1, 8

1, 149

, 55

5-diet

hylam

ino-

2-nitros

ophe

nol

1.5-

(Dieth

ylam

ino)

-2-n

itros

ophe

nol

1828

.519

149, 43, 55, 122

, 95

6-Isop

rope

nyl-4

,8a-dim

ethy

l-4a,5,6,7,8,

1.6-

Isop

rope

nyl-4

,8a-dim

ethy

l-4a,5,6,7,8,8a

-hex

ahyd

ro-2

(1H)-n

apht

haleno

ne8a

-hex

ahyd

ro-1

H-n

apht

halen-

2-on

e2.

4,8a

-dim

ethy

l-6-p

rop-

1-en

-2-yl-1

,4a,5,6,7,8-

hexa

hydr

onap

htha

len-

2-on

e

Page 7: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

Table 2: List of enzymes selected for docking studies PDB name Name1dhk Structure of porcine pancreatic alpha-amylase1hny The structure of human pancreatic alpha-amylase at 1.8 angstroms resolution1m1j Crystal structure of native chicken fibrinogen with two different bound ligands1nu6 Crystal structure of human Dipeptidyl Peptidase IV (DPP-IV)1ogs Human acid-beta-glucosidase1v4t Crystal structure of human glucokinase1xu7 Crystal Structure of the Interface Open Conformation of Tetrameric 11b-HSD11y7v X-ray structure of human acid-beta-glucosidase covalently bound to conduritol B epoxide2jfe The crystal structure of human cytosolic beta-glucosidase2oox Crystal structure of the adenylate sensor from AMP-activated protein kinase complexed with AMP2p8s Human dipeptidyl peptidase IV/CD26 in complex 2zj3 Isomerase domain of human glucose:fructose-6-phosphate amidotransferase3ctt Crystal complex of N-terminal Human Maltase-Glucoamylase with Casuarine3k35 Crystal Structure of Human SIRT63l2m X-ray Crystallographic Analysis of Pig Pancreatic Alpha-Amylase with Alpha-cyclodextrin3no4 The crystal structure of the alpha-glucosidase (family 31) from Ruminococcus obeum ATCC 291743wy1 Crystal structure of alpha-glucosidase4acd GSK3b in complex with inhibitor4y14 Structure of protein tyrosine phosphatase 1B

Selection of receptors: The receptors were chosen in light oftheir capacity in the pathway of diabetes. The 3D structure of1DHK, 1HNY, 1M1J, 1NU6, 1OGS, 1V4T, 1XU7, 1Y7V, 2JFE, 200X,2ZJ3, 3CTT, 3K35, 3L2M, 3NO4, 3W37, 3WY1, 4ACD, 4J5T, 4Y14and 5TD4. The receptors selected for present study haveappeared in Table 2. The 3D structures of these receptors wereaccessible in their local shape in PDB database. The 3Ddirections of the receptors were obtained from PDBdatabase. To verify the capacity of the model in reproducingexperimental observation with a new ligand, all thesestructures were analyzed again at the binding site.

Docking simulations: The iGEMDOCKv2.1 was employed forbinding affinity measurement between selected ligands andtargeted proteins of diabetes. The content of configure filewas determined as position of receptor file and ligand file.

ADME TEST: ADME/Toxicity parameters compliance wasevaluated by screening through ADMET-SAR, a commercialtool. The ADMET-SAR is system pharmacology or systemchemical biology and toxicology platform designed for theassessment of would be therapeutic indications, off targeteffects and potential toxic end points of natural products. Inthe studied work, this database/tool was used to predict andevaluate the human metabolism compliance, toxicity riskassessment and mode of action by using standardexperimental data.

Statistical analysis: Analysis of variance two- way (ANOVA) ofSPSS2 (Statistical Package for the Social Sciences) (MRXversion) was used to determine the significance of difference

between treatment groups (<0.05). Means between treatmentgroups were compared for significance using Duncan’s newMultiple Range post-test22.

RESULTS AND DISCUSSION

From qualitative phytochemical analysis of Penicilliumspecies methanol extract exhibited potent bioactivecompounds. The Penicillium species have shown thebioactive phytochemicals such as phenols, flavonoids,terpenoids, tannins, carbohydrates, alkaloids and saponins.Similar results were reported by Sharma et al.31 fromPestalotiopsis neglecta and Bhardwaj et al.25 from Penicilliumfrequentans.

The partially purified crude extract of Penicillium specieswas subjected to GC-MS analysis. Total 18 compounds wereidentified based on retention time and area percentage,molecular formula and weight were identified (Table 1, Fig. 1). The highest amount of 1,2-Benzenedicarboxylic acid, diisooctyl ester was noticed in GC-MS as a high peak. Theendophytic fungi, Colletotrichum gloeosporioides ofPhlogacanthus thyrsiflorus have yielded the phenol,2,4-bis(1,1-Dimethyl ethyl), 1-Hexadecane, 1-Hexadecanol,hexadecanoic acid, octadecanoic acid methyl ester and1-nonadecane26. Bis(2-ethylhexyl) phthalate, Pentanoic acid,Melamine, 4H-Pyran-4-one, 2,3-Dihydro-3,5-dihydroxy-6-methyl-, Dodecane, Nonadecane, 5-Hydroxymethylfurfural,1,2,3-Propanetriol, 1-Acetate, Heptose, Triacetin, 2,3-Dihydroxypropanal, 1-Cycloheptene, D-Allose, Pentadecane,1,5-Anhydrohexitol, 3-Deoxy-D-mannoic lactone, Tetradecane,Heneicosane, 4-Oxo-, 1,2-Benzenedicarboxylic acid and

95

Page 8: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

70

60

50

40

30

20

10

0

Inhi

bitio

n (%

)

-amylase -glucosidase DPPIVEnzyme

Fig. 2: Enzymes inhibition assay of Penicillium species extractThe percent inhibition of "-amylase, "-glucosidase and DPP IV byPenicillium species methanol extract. The values followed by Mean+SEMremained significantly different at p<0.05

Bis (2-ethylhexyl) phthalate31. Papitha et al.32 have identifiedthe similar bioactive compounds from the plant, Tinosporacordifolia. Many microbes have shown that the secondarymetabolites have the ability to bind with active sites andenzymes, receptors and proteins. Phthalic acid, methyl-octyl ester and Bis (2-ethylhexyl) phthalate were identifiedin the extract and have reported as antimicrobialagents26,31,32. Authors have found Phenol, 2,4-bis(1-phenylethyl)-26 and Phenol, 2,6-bis(1,1-dimethylethyl)-4-[(4-hydroxy-3,5-dimethylphenyl)methyl]-33 from endophytic fungi, Colletotrichum gloeosporioides and Fusarium solani ofdifferent plants. The Naphthalene, decahydro-1,8a-dimethyl-7-(1-methylethyl)-, R-(1. alpha.,4a. beta.,7. beta.,8a. alpha.)]- wereidentified from Phoma herbarum34 and Aquilaria sinensis35.The octadecanoic acid methyl ester was identified from fungalendophytes of Ocimum sanctum and exhibiting manybiological activities36. The results confirm that Penicilliumspecies produce important secondary metabolites and whichare exhibiting many biological activities. Comparing to earlierreports, the study supports the evidence that bioactivecompounds produced by fungal endophytes may not beinvolved in the host-endophytic relationship but may alsohave industrial applications. The endophytic fungal species areexploiting for their important bioactive compounds and theyhaving novel medical applications. The results of presentstudy confirms that endophytic fungal species are able toproduce biologically important medicinal bioactivecompounds. Hence, further studies are required to explorethe secondary metabolites of Tabebuia argentea and itsendophytic fungal species and they can be used formanagement of different diseases.

In vitro antidiabetic activity, the extract of Penicilliumspecies has potentially inhibited the activity of "-amylase,"-glucosidase and dipeptidyl peptidase IV listed in Fig. 2. Theobtained result clearly indicates that, the inhibition of

enzymes is concentration dependent. The "-glucosidase wasinhibited more by bioactive compounds of endophytic fungalspecies and the result was less than positive control standarddrug acarbose. Similar results were reported by many scientistusing endophytic extracts against "-glucosidase37-39. The sameextract was inhibited the activity of "-glucosidase atmaximum level compared to standard drug acarbose. Theextract inhibited the activity of DPP-IV and it was lower thanstandard drug diprotin as a positive control. No reports onendophytic fungal extracts showing the inhibitory action ofdipeptidyl peptidase IV. The present study is the first study oninhibition of dipeptidyl peptidase IV using fungal extract.There are some reports say that, the plant extracts have theability to inhibit the activity of dipeptidyl peptidase IV40-42.

The results concluded that, the endophytic fungal extracthas shown potent antidiabetic activity by in silico assay.Molecular docking was performed on 21 different diabetictarget proteins and with all 18 endophytic bioactivecompounds using iGEMDock2.1. The binding interactions ofthese ligands with target proteins were selected on the basisof binding energy or total energy, VDW and hydrogenbonding interaction. These values along with the hydrogenbond forming residues are presented in Table 3. From theanalysis, the pancreatic "-amylase has shown more interactionwith octadecanoic acid methyl ester followed by Di-isooctylphthalate, Bis-2 ethylhexyl phthalate, Phenol 2,6, bis-2hydroxy-5-methyl Benzenedicarboxylic acid. The octadecanoicacid methyl ester binds with the amino acids of humanpancreatic "-amylase followed by Diisooctyl phthalate, 2,4-Bis(1-phenylethyl)phenol, Phenol 2,6, bis-2 hydroxy-5-methyl.Native chicken fibrinogen amino acids more interactwith Diisobutyl isophthalate followed by Methoxymellein,5-diethylamino, Methyl palmitate. Out of 18, 7 bioactivecompounds able to inhibits the Human Dipeptidyl PeptidaseIV by interacting with different amino acids. The octadecanoicacid methyl ester is able to interact with DPP-IV enzymefollowed Diisooctyl phthalate, Phenol 2,6, bis-2 hydroxy-5-methyl, Dimethyl phenol, Bis-2ethylexyl phthalate,Benzenedicarboxylic acid, 2,4-Bis(1-phenylethyl)phenol(Table 3) (Fig. 3).

The Diisooctyl phthalate have showed highest bindingaffinity with human $-glucosidase followed by octadecanoicacid methyl ester, Phenol 2,6-bis-2 hydroxy-5-methyl,Benzenedicarboxylic acid, Diisobutyl isophthalate, Dimethylphenol, Methoxymellein and Bis-2ethylhexyl phthalate. Theoctadecanoic acid methyl ester is able to interact with humanglucokinase enzyme with more binding energy followed byPhenol 2,6-bis-2 hydroxy-5-methyl, Dimethyl phenol,Diisooctyl phthalate and Methyl palmitate.

96

Page 9: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

97

Table 3: In

silic

o ant

i-diabe

tic activity

of P

enicillium

spec

ies p

hyto

chem

icals

PDBs

Bind

ing en

ergy

VDW

H-b

ond

Inte

racting am

ino ac

ids

2,4-Bis (1-phenylethyl)phenol

1dhk

-80.58

-73.58

-7.00

Gln5, gln5, gln5, th

r6, g

ln7, se

r81h

ny-8

6.38

-86.38

0.00

tyr6

7, ty

r67, glu18

1, ty

r182

, his1

851m

1j-8

0.53

-70.06

-10.47

Pro6

9, se

r70, gly98

, arg

137, ty

r68, ty

r68, ly

s72, gln73

, gln73

1nu6

-86.47

-79.79

-6.69

Glu69

9, gln76

1, his7

54, h

is757

, his7

57, g

lu69

9, asp

729, asp

729, gln73

11o

gs-7

7.03

-70.47

-6.56

Ala1

, pro

3, ala1, arg

2, pro

3, se

r25, phe

26, a

sp27

1v4t

-79.57

-76.57

-2.50

Asp3

63, p

he31

6, his3

17, h

is317

, glu31

9, arg

358, arg

358, pro

359

1xu7

-93.89

-78.21

-15.68

Gly41

, ser

43, s

er43

, lys

44, lys

44, a

la65

, arg

66, h

is120

, his1

20, ile12

11y

7v-8

1.49

-75.60

-5.89

Gln36

2, his3

65, a

rg28

5, le

u314

, asp

315, phe

316, ala31

8, pro

319, gln36

2, his3

652jfe

-78.81

-68.43

-10.37

Arg3

12, p

he22

5, val22

7, his2

50, p

he33

4, tr

p345

2oox

-86.20

-78.15

-8.04

Phe5

29, a

sp25

0, his4

53, a

rg45

7, arg

459, cys

528, phe

529

2zj3

-75.01

-71.51

-3.50

Gly50

8, glu50

4, glu50

4, le

u507

, arg

511, his6

38, s

er63

93c

tt-9

1.30

-85.30

-6.00

Gly25

8, asp

495, asn

100, arg

108, asp

163, le

u463

, tyr49

4, asp

495

3k35

-89.43

-77.64

-11.79

Asp6

1, his6

6, gly67

, thr

55, p

ro60

, asp

61, h

is66, his6

6, ly

s79, ty

r255

3l2m

-82.32

-76.32

-6.00

Gln5, gln5, gln5, gln5, th

r7, s

er8

3no4

-88.10

-85.80

-2.31

Phe3

30, p

ro34

0, gln34

4, ly

s346

, gln34

4, ly

s346

3w37

-79.98

-74.00

-5.98

Gly28

8, arg

103, arg

103, asp

191, ty

r521

, asn

522

3wy1

-83.91

-78.86

-5.05

Ala3

49, h

is348

, his3

48, lys

352, asn

443, asn

443, his5

15, h

is515

, phe

516

4acd

-75.70

-73.20

-2.50

Pro2

94, s

er66

, phe

67, p

he67

, leu

88, g

ly20

24j5t

-81.31

-77.22

-4.09

Asp6

90, a

sp69

0, asp

690, asn

754, asn

757, asn

757, asn

758, ly

s761

4y14

-78.59

-73.66

-4.93

His2

08, g

ln78

, arg

79, a

rg79

, ser

80, p

ro20

6, pro

210

5td4

-90.04

-75.92

-14.12

His3

05, a

la30

7, gly30

8, gly30

9, arg

303, gly30

4, his3

05, g

ly30

6, gly30

8, gly30

9, phe

348

Di methyl

1dhk

-62.81

-55.81

-7.00

Arg4

21, thr

11, p

ro33

2, arg

398, asp

402

1hny

-65.49

-62.08

-3.41

Lys1

78, tyr67

, tyr67

, glu18

1, ty

r182

, his1

851m

1j-7

4.10

-65.60

-8.50

Thr2

1, th

r22, th

r22, pro

20, thr

21, thr

211n

u6-6

1.87

-54.87

-7.00

Arg3

56, a

rg38

2, arg

356, arg

358, se

r360

, ile37

41o

gs-7

0.13

-67.63

-2.50

Asp2

4, arg

2, pro

3, asp

24, s

er25

, phe

26, m

et49

1v4t

-60.65

-54.03

-6.62

Arg3

27, lys

296, ty

r297

, gly29

9, glu30

0, gly32

81x

u7-7

1.17

-64.17

-7.00

Arg2

52, g

ln21

, arg

198, val20

8, se

r209

, ser

209, ile2

10, a

rg25

2, glu25

41y

7v-6

8.00

-65.50

-2.50

Asp2

4, arg

2, pro

3, asp

24, s

er25

, phe

262jfe

69.09

-62.09

-7.00

His1

20, trp

425,ph

e121

, glu16

5, phe

225, glu16

5, phe

225, ty

r309

, trp

345, tr

p417

, glu42

4, tr

p425

2oox

-73.59

-70.09

-3.50

Ala2

76, p

he57

4, asn

269, asn

269, val27

4, phe

296, glu92

, glu92

2zj3

-69.14

-54.82

14.32

Ser4

20, g

ln42

1, se

r422

, ser

422, th

r375

, gln42

1, gln42

13c

tt-6

9.98

-69.98

0.00

Val184

, pro

206, le

u540

, leu

540, tr

p552

3k35

-64.62

-53.57

-11.05

Asp6

1, his6

6, gly67

, pro

60, h

is66, his6

63l2m

-63.12

-59.83

-3.30

Gly11

2, ile4

9, val51

, thr

52, a

la10

8, gly11

23n

o4-7

0.47

-63.47

-7.00

Tyr5

58, g

lu55

9, ty

r558

, glu55

9, arg

565, arg

565, ty

r566

3w37

-74.13

-67.07

-7.06

Gly70

0, ty

r659

, arg

699, asn

758, gly79

1, glu79

2, glu79

23w

y1-6

1.02

-57.52

-3.50

Arg4

56, a

rg45

7, arg

457, his4

59, p

ro46

0, phe

463, phe

463

4acd

-70.32

-66.82

-3.50

Gly26

2, arg

223, se

r261

, gln26

5, arg

223, gln26

54j5t

-71.94

-68.06

-3.89

Tyr6

6, pro

59, p

ro59

, tyr66

, tyr76

8, his7

854y

14-6

3.83

-53.55

-10.28

Glu75

, glu76

, ala77

, met

74, g

lu76

, val24

9, glu25

25t

d4-9

7.29

-54.63

-12.66

Arg1

95, a

sp19

7, his2

99, a

sn30

0, tr

p58, ty

r62, asp

197, asn

300

mak
Cross-Out
Page 10: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

98

Table 3: Con

tinue

PDBs

Bind

ing en

ergy

VDW

H-b

ond

Inte

racting am

ino ac

ids

5-diethylamino

1dhk

-76.41

-44.63

-31.78

Arg1

95, a

sp19

7, glu23

3, his2

99, a

sp30

0, ty

r62, le

u162

, asp

197, glu23

3, asp

300

1hny

-70.90

-51.18

-19.71

Gly30

9, ala31

0, ile3

12, thr

314, arg

303, gly30

4, ala31

0, ile3

121m

1j-8

4.95

-64.89

-20.06

Cys8

1, cys

46, thr

22, s

er48

, gly49

, cys

46, p

ro47

, ser

48, thr

221n

u6-7

5.89

-65.90

-9.98

Pro4

75, v

al55

8, se

r511

, lys

512, ly

s512

, ile52

9, phe

559, arg

560

1ogs

-83.81

-72.13

-11.67

Thr3

0, ty

r40, phe

31, p

he31

, tyr40

, phe

426, le

u493

1v4t

-83.10

-65.81

-17.29

Phe2

3, arg

377, his3

80, p

he23

, gln24

, gln24

, ser

373, th

r376

, thr

376, his3

801x

u7-8

7.06

-62.06

-25.00

Asn1

27, leu

128, phe

129, his1

30, a

sp13

2, ala18

1, se

r125

, asn

127, asn

127, le

u128

, his1

30, h

is135

1y7v

-76.97

-68.72

-8.25

Asp2

4, arg

2, pro

3, asp

24, s

er25

, phe

26, a

rg49

, tyr41

82jfe

-71.39

-42.50

-28.89

Gln17

, his1

20, g

lu37

3, tr

p417

, glu42

4, tr

p425

, phe

121, tr

p345

, trp

417, tr

p425

2zj3

-85.47

-59.43

-26.04

Cys3

73, s

er42

0, gln42

1, se

r422

, ser

422, th

r425

, thr

428, se

r420

, gln42

1, gln42

13c

tt-8

0.28

-54.57

-25.71

Trp3

91, a

sn39

3, asn

393, asp

414, asn

417, val48

7, tr

p391

, gln48

8, his4

89, h

is489

3k35

-85.74

-69.64

-16.10

Gln11

1, his1

31, p

he62

, gln11

1, gln11

1, his1

313l2m

-84.08

-71.69

-12.39

Tyr1

55, a

sp15

9, cys

160, ly

s142

, thr

143, asp

153, ty

r155

, tyr15

5, gln15

6, gln15

63n

o4-7

8.97

-67.83

-11.14

Arg5

8, le

u435

, asn

57, leu

430, le

u430

, asn

431, ly

s433

3w37

-73.27

-57.05

-16.22

Trp2

29, a

sp23

2, asn

496, se

r505

, lys

506, ala23

1, ile2

33, lys

506, ly

s506

3wy1

-76.55

-57.56

-18.99

Asp4

8, arg

456, arg

457, arg

456, arg

457, arg

457, phe

463

4acd

-80.50

-65.63

-14.87

Val208

, glu21

1, asn

213, le

u207

, arg

209, arg

209, gly21

0, asp

233, ty

r234

4j5t

-73.19

-43.32

-29.87

Leu5

3, arg

54, h

is55, phe

56, a

sp61

, phe

56, th5

8, arg

209

4y14

-70.28

-51.19

-19.09

Gly93

, glu13

6, asp

137, asp

137, ile1

34, p

he13

5, phe

135

5td4

-72.48

-50.56

-21.92

Asp2

36, s

er24

4, se

r244

, ser

245, phe

286, val28

7, val28

7Methoxymellein

1dhk

-70.02

-58.22

-11.80

Gly33

4, arg

398, pro

332, gly33

4, arg

398, asp

402

1hny

-79.91

-56.49

-23.41

Ser3

, gln7, gly9, asp

402, pro

4, th

r6, g

ln8, arg

10, a

sp40

21m

1j-9

1.86

-78.96

-12.90

Cys4

6, cys

81, p

ro47

, ser

48, g

ly49

, ser

48, s

er48

, gly49

, cys

811n

u6-8

2.97

-66.11

-16.86

Arg1

25, a

rg12

5, asp

709, asn

710, gly74

1, tr

p124

, arg

124, arg

125, glu20

5, asn

710, asp

739, his7

40,

his7

401o

gs-8

6.90

-72.70

-14.19

Ser3

8, his4

51, s

er45

5, his4

95, p

he31

, phe

31, leu

493, le

u493

, trp

494, his4

951v

4t-7

8.09

-73.17

-4.92

Arg4

22, g

ln24

, gln24

, glu37

2, se

r373

, thr

376

1xu7

-92.10

-75.24

-16.86

Met

93, g

lu94

, thr

122, arg

66, g

lu94

, his1

20, ile12

1, th

r122

, val14

21y

7v-7

9.36

-74.43

-4.92

Ser2

6, pro

3, asp

24, s

er25

, phe

26, m

et49

, glu50

2jfe

-70.56

-61.30

-9.26

Asn3

19, g

lu32

3, gln31

7, glu32

3, gln32

8, gln32

8, asp

329, asp

329, ile3

322o

ox-8

8.79

-71.30

-17.49

Gly24

4, th

r270

, gln27

1, ala95

, thr

270, th

r270

, leu

272, gly27

3, val27

4, phe

296

2zj3

-77.73

-64.47

-13.26

Gln42

1, se

r422

, ser

376, se

r420

, gln42

13c

tt-8

1.85

-63.66

-18.19

Asp6

67, h

is669

, gln67

0, ly

s715

, val66

8, val66

8, his6

69, g

ln67

03k

35-8

5.48

-63.07

-22.41

Asp6

1, phe

62, a

rg63

, gly64

, thr

213, ala51

, asp

61, a

rg63

, ser

214, gln24

03l2m

-79.56

-64.13

-15.43

Tyr6

2, his1

01, a

sp19

7, tr

p58, tr

p59, ty

r62, ty

r62, val16

3, asp

197

3no4

-92.75

-69.81

-22.94

Asp5

44, a

rg56

5, asp

544, ty

r558

, glu55

9, arg

565, ty

r565

, tyr56

6, ty

r566

, tyr56

63w

37-8

5.41

-68.78

-16.63

Asp2

32, a

sn49

6, ala23

1, ile2

33, a

sn49

6, se

r505

, lys

506, ly

s506

3wy1

-91.41

-61.83

-19.58

His3

48, lys

352, gln43

8, th

r445

, thr

445, le

u348

, leu

433, asp

441, ala44

44a

cd-7

4.75

-58.76

-15.99

Arg2

09, g

ly21

0, glu21

1, val20

8, arg

209, arg

209, gly21

0, asp

233, asp

233, asp

233, ty

r234

4j5t

-71.56

-64.20

-7.35

Asn1

29, a

sp20

2, ly

s203

, val20

5, val20

5, tr

p206

, glu43

54y

14-8

1.03

-69.47

-11.56

Arg7

9, his2

08, g

ly20

9, pro

210, arg

79, a

rg79

, ser

80, leu

204, se

r205

, pro

206, pro

206, po2

105t

d4-7

5.7

-62.13

-13.57

Lys2

00, g

lu23

3, ile2

35, tyr15

1, le

u162

, ala19

8, ly

s200

, his2

01, g

lu23

3, ile2

35, ile23

5

Page 11: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

99

Table 3: Con

tinue

PDBs

Bind

ing en

ergy

VDW

H-b

ond

Inte

racting am

ino ac

ids

16 1dhk

-67.61

-67.61

0As

n393

, trp

396, ly

s457

, his4

911h

ny-5

7.44

-57.44

0Pr

o4, thr

6, th

r6, g

ln8, arg

10, thr

11, a

sp40

21m

1j-7

9.49

-79.49

0Th

r21, th

r22, th

r83, th

r21, th

r22

1nu6

-64.28

-64.28

-0Gly42

4, pro

426, ly

s523

, lys

523, gln58

6, gln58

61o

gs-7

1.54

-71.54

0Al

a1, a

rg2, pro

3, se

r25, phe

26, m

et49

1v4t

-59.71

-59.71

0As

p78, arg

85, a

rg85

, val86

, met

87, h

is105

1xu7

-75.97

-75.97

0Al

a65, arg

66, h

is120

, ile12

1, th

r122

, val14

21y

7v-6

9.79

-69.79

0Ar

g2, p

ro3, se

r25, phe

26, p

he26

, met

492jfe

-60.32

-60.32

0Al

a246

, his2

56, ile35

2, phe

334

2oox

-73.22

-73.22

0Glu92

, ala26

8, asn

269, asn

269, th

r270

, val27

4, phe

296

2zj3

-61.63

-61.63

0Gly61

3, arg

614, arg

614, pro

615, ly

s631

, lys

631, arg

632

3ctt

-69.41

-69.41

0Ar

g29, ty

r46, val77

, phe

78, lu1

60, p

he16

53k

35-6

2.23

-62.23

0Ar

g63, arg

63, g

ly21

2, th

r213

, ser

214

3l2m

-66.12

-66.12

0Tr

p58, tr

p58, ty

r62, ty

r62, val16

33n

o4-7

1.56

-71.56

0Al

a237

, pro

278, phe

289, asn

309, asn

381

3w37

-62.60

-62.60

0Ar

g773

, arg

773, se

r774

, ser

774, gln83

9, arg

840, tr

p841

3wy1

-65.64

-65.64

0As

p510

, leu

511, pro

512, th

r517

, ala51

8, phe

534

4acd

-60.82

-60.82

0His1

73, h

is173

, ser

236, th

r330

4j5t

-59.38

-59.38

0Ly

s203

, gly43

3, glu43

54y

14-6

8.11

-68.11

0Ty

r46, phe

182, arg

221, gln26

25t

d4-5

9.60

-59.60

0Ty

r2, leu

211, le

u211

, lys

227, pro

228, ile2

3018 1d

hk-6

0.12

-54.25

-5.86

Asn3

, leu

237, ala26

0, ly

s261

, asp

21, a

sp21

1hny

-61.74

-58.24

-3.50

Lys1

78, tyr67

, tyr67

, val12

9, glu18

11m

1j-6

7.82

-65.78

-2.04

Gly49

, pro

82, thr

83, c

ys46

, pro

47, s

er48

, thr

221n

u6-6

2.15

-53.65

-8.50

Arg5

96, a

sp67

8, ile3

19, g

ln32

0, asn

321, arg

596, gly57

21o

gs-7

5.11

-64.61

-10.50

Arg2

85, trp

312, tr

p312

, tyr31

3, ty

r313

, phe

316, le

u317

1v4t

-68.03

-56.85

-11.19

Gly29

9, th

r332

, thr

332, ly

s296

, tyr29

7, glu30

0, glu30

0, arg

327, gly32

8, glu33

11x

u7-6

3.10

-56.10

-7.00

Arg2

52, g

ln21

, asn

207, val20

8, se

r209

, arg

252

1y7v

-62.94

-59.09

-3.85

Pro3

, ser

25, p

he26

, met

49, g

lu50

2jfe

-60.63

-60.63

0.00

Phe1

21, tyr30

9, glu37

3, tr

p417

, glu42

4, tr

p425

2oox

-73.54

-60.57

-12.97

Thr2

70, g

ln27

1, le

u272

, asn

269, asn

269, val27

4, phe

296

2zj3

-67.80

-53.62

-14.18

Ser4

20, g

ln42

1, se

r422

, ser

422, gln42

1, gln42

13c

tt-7

2.40

-68.09

-4.32

Met

567, ala28

5, phe

522, phe

535, ala53

6, ala53

73k

35-7

4.24

-60.10

-14.14

Asp6

1, arg

63, g

ly64

, ala51

, phe

62, p

he62

, arg

63, thr

213, se

r214

3l2m

-65.05

-65.05

0.00

Ile45

3, ile4

65, ile47

9, glu48

4, glu48

4, asp

485, asp

485, ile4

883n

o4-6

8.24

-64.74

3.50

Gln54

5, le

u569

, phe

606, phe

606

3w37

-66.99

-60.99

-6.00

Tyr6

59, g

ly70

0, ty

r39, arg

699, arg

699, asn

758

3wy1

-65.17

-63.73

-1.44

Asp5

10, leu

511, pro

512, phe

516, ala51

8, ala52

2, phe

534

4acd

-65.92

-61.63

-4.29

Gly26

2, arg

223, se

r261

, arg

223

4j5t

-61.42

-54.67

-6.75

Tyr6

6, gly38

3, pro

59, p

ro59

, phe

384, ty

r768

, glu78

44y

14-7

1.78

-60.11

-11.67

Cys2

15, a

rg22

1, arg

221, ty

r46, asp

181, phe

182, se

r216

, ala21

7, arg

221

5td4

-59.71

-54.17

-5.55

Asn5

, pro

4, th

r6, g

ln7, gln8, gln8, arg

10

Page 12: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

100

Table 3: Con

tinue

PDBs

Bind

ing en

ergy

VDW

H-b

ond

Inte

racting am

ino ac

ids

Eremophilane

1dhk

-67.38

-67.38

0Ly

s35, asn

393, tr

p396

, lys

457

1hny

-57.95

-57.95

0Pr

o4, thr

6, th

r6, g

ln8, th

r11, phe

335, asp

402

1m1j

-68.61

-66.11

-2.5

Thr2

1, pro

20, thr

21, thr

83, p

ro20

1nu6

-68.44

-59.97

-8.47

Arg5

96, a

sp67

8, asn

321, arg

596, gly57

21o

gs-7

1.20

-71.20

0Pr

o3, s

er25

, phe

26, a

rg48

, met

49, g

lu50

1v4t

-58.91

-58.91

0As

p78, arg

85, v

al86

, met

87, h

is105

1xu7

-65.72

-65.72

0Gly41

, lys

44, lys

44, a

sn11

9, his1

20, ile12

11y

7v-7

2.24

-72.24

0Pr

o3, s

er25

, phe

26, m

et49

, glu50

2jfe

-60.38

-60.38

0Ph

e179

, phe

225, tr

p345

, glu42

4, asn

426, gln42

72o

ox-7

5.54

-75.54

0As

n269

, asn

269, glu92

, gly92

2zj3

-59.46

-59.46

0Va

l609

, arg

614, arg

614, pro

615, th

r630

, lys

631, ly

s631

, arg

632

3ctt

-70.28

-70.28

0Al

a285

, leu

286, le

u286

, arg

520, his6

45, lys

776, ly

s776

, asp

777

3k35

-72.70

-72.70

0Al

a51, phe

62, a

rg63

, gln11

1, his1

313l2m

-65.08

-65.08

0Tr

p396

, val45

7, ly

s457

, lys

457, his4

91, g

lu49

33n

o4-7

5.39

-75.39

0Pr

o278

, phe

289, asn

306, phe

378, asn

381

3w37

-61.09

-61.09

0Ly

s421

, lys

421, m

et51

3, his5

14, tyr51

53w

y1-6

4.03

-64.03

0As

p510

, leu

511, pro

512, val51

3, phe

516, th

r517

, ala51

8, phe

534

4acd

-65.52

-65.52

0Ar

g223

, gln26

5, arg

223

4j5t

-56.99

-56.99

0Se

r317

, ile31

8, asn

757, asn

757, ty

r760

, lys

761, ly

s761

, glu76

44y

14-6

0.07

-60.07

0Ar

g79, se

r80, se

r80, le

u204

, ser

209, pro

210, pro

210

5td4

-57.55

-57.55

0Tr

p58, tr

p59, tr

p59, ty

r62, ty

r62, asn

300

Benzenedicarboxylic acid

1dhk

-87.56

-73.29

-14.27

Ser2

70, s

er26

, ser

26, trp

269, se

r270

, ser

270, ly

s13, se

r25, se

r26, gln31

1hny

-78.32

-71.32

-7.00

Gln63

, trp

59, tyr62

, gly10

4, ala10

6, le

u165

1m1j

-77.74

-69.95

-7.80

Ser4

8, val79

, trp

34, s

er48

, ser

481n

u6-8

8.83

-84.16

-4.67

Arg3

56, g

lu34

7, arg

356, arg

356, arg

358, se

r360

, ile37

4, ile3

75, ile37

5, se

r376

1ogs

-92.60

-88.09

-4.52

Cys4

, arg

2, pro

3, se

r25, phe

26, a

rg48

, met

49, g

lu50

1v4t

-82.61

-60.96

-21.65

His3

17, h

is317

, ser

360, asp

363, phe

316, his3

17, p

ro35

9, se

360

1xu7

-95.43

-83.56

-11.87

Tyr2

57, a

rg26

9, asn

270, glu25

4, glu25

5, ty

r257

, arg

269, arg

269, asn

270, arg

273, ly

s274

1y7v

-93.40

-86.11

-7.28

Cys4

, arg

2, pro

3, cys

4, pro

6, se

r25, phe

26, g

ly46

, arg

48, a

arg4

8, m

et49

2jfe

-80.27

-76.77

-3.50

Arg3

12, g

lu16

5, phe

225, arg

312, phe

334, tr

p345

2oox

-77.01

-70.03

-6.98

Asp2

50, a

sp25

0, val27

, leu

28, p

ro29

, val16

0, arg

165

2zj3

-78.96

-70.76

-8.20

Ser4

54, h

is462

, arg

342, gly35

4, cys

459, gly46

0, val46

13c

tt-7

7.53

-75.73

-1.80

Ala2

85, a

la50

9, glu51

0, arg

520, phe

535, phe

535, ly

s770

3k35

-78.99

-67.02

-11.97

Trp1

88, trp

186, le

u184

, asp

185, tr

p186

, trp

186

3l2m

-79.05

-73.14

-5.91

Trp3

88, thr

376, th

r377

, trp

388, tr

p388

, gln39

03n

o4-8

6.80

-74.14

-12.66

Ser4

99, s

er49

9, asn

502, se

r499

, asn

502, arg

506, pro

580, gly58

2, ala61

83w

37-8

7.45

-75.78

-11.67

Arg8

40, s

er77

4, th

r775

, gln83

9, arg

840, arg

840, tr

p841

, trp

841

3wy1

-93.65

-77.45

-16.50

His3

48, lys

352, th

r445

, his3

48, g

ln43

8, asn

443, ala44

44a

cd-8

1.76

-77.19

-4.57

Arg2

09, v

al20

8, arg

209, arg

209, gly21

0, glu21

1, asp

233, asp

233, ty

r234

4j5t

-87.48

-70.48

-17.46

Gln30

8, th

r494

, asn

495, arg

304, m

et46

3, th

r494

, asn

495, asn

495

4y14

-86.98

-78.73

-8.25

Arg7

9, se

r80, arg

79, a

rg79

, ser

80, s

er20

5, pro

206, pro

206

5td4

-79.32

-72.56

-6.76

Gln63

, trp

59, tyr62

, gly10

4, ala10

6, le

u165

Page 13: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

101

Table 3: Con

tinue

PDBs

Bind

ing en

ergy

VDW

H-b

ond

Inte

racting am

ino ac

ids

Bis-2ethylhexyl phthalate

1dhk

-92.46

-83.94

-8.53

Ser2

70, trp

269, tr

p269

, ser

270, th

r23, val24

, ser

25, s

er26

, ser

261h

ny-8

0.56

-80.56

0.00

Tyr6

7, glu18

1, glu18

1, asn

184, asn

184, his1

85, h

is185

, his2

151m

1j-8

3.71

-80.86

-2.85

Lys1

38, g

ln13

4, arg

137, ly

s138

, tyr68

, tyr68

, lys

72, g

ln73

, gln73

1nu6

-89.57

-89.57

0.00

Glu45

2, arg

453, arg

453, pro

475, gly47

6, gly47

6, se

r511

, lys

512, ly

s512

, phe

559

1ogs

-85.12

-76.81

-8.31

Ala1

, asp

27, p

ro3, cys

4, arg

48, m

et49

, glu50

, leu

51, leu

511v

4t-7

7.52

-62.98

-14.54

Asp2

17, h

is218

, his2

18, g

ln21

9, his2

18, h

is218

, gln21

9, arg

403

1xu7

-84.26

-70.97

-13.29

Arg2

52, g

ln21

, asn

162, asn

162, asn

207, asn

207, arg

252

1y7v

-84.09

-76.45

-7.64

Ala1

, ala1, arg

2, pro

3, pro

3, phe

26, p

he26

, asp

27, a

rg26

22jfe

-80.75

-72.56

-8.20

Arg4

45, v

al51

, val51

, tyr42

9, ty

r429

, phe

440, pro

443, pro

443, arg

445

2oox

-80.30

-80.30

0.00

Leu2

72, p

he42

, lys

44, lys

99, lys

99, leu

272, ly

s44

2zj3

-86.64

-81.98

-4.67

His4

62, thr

448, th

r448

, val44

9, his4

62, a

sn46

4, gly46

6, pro

467, pro

467

3ctt

-87.24

-84.23

-3.01

Phe1

09, a

rg10

8, arg

108, phe

109, phe

109, glu11

0, asp

495

3k35

-100

.24

-98.37

-1.87

Phe6

2, his1

31, leu

184, le

u184

, ile21

73l2m

-83.64

-76.19

-7.46

Trp5

9, asp

356, tr

p59, gln63

, val16

3, val35

4, tr

p357

3no4

-85.27

-80.77

-4.50

Leu6

00, g

lu46

, arg

63, a

rg56

3, arg

563, asp

597, ala59

9, le

u600

, leu

600, asn

601

3w37

-74.11

-74.11

0.00

Glu30

1, th

r681

, thr

681, arg

699, his7

55, g

lu75

6, gly75

7, val78

73w

y1-9

3.07

-85.72

-7.35

Pro2

30, lys

225, le

u227

, ala22

9, pro

230, glu23

1, asn

301, ty

r389

, arg

400

4acd

-101

.80

-93.48

-8.31

Asn3

01, g

ly22

8, ala22

0, pro

230, glu23

1, phe

297, asn

301, m

et30

2, asp

333, asp

333, val33

44j5t

-96.06

-84.50

-11.56

Asn4

71, h

is804

, his8

05, a

sn47

1, asn

471, arg

801, his8

03, h

is804

, his8

05, h

is806

, his8

06, h

is807

4y14

-80.31

-85.33

-4.98

Ser8

0, ly

s73, glu75

, ser

80, g

ln10

2, pro

206, his2

08, g

ly20

9, pro

210, pro

210

5td4

-82.53

-81.66

-0.88

Gln30

2, arg

303, gly30

4, arg

346, phe

348, asn

352, asp

353

Diisobutyl isophathalate

1dhk

-82.76

-74.75

-8.01

Val135

, ser

197, asn

65, a

sn65

, phe

66, g

lu13

4, glu13

41h

ny-7

2.19

-58.01

-14.19

Ser1

32, a

sp13

5, ly

s172

, pro

130, ty

r131

, tyr13

1, tr

p134

, asp

135, ly

s172

, tyr17

41m

1j-9

4.06

-90.24

-3.82

Ser4

8, se

r48, se

r48, gly49

, val79

, pro

47, s

er48

, ser

48, g

ly49

1nu6

-84.06

-73.06

-11.00

Ser349

, thr

351, as

o588

, his5

92, m

et34

8, se

r349

, thr351

, ser37

6, se

r376

, glu37

8, glu37

9, gly38

0, as

p588

1ogs

-89.69

-82.50

-7.19

Cys4

, arg

2, pro

3, cys

4, asp

24, s

er25

, phe

26, a

rg48

, glu50

1v4t

-82.94

-71.57

-11.37

Cys2

30, g

ly25

8, gln28

7, gly22

9, asn

231, glu25

6, glu25

6, gln28

7, glu29

01x

u7-8

2.55

-68.30

-14.25

Lys1

74, tyr25

7, asn

270, arg

273, ly

s174

, glu17

4, glu25

5, asn

270, arg

273, ly

s274

1y7v

-86.40

-82.90

-3.50

Cys4

, pro

3, cys

4, phe

26, a

rg48

, met

49, g

lu50

, glu50

2jfe

-80.20

-67.20

-13.00

Arg4

32, a

sp43

9, phe

440, glu44

1, gln47

, asp

380, ty

r429

, phe

440, glu44

12o

ox-9

9.07

-89.91

-9.16

Thr270

, gln27

1, ala9

5, va

l570

, phe

574, as

n269

, gln27

1, le

u272

, gly27

3, va

l274

, leu2

74, le

u275

, phe

296

2zj3

-70.76

-59.01

-11.75

Thr4

25, a

la42

6, asp

427, val67

7, cys

426, asp

427, val67

7, glu68

03c

tt-7

7.66

-68.16

-9.50

Asp6

49, a

rg65

3, ty

r636

, arg

649, asp

649, arg

653, pro

676, glu76

73k

35-9

5.59

80.94

-14.64

Arg6

3, arg

63, p

he62

, phe

62, g

ln11

1, hos

131, ile2

173l2m

-76.03

-67.54

-8.50

Arg3

89, a

rg39

2, th

r376

, thr

377, tr

p388

, trp

388, arg

389, arg

392

3no4

-91.75

-79.89

-11.85

Tyr5

25, p

he52

6, ty

r141

, asn

439, asn

439, asp

523, phe

531, gly54

93w

37-8

3.27

-78.98

-4.29

Trp8

41, a

rg77

3, se

r774

, thr

775, gln83

9, gln83

9, arg

840, arg

840, tr

p841

, val84

2, val84

23w

y1-8

8.18

-81.50

-6.68

Arg4

00, tyr65

, phe

166, gly22

8, ala22

9, asp

333, asp

333, ty

r389

, phe

397, arg

400

4acd

-93.31

-86.94

-6.37

Pro2

12, a

sn21

3, le

u207

, val20

8, arg

209, gly21

0, glu21

1, asp

233, asp

233, ty

r234

4j5t

-82.16

-60.60

-21.56

Arg7

99, a

rg80

1, se

r802

, ser

802, his8

03, a

rg72

7, arg

727, arg

799, phe

800, arg

801, se

r802

, his8

034y

14-7

7.97

-65.52

-8.56

Arg3

3, se

r146

, glu14

7, asp

148, asp

148, val15

5, val15

5, ly

s197

5td4

-82.58

-74.79

-7.78

Asp3

53, a

sp35

6, arg

303, gly30

4, phe

348, asn

252, asn

252, asp

353

Page 14: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

102

Table 3: Con

tinue

PDBs

Bind

ing en

ergy

VDW

H-b

ond

Inte

racting am

ino ac

ids

Diisooctyl phthalate

1dhk

-110

.85

-103

.50

-7.33

Ser2

70, s

er26

, trp

269, tr

p269

, ser

270, gly30

9, th

r23, se

r25, gln25

, asn

351h

ny-9

0.84

-87.34

-3.50

Lys2

00, tyr15

1, le

u162

, lys

200, his2

01, g

lu23

3, ile2

35, ile23

5, glu24

01m

1j-8

8.54

-76.09

-12.45

Asn2

66, g

ly26

8, arg

419, asn

266, asn

266, phe

267, gly26

8, ty

r382

, lys

400, gly40

31n

u6-1

03.65

-97.92

-5.73

Asp5

88, g

lu34

7, m

et34

8, se

r349

, thr

351, ile3

75, s

er37

6, se

r376

, asp

588

1ogs

-106

.31

-100

.60

-5.73

Pro3

, cys

4, arg

2, pro

3, cys

4, asp

24, p

he26

, arg

48, m

et49

, glu50

1v4t

-87.15

-78.83

-8.32

Val101

, lys

102, gly94

, glu95

, ser

100, val10

1, ly

s102

, lys

458, ly

s459

, cys

461

1xu7

-91.13

-83.62

-7.62

Asn2

70, lys

174, glu25

5, ty

r257

, arg

269, arg

269, asn

270, pro

271, arg

273

1y7v

-87.52

-84.96

-2.56

His3

65, trp

312, pro

319, his3

65, thr

369, arg

463

2jfe

-75.18

-70.18

-5.18

Gln42

7, m

et17

8, tr

p345

, glu42

4, asn

426, asn

426, gln42

72o

ox-8

4.69

-70.56

-14.12

Asn2

30, a

rg26

0, m

et20

0, asn

230, gly25

4, le

u257

, leu

257, le

u258

, arg

260, gly26

62z

j3-8

3.86

-78.70

-5.16

His5

96, a

rg51

1, arg

594, his5

96, tyr59

8, se

r639

, val64

0, asp

641

3ctt

-82.00

-79.81

-2.19

Ser6

64, a

la69

3, ty

r694

, tyr69

4, lts7

15, lys

715, val71

63k

35-1

03.84

-99.57

-5.27

His1

31, p

he62

, arg

63, h

is131

, met

155, le

u184

, asp

185, tr

p186

, trp

186, ile2

173l2m

-99.40

-90.39

-9.01

Lys2

00, h

is201

, trp

59, tyr15

1, val16

3, ly

s200

, his2

01, g

lu23

3, ile2

35, g

lu24

03n

o4-9

0.52

-84.02

-6.50

Arg1

53, g

ly15

2, arg

153, ty

r155

, arg

412, asp

522

3w37

-98.38

-89.21

-9.17

Arg1

02, a

rg10

2, tr

p104

, glu10

5, ile1

06, p

ro10

7, pro

107, arg

113, gly51

63w

y1-1

01.62

-86.61

-15.01

Ala5

14, h

is515

, phe

516, le

u511

, pro

512, pro

512, val51

3, ala51

4, his5

15, a

la51

84a

cd-8

5.92

-81.06

-4.86

Thr2

32, v

al20

8, arg

209, gly21

0, pro

212, pro

212, th

r232

, asp

233, asn

287

4j5t

-92.88

-85.88

-7.00

His8

03, ile73

4, phe

800, arg

801, his8

03, h

is804

, his8

06, h

is807

4y14

-90.64

-70.18

-20.45

Arg2

4, arg

254, gln26

2, ty

r20, arg

24, a

la27

, arg

254, gly25

95t

d4-9

7.31

-81.07

-16.24

Lys3

22, a

rg38

9, gln39

0, ly

s322

, arg

343, tr

p388

, trp

388, arg

389, glu48

4Dimethyl phenol

1dhk

-58.96

-53.96

-5.00

Ser2

70, v

al24

, trp

269, se

r25, gln31

1hny

-62.16

-56.16

-6.00

Val129

, lys

178, ty

r67, ty

r67, glu18

1, glu18

1, ty

r182

, tyr18

2, his1

851m

1j-7

0.66

-62.16

-8.50

Cys4

6, cys

81, thr

21, thr

22, p

ro82

, thr

831n

u6-9

2.88

-89.37

-3.51

Thr3

65, thr

365, le

u366

, asn

369, ty

r388

, thr

411, se

r412

1ogs

-86.13

-80.82

-5.31

Leu5

1, cys

4, phe

26, a

rg48

, glu50

, leu

51, leu

51, a

rg21

11v

4t-9

0.13

-84.63

-5.50

Arg4

22, g

ln22

, gln24

, leu

25, g

ln26

, glu27

, arg

369, glu37

2, th

r376

, his3

801x

u7-6

5.53

-56.03

-9.50

Thr9

2, m

et93

, glu94

, arg

66, h

is120

, ile12

11y

7v-6

4.34

-55.51

-8.83

Arg4

96, g

ln49

7, asp

453, asp

453, gly45

4, his4

95, g

ln49

7, gln49

72jfe

-95.45

-90.85

-4.60

Gln31

7, asn

319, ly

s321

, glu32

3, ile3

26, g

ln32

8, asn

329, asn

329

2oox

-71.94

-59.10

-12.85

Asp2

45, tyr24

6, se

r247

, asn

269, asn

269

2zj3

-60.86

-47.32

-13.55

Gln42

1, se

r422

, ser

422, th

r425

, gln42

1, gln42

13c

tt-6

9.62

-56.55

-13.07

Arg5

20, thr

775, th

r778

, leu

286, le

u286

, arg

520, his6

45, lys

776, ly

s776

, asp

777

3k35

-71.66

-63.39

-8.27

Asp6

1, gly64

, gln24

0, asp

61, p

he62

, arg

63, thr

213, se

r214

, ser

214

3l2m

-62.12

-52.92

-9.20

Ser1

99, lys

200, ly

s200

, his2

01, g

lu23

3, ile2

353n

o4-6

8.57

-58.49

-10.07

Asn5

61, a

sn61

, glu54

3, tr

p425

, gln56

0, gln56

0, arg

58, a

rg58

, gly59

3w37

-63.25

-56.54

-6.71

Gly70

0, ty

r659

, arg

699, gly79

1, glu79

23w

y1-6

5.32

-52.84

-12.49

Asn2

41, a

sn24

1, asn

495, gly49

8, asp

439, asp

539, le

u240

, asn

495

4acd

-62.04

-50.19

-11.85

Phe2

93, g

ln29

5, arg

92, a

rg27

8, ly

s292

,lys2

92, p

he29

3, phe

293

4j5t

-55.87

-49.64

-6.23

Gln35

8, glu36

1, glu36

1, ile3

62, ile36

2, gly55

64y

14-6

6.05

-63.55

-2.50

Tyr4

6, ty

r46, asp

181, phe

182, ala21

7, arg

221

5td4

-61.84

-49.47

-12.37

Arg3

98, a

rg42

1, arg

398, asp

402

Page 15: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

103

Table 3: Con

tinue

PDBs

Bind

ing en

ergy

VDW

H-b

ond

Inte

racting am

ino ac

ids

Methyl palmitate

1dhk

-81.60

-81.60

0.00

Ala2

60, lys

261, tr

p269

, ser

25, s

er26

, gln31

1hny

-67.45

-58.22

-9.22

Arg3

92, trp

388, tr

p388

, arg

389

1m1j

-90.30

-86.80

-3.50

Gly84

, gly49

, cys

81, thr

83, p

ro47

, ser

481n

u6-7

0.74

-61.74

-9.07

Asp1

92, tyr19

5, gln12

3, asn

151, tr

p168

, glu19

1, ty

r195

1ogs

-82.90

-80.40

-2.50

Tyr4

0, cys

4, phe

26, a

sp27

, tyr40

, arg

48, g

lu50

, leu

511v

4t-8

5.13

-75.38

-9.75

Gly25

8, ala25

9, gln28

7, gly22

7, gly22

9, cys

230, asn

231, glu25

6, gln28

7, glu29

0, gly41

01x

u7-7

3.80

-65.42

-8.38

Ser1

70, lys

187, se

r169

, tyr17

7, le

u215

, gly21

6, ty

r280

1y7v

-84.54

-78.62

-5.92

Asp2

7, ty

r40, cys

4, phe

26, a

sp27

, arg

48, g

lu59

, leu

512jfe

-77.06

-64.06

-13.00

Arg4

32, a

sp43

9, phe

440, glu44

1, gln47

, gln47

, tyr42

9, phe

440, phe

440, glu44

12o

ox-8

2.81

-79.45

-3.36

His4

53, g

lu92

, asp

98, a

sp98

, lys

992z

j3-6

6.99

-56.21

-10.78

Thr4

46, thr

446, val46

1, gly44

4, se

r454

, ser

454, gly46

0, val46

13c

tt-7

4.10

-69.22

-4.87

Ile52

3, ala28

5, phe

522, ala53

6, ala53

7, m

et56

73k

35-7

0.97

-63.76

-7.20

Asp6

1, gln24

0, asp

61, p

he62

, arg

63, thr

213, se

r214

, ser

214

3l2m

-64.80

-59.15

-5.65

Lys1

42,ly

s142

, asp

153, ty

r155

, tyr15

5, gln15

6, gln15

63n

o4-7

2.24

-63.37

-8.87

Tyr2

00, g

ln20

2, th

r208

, tyr20

0, phe

204, ly

s205

, asp

206

3w37

-64.92

-55.76

-9.17

Val842

, ser

774, arg

840, arg

840, tr

p841

3wy1

-63.10

-50.29

-12.81

Lys3

98, a

sp40

1, gly40

2, glu37

7, val38

0, ly

s398

, lys

398

4acd

-72.60

-58.38

-14.22

Gly26

2, ty

r216

, cys

218, arg

223, arg

223, se

r261

, arg

223

4j5t

-68.01

-60.20

-7.80

Tyr2

9, se

r414

, tyr29

, gly37

1, phe

373, glu37

4, glu41

74y

14-7

2.33

-58.82

-13.51

Gly26

2, ty

r216

, cys

218, arg

223, arg

223, se

r261

, arg

223

5td4

-71.66

-61.15

-10.51

Thr3

76, a

rg39

2, tr

p388

, trp

388, arg

389

Methyl stearate

1dhk

-67.60

-67.60

0.00

Asn3

50, g

lu35

2, val35

4, his7

3, ag7

4, gln13

11h

ny-6

9.62

-62.88

-6.74

Asp1

35, lys

172, ty

r118

, asp

125, ty

r131

, asp

135, ty

r174

1m1j

-87.36

-81.21

-6.15

Gly84

, cys

81, p

ro82

, thr

83, lys

32, p

ro47

, ser

481n

u6-8

1.26

-74.76

-6.50

Arg1

25, a

rg12

5, glu20

5, tr

p627

, trp

629, his7

40, h

is740

1ogs

-78.33

-72.17

-6.16

Tyr3

13, a

la31

8, le

u341

, tyr28

4, ty

r244

, gln28

4, ty

r313

, tyr31

3, phe

316, le

u317

1v4t

-83.86

-74.38

-9.48

Gly25

8, ala25

9, gln28

7, gly22

7, gly22

9, cys

230, asn

230, asn

231, glu25

6, glu26

0, gly41

01x

u7-7

9.38

-75.88

-3.50

Lys2

74, a

rg26

9, asn

270, pro

271, pro

271, ly

s274

, arg

269, asn

270, pro

271, ly

s272

1y7v

-84.87

-78.98

-5.89

Asp2

7, ty

r40, cys

4, phe

26, p

he26

, arg

48, g

lu50

, leu

512jfe

-71.78

-71.78

0.00

Val168

, met

172, phe

225, ala24

6, phe

249, his2

50, ile33

2, tr

p345

2oox

-83.07

-80.42

-2.65

His4

53, g

lu92

, asp

98, lys

992z

j3-6

8.87

-68.87

0.00

Leu6

05, a

rg61

4, arg

614, pro

615, th

r630

, arg

632

3ctt

-71.84

-66.63

-5.21

Ilr52

3, ala50

9, arg

520, phe

555, phe

555, ly

s776

3k35

-70.42

-62.63

-7.79

Gln14

5, asp

194, gln14

5, th

r182

, ser

189, asp

194

3l2m

-70.69

-58.66

-12.03

Arg3

92, thr

376, th

r377

, trp

388, tr

p388

3no4

-85.64

-74.54

-11.09

Arg6

3, arg

459, phe

491, arg

63, a

rg11

73w

37-7

8.11

-75.21

-2.90

Arg7

73, a

rg77

3, se

r774

, thr

775, gln83

9, arg

840, tr

p841

, val84

23w

y1-9

5.25

-81.48

-13.77

His1

05, g

ln17

0, asp

202, phe

147, phe

166, ala22

9, asp

333, ty

r389

, arg

400

4acd

-79.58

-74.34

-5.25

Ser2

36, s

er23

6, le

u207

, leu

207, val20

8, arg

209, gly21

0, glu21

1, pro

212, asp

233, th

r235

4j5t

-66.89

-56.00

-10.89

Arg2

09, p

he58

, arg

209, phe

384, ly

s439

4y14

-70.47

-63.54

-6.93

Arg7

9, arg

79, g

ln10

2, gln10

2, pro

206, pro

206, gly20

95t

d4-7

1.86

-68.36

-3.50

Arg2

0, arg

20, tyr52

, arg

72, s

er73

, gly74

, glu78

, ser

112, se

r113

, thr

114

Page 16: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

104

Table 3: Con

tinue

PDBs

Bind

ing en

ergy

VDW

H-b

ond

Inte

racting am

ino ac

ids

Octadeconic acid methyl ester

1dhk

-117

.35

-93.33

-24.02

Ser5

5, asn

362, asn

362, se

r55, tr

p44, arg

346, tr

p367

, ile35

8, gly35

9, pro

361, asn

362, asp

381

1hny

-102

.76

-83.72

-19.04

Ser3

, asn

5, gln8, th

r84, asn

5, th

r6, g

ln7, gln7, th

r84, asn

88, a

sn22

0, tr

p221

1m1j

-104

.91

-82.36

-22.55

Ser4

47, trp

448, gly1, his2

, his2

, arg

3, tr

p389

, thr

435, th

r435

, asp

436,trp4

48, g

ly1, his2

, his2

, arg

3, arg

3, pro

4, pro

41n

u6-1

16.96

-98.72

-18.25

Tyr3

72, tyr38

6, se

r412

, tyr37

2, ty

r386

, asp

413, asp

413, ty

r414

, leu

436, se

r437

, leu

445, asn

487

1ogs

-102

.49

-86.73

-15.77

Ala4

38, s

er43

9, se

r465

, ser

465, gln44

0, ly

s441

, lys

441, asn

442, asn

442, asp

443, se

r464

, lys

466

1v4t

-105

.32

-82.83

-22.49

Arg6

3, asn

247, glu24

8, le

u47, glu48

, tyr61

, glu67

, glu24

5, glu24

8, glu24

81x

u7-1

07.04

-60.77

-46.27

Gln21

, ser

202, val20

6, asn

207, val20

8, ile2

10, g

ln25

3, glu25

4, asn

24, g

ln21

, arg

198, se

r202

1y7v

-109

.91

-92.24

-17.67

Arg1

31, tyr13

5, th

r138

, asn

146, his4

95, thr

134, asp

137, asp

137, th

r138

, thr

138, pro

139

2jfe

-104

.37

-90.77

-13.60

Gln12

5, asn

196, ly

s199

, asp

129, se

r135

, glu13

6, pro

181, his1

952o

ox-1

05.58

-67.15

-38.42

Trp4

52, leu

241, th

r245

, gln25

1, arg

33, leu

52, a

sn53

, arg

449, tr

p452

, asn

244, asn

244, arg

332z

j3-1

14.57

-78.06

-36.51

Cys3

73, thr

375, se

r376

, gln42

1, se

r422

, ser

473, ala67

4, ly

s675

, leu

404, gln42

1, asp

427, ty

r434

, ser

676, val67

73c

tt-1

06.02

-74.94

-31.08

His1

15, a

rg28

3, arg

283, his6

45, s

er64

6, ala78

0, gln11

7, gln11

7, phe

119, se

r120

, asn

122, asn

122

3k35

-111

.68

-90.75

-20.94

Arg1

24, a

rg19

3, arg

124, gln14

5, ty

r146

, arg

148, arg

162, th

r165

, glu28

1, gln41

, thr

292

3l2m

-113

.67

-101

.80

-11.81

Gly11

2, th

r113

, val50

, thr

52, trp

59, g

ly10

6, ala10

8, val16

33n

o4-1

07.29

-84.87

-22.42

His3

39, ala32

1, lys3

24, g

lu32

5, gly32

8, lys3

32, ala33

1, his3

39, g

ly33

6, his3

39, a

sp27

4, al

a321

, lys3

24, ly

s324

, glu32

5, glu32

53w

37-9

8.61

-69.18

-29.44

Ala2

02, g

ln20

3, ala20

5, his2

06, g

ln21

9, his2

22, thr

739, gln20

3, his2

06,gln21

9, gly69

0, ty

r740

3wy1

-118

.62

-87.37

-31.25

Asp3

44, h

is515

, phe

516, ala52

9, gln53

1, gln43

9, ala34

3, asp

346, ala34

9, ly

s352

, phe

516, ty

r530

, gln63

1, asp

440

4acd

-101

.61

-78.14

-23.47

Pro3

46, v

al34

8, th

r356

, his3

61, thr

356, phe

360, phe

360, pro

372, ala38

24j5t

-113

.49

87.00

-26.49

Glu46

3, glu47

0, gln61

7, asp

724, arg

727, se

r802

, his8

03, h

lu46

3, ly

s669

, lys

669, arg

727, ty

r728

, pro

731, his8

034y

14-1

16.56

-86.31

-30.24

Arg1

05, a

rg10

5, glu17

0, se

r201

, ser

203, his2

08, a

rg10

5, glu16

1, gln16

7, glu16

7, th

r168

, glu17

0, glu17

0, le

u172

, his2

085t

d4-1

17.70

-96.94

-20.76

gly3

6, ly

s322

, trp

388, arg

389, gln39

0, ly

s35, Lys

35, a

sp37

7, tr

p388

, arg

389, ile3

96, a

sp45

6Phenol 2,6-bis-2 hydroxy-5-methyl

1dhk

-88.03

-80.36

-7.67

Asn3

5, le

u237

, lys

257, ala26

0, ly

s261

, trp

269, se

r311

, gly20

, asp

21, thr

23, g

ln31

1hny

-84.58

-65.04

-19.54

Arg3

43, c

ys37

8, asp

381, tr

p382

, thr

377, gly37

9, asp

381, tr

p382

, trp

388

1m1j

-87.64

-77.54

-10.10

Arg5

1, asp

66, v

al79

, ser

48, a

rg51

, asp

66, s

er48

, ser

48, v

al79

1nu6

-101

.11

-87.42

-13.69

Met

348, asp

588, se

r349

, thr

351, se

r376

, ser

376, glu37

8, asp

588, asp

588, ly

s589

, his5

921o

gs-9

9.39

-83.63

-15.75

Ala1

, asp

27, a

tg47

, ala1, arg

2, pro

3, pro

3, cys

4, se

r25, phe

26, a

sp27

, arg

48, m

et49

, glu50

1v4t

-91.98

-83.05

-8.93

Leu2

5, his3

80, g

ln24

, gln24

, leu

25, g

ln26

, glu27

, glu27

, ser

373, th

r376

, thr

376, his3

801x

u7-9

7.11

-85.75

-11.86

Thr1

24, s

er12

6, se

r125

, asn

127, asn

127, asp

132, his1

34, h

is135

, val18

01y

7v-9

7.69

-84.21

-13.47

Ala1

, asp

27, a

rg48

, arg

2, pro

3, pro

3, cys

4, se

r25, phe

26, a

sp27

, met

49, g

lu50

2jfe

-85.31

-70.89

-14.42

Arg2

03, h

is206

, lys

199, arg

203, arg

203, his2

06, m

et29

6, m

et29

62o

ox-8

9.24

-80.42

-8.81

Arg3

3, arg

449, tr

p452

, asn

244, asn

244, th

r245

, arg

33, a

sn53

2zj3

-84.72

-81.61

-3.11

Arg5

11, leu

515, glu51

8, ly

s621

, glu62

2, his6

38, h

is638

, ser

639

3ctt

-99.52

-81.38

-18.14

Ser4

7, se

r139

, pro

158, ty

r46, ly

s48, pro

137, pro

137, se

r155

, gly15

7, pro

158

3k35

-88.16

-78.15

-10.01

Val256

, asp

257, gly52

, thr

55, thr

55, tyr25

5, ty

r255

, val25

6, asp

257

3l2m

-92.32

-87.14

-5.18

Asn5

3, ile4

9, val51

, thr

52, a

sn53

, ala10

7, gly11

0, gly11

23n

o4-8

9.84

-85.97

-3.87

Tyr5

58, tyr55

8, tr

p425

, trp

425, se

r426

, tyr55

8, glu79

, trp

425, tr

p425

, ser

426, ty

r558

3w37

-91.28

-86.40

-4.89

Arg8

53, a

sp78

5, se

r819

, ser

819, gly82

0, le

u851

, leu

851, ly

s852

, arg

853, phe

908

3wy1

-89.26

-81.92

-7.33

Asn4

47, a

sp34

6, pro

437, his4

38, a

sp44

0, asp

441, pro

442, pro

442, asn

447

4acd

-86.78

-77.15

-9.62

Ser6

6, le

u88, se

r66, phe

67, g

ly68

, val87

, val87

, leu

88, leu

88, a

sn95

4j5t

-89.36

-82.92

-6.44

Glu40

2, glu46

3, arg

467, asp

724, arg

727, arg

727, ty

r728

, his8

034y

14-9

1.49

-83.99

-7.50

Tyr4

6, asp

48, g

ln26

2, ty

r46, asp

48, v

al49

, asp

181, phe

182, asg

221, gln26

25t

d4-8

8.83

-80.33

-8.50

Tyr1

51, h

is305

, trp

58, tyr15

1, ly

s200

, his2

01, g

lu23

3, ile2

35, a

sn30

0, his3

05, g

ly30

6

Page 17: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

Fig. 3(a-r): Octadecanoic acid methyl ester showing interaction with diabetic enzymes and their binding energy, (a) 1dhk(-117.35), (b) 1hny (-102.76), (c) 1nu6 (-116.96), (d) 1v4t (-102.49), (e) 1xu7 (-104.07), (f) 1y7v (-100.91), (g) 2jfe (-104.37),(h) 200x (-105.58), (i) 2zj3 (-114.57), (j) 3ctt (-106.02), (k) 3k35 (-111.68), (l) 3l2m (-113.67), (m) 3no4 (-107.29), (n) 3w37(-98.61), (o) 3wy1 (-118.62), (p) 4y14 (-116.56), (q) 4j5t (-113.49) and (r) 5td4 (-117.7)

105

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Page 18: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

The Human 11beta-hydroxysteroid dehydrogenasetype I have shown more interaction with octadecanoic acidmethyl ester followed by Phenol 2,6-bis-2 hydroxy-5-methyl,Benzenedicarboxylic acid, 2,4-Bis (1-phenylethyl) phenol,Methoxymellein, Diisooctyl phthalate, 5-diethylamino(Table 3, Fig. 3).

The octadecanoic acid methyl ester have shown moreinteraction with human acid-beta-glucosidase followed byPhenol 2,6-bis-2 hydroxy-5-methyl, Benzenedicarboxylic acid,Diisooctyl phthalate, Diisobutyl isophthalate, Methylpalmitate. Human cytosolic $-glucosidase firmly interact withoctadecanoic acid methyl ester with high energy followed byPhenol 2,6-bis-2 hydroxy-5-methyl. The AMP activated proteinkinase was more interact with octadecanoic acid methyl esterfollowed by Diisobutyl isophthalate, Phenol 2,6-bis-2 hydroxy-5-methyl, Methoxymellein, 2,4-Bis (1-phenylethyl) phenol andDiisooctyl phthalate. The fructose-6-phosphateamidotransferase was inhibited by octadecanoic acid methylester at highest binding energy followed by Bis-2ethylhexylphthalate, 5-diethylamino, Phenol 2,6-bis-2 hydroxy-5-methyl.Statin HMG-coa reductase enzyme was inhibited byoctadecanoic acid methyl ester, Phenol 2,6-bis-2 hydroxy-5-methyl at high binding energy followed by 2,4-Bis(1-phenylethyl) phenol, Bis-2ethylhexyl phthalate(Table 3, Fig. 3).

SIRT6 family member, NAD(+)-dependent proteindeacetylases is able to control genomic stability andtranscriptional control of glucose metabolism. Theoctadecanoic acid methyl ester inhibited this enzyme byshowing highest binding energy followed by Diisooctylphthalate, Bis-2ethylhexyl phthalate, Diisobutyl isophthalate,2,4-Bis (1-phenylethyl) phenol, Phenol 2,6-bis-2 hydroxy-5-methyl, 5-diethylamino, Methoxymellein. The pig pancreatic"-amylase was greatly inhibited by octadecanoic acid methylester followed by Diisooctyl phthalate and Phenol 2,6-bis-2hydroxy-5-methyl. The more interaction was betweencreatinine amidohydrolase with octadecanoic acid methylester by their binding energy followed by Methoxymellein,Diisobutyl isophthalate, Diisooctyl phthalate, Phenol 2,6-bis-2 hydroxy-5-methyl, 2,4-Bis(1-phenylethyl)phenol,Benzenedicarboxylic acid, Methyl Stearate, Bis-2ethylexylphthalate (Table 3, Fig. 3).

Sugar beet "-glucosidase was inhibited by octadecanoicacid methyl ester at a maximum level compared withDiisooctyl phthalate, Phenol 2,6-bis-2 hydroxy-5-methyl,Benzenedicarboxylic acid, Methoxymellein. "-glucosidase wasgreatly inhibited its activity by octadecanoic acid methyl

ester followed by Diisooctyl phthalate, Methyl Stearate,Benzenedicarboxylic acid, Bis-2ethylhexyl phthalate,Methoxymellein, Phenol 2,6-bis-2 hydroxy-5-methyl,Diisobutyl isophthalate. The glycogen synthase kinase-3 betawas showed more binding energy when it interact withBis-2ethylhexyl phthalate, octadecanoic acid methyl ester,Diisobutyl isophthalate, Phenol 2,6-bis-2 hydroxy-5-methyl,Diisooctyl phthalate (Table 3, Fig. 3).

Octadecanoic acid methyl ester conjugate proteintyrosine phosphatase 1B exhibits more interaction followed byPhenol 2,6-bis-2 hydroxy-5-methyl, Diisooctyl phthalate,Benzenedicarboxylic acid, octadecanoic acid methyl esterhave showed highest interaction with processing "-Glucosidase I with high binding energy followed by, Bis-2ethylhexyl phthalate, Diisooctyl phthalate, Phenol 2,6-bis-2 hydroxy-5-methyl, Benzenedicarboxylic acid. The human pancreatic "-amylase have firmly interact with octadecanoicacid methyl ester with more binding energy followedDiisooctyl phthalate, Di methyl, 2,4-Bis (1-phenylethyl)phenol, Phenol 2,6-bis-2 hydroxy-5-methyl (Table 3, Fig. 3).

From in silico anti-diabetic activity, the octadecanoicacid methyl ester able to interact with all most all diabeticproteins/enzymes with high biding energy, whereas thediisobutyl isophthalate have conjugated with 1m1j, iso-octylisophthalate on 1ogs and bis-2-ethylhexyl phthalate on 4acdwith more binding energy. The phthalates have expressed asanti-diabetic potentials in vitro and in silico screening43-45

(Table 3, Fig. 4).The octadecanoic acid methyl ester is responsible for

inducing antidiabetic activity reported by Iqbal et al.46 andHashim et al.47 in vitro and in vivo conditions, respectively.Sasikala and Meenak48, Rajkumar et al.49 have reported thatoctadecanoic acid methyl ester was able to inhibit diabeticenzymes in in silico study. In vitro and in silico anti-diabeticactivity of octadecanoic acid methyl ester was carried out byRaajshree and Chitra50. The present study clearly showed thepresence of important phytochemicals which inducedantidiabetic activity in vitro and in vivo conditions.

From online ADME test reveals that, octadecanoic acidmethyl ester, dimethyl phthalate, Diisooctyl phthalate andbis-ethynyl phthalate are non-toxic AMETS test andnon-carcinogens. The results confirm their degradablecharacters except for the octadecanoic acid methyl ester allare readily biodegradable. The online ADMET test for all thecompounds was carried out but the data represented only forabove mentioned four compounds are represented inTable 4.

106

Page 19: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

107

Table 4: A

DMET

Pre

dicted

pro

file of

the po

tent

phy

toch

emicals o

f Pen

icillium

spec

ies

Octod

econ

ic acid m

ethy

l ester

Diis

obut

yl pth

thalate

Diis

ooctyl pth

thalate

Bis-2-

ethy

lhex

yl pth

thalate

---------------------------------------------

------------------------------------------------

--------------------------------------------------

------------------------------------------------

Prop

erty

Value

Prob

ability

Value

Prob

ability

Value

Prob

ability

Value

Prob

ability

Bloo

d br

ain ba

rrier

BBB-

0.71

09BB

B+0.93

08BB

B+0.92

72BB

B+0.93

83Hum

an In

testinal abs

orpt

ion

HIA

-0.75

86HIA

+0.97

45HIA

+0.95

47HIA

+0.97

97Ca

co-2

-per

mea

ble

CaCo

2-0.77

37Ca

Co2+

0.71

51Ca

Co2+

0.68

10Ca

Co2+

0.70

03P-

glyc

opro

tein-sub

strate

Subs

trate

0.73

89Non

-sub

strate

0.64

65Non

-sub

strate

0.51

17Su

bstrate

0.50

00P-

glyc

opro

tein-in

hibito

r INon

-inhibito

r0.63

58Non

-inhibito

r0.76

84Non

-inhibito

r0.73

75Non

-inhibito

r0.71

74Inhibito

r0.54

34Non

-inhibito

r0.81

62Non

-inhibito

r0.69

07Non

-inhibito

r0.54

66Re

nal o

rgan

ic cation tran

spor

ter

Non

-inhibito

r0.70

64Non

-inhibito

r0.89

14Non

-inhibito

r0.81

89Non

-inhibito

r0.84

46Distribution

Subc

ellular loc

alization

Mito

chon

dria

0.85

77Mito

chon

dria

0.88

97Mito

chon

dria

0.91

07Mito

chon

dria

0.86

62Metabolism

CYP4

50 2C9

subs

trate

Non

-sub

strate

0.77

89Non

-sub

strate

0.82

06Non

-sub

strate

0.83

28Non

-sub

strate

0.84

79CY

P450

2D6 su

bstrate

Non

-sub

strate

0.85

47Non

-sub

strate

0.88

20Non

-sub

strate

0.87

27Non

-sub

strate

0.86

55CY

P450

3A4

subs

trate

Subs

trate

0.52

22Non

-sub

strate

0.60

97Non

-sub

strate

0.50

00Non

-sub

strate

0.58

81CY

P450

1A2

subs

trate

Non

-inhibito

r0.91

91Non

-inhibito

r0.56

66Non

-inhibito

r0.73

92Non

-inhibito

r0.65

39CY

P450

2C9

inhibito

rNon

-inhibito

r0.92

35Non

-inhibito

r0.66

04Non

-inhibito

r0.75

91Non

-inhibito

r0.74

48CY

P450

2D6 inhibito

rNon

-inhibito

r0.92

70Non

-inhibito

r0.92

18Non

-inhibito

r0.89

86Non

-inhibito

r0.84

32CY

P450

2C1

9 inhibito

rNon

-inhibito

r0.87

88Non

-inhibito

r0.79

06Non

-inhibito

r0.72

83Non

-inhibito

r0.63

10CY

P450

3A4

inhibito

rNon

-inhibito

r0.96

59Non

-inhibito

r0.89

83Non

-inhibito

r0.79

13Non

-inhibito

r0.83

09CY

P inhibito

ry pro

misc

uity

Low CYP

inhibito

ry0.94

02Lo

w CYP

inhibito

ry0.70

03Lo

w CYP

inhibito

ry0.81

25Lo

w CYP

Inhibito

ry0.67

09Excretion-toxicity

Hum

an eth

er-a-g

o-Re

late

dW

eak inhibito

r0.88

36W

eak inhibito

ry0.97

38W

eak inhibito

ry0.90

78W

eak inhibito

ry0.90

63ge

ne in

hibitio

nInhibito

r0.52

77Non

-inhibito

r0.96

21Non

-inhibito

r0.80

10Non

-inhibito

r0.77

55AM

ES te

stNon

- AMES

toxic

0.87

54Non

AMES

toxic

0.91

32Non

AMES

toxic

0.91

32Non

AMES

tox

ic0.93

22Ca

rcinog

ens

Non

-carcino

gens

0.97

35Non

-carcino

gens

0.53

91Non

-carcino

gens

0.74

11Non

-carcino

gens

0.71

16Fish

toxicity

High FH

MT

0.80

01High FH

MT

0.98

62High FH

MT

0.99

62High FH

MT

0.99

59Te

trah

umen

a py

rifor

mis

toxicity

High TP

T0.99

57High TP

T0.96

69High TP

T0.99

99High TP

T0.99

99Hon

ey bee

toxicity

High HBT

0.65

29High HBT

0.65

73High HBT

0.56

83High HBT

0.58

16Biod

egrada

tion

Not

read

y0.80

15Re

ady

0.63

48Re

ady

0.53

83Re

ady

0.63

68biod

egrada

ble

biod

egrada

ble

biod

egrada

ble

biod

egrada

ble

Acut

e or

al to

xicity

III0.53

55IV

0.78

36IV

0.78

63IV

0.71

76Ca

rcinog

enicity

(Thr

ee class)

Non

-req

uire

d 0.73

85Non

-req

uire

d0.54

20W

arning

0.50

66W

arning

0.54

34Ab

sorp

tion

Aque

ous s

olub

ility

-1.766

0Lo

gS-4

.597

3Lo

gS-6

.577

6Lo

gS-6

.280

7Lo

gSCa

Co2 Pe

rmab

ility

0.44

624

LogP

app, cm

secG

11.25

21Lo

gPap

p, cm

secG

11.03

64Lo

gPap

p, cm

secG

11.01

28Lo

gPap

p, cm

secG

1

Distribution, metabolism, excretion, toxicity

Rat a

cute

toxicity

2.09

69LD

50, m

ol kgG

11.29

91LD

50, m

ol kgG

11.19

79LD

50, m

ol kgG

11.08

38LD

50, m

ol kgG

1

Fish

toxicity

1.92

40pL

C50, m

g LG

10.31

53pL

C50, m

g LG

1-0

.075

9pL

C50, m

g LG

10.29

41pL

C50, m

g LG

1

Tetrah

ymen

a py

rifor

mis

toxicity

0.84

98pIGC5

0, µg LG

11.02

47pIGC5

0, µg LG

12.11

00pIGC5

0, µg LG

12.10

76pIGC5

0, µg LG

1

Page 20: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

Fig. 4: Diisobutyl isophthalate, diisooctyl phthalate and bis-2-ethylhexyl phthalate and their conjugated with (a) 1m1j, (b) 1ogsand (c) 4acd of diabetic enzymes with high binding energy

CONCLUSION AND FUTURE RECOMMENDATIONS

Present day, the endophytes are being utilized as a sourceof novel drug compounds for the betterment of humanhealth. The Penicillium species of Tabebuia argentea haveshown medicinally important phytochemicals by GC-MSanalysis. Anti-diabetic, endophytic fungal extract haveinhibited the "-amylase, "-glucosidase, DPP IV activitystrongly. The octadecanoic acid methyl ester and phthalatesare responsible for inhibition of 21 diabetic proteins/ enzymesactively and they exhibited more binding energy. The presentoutcomes would provide alternate methods of naturalproduct drug discovery which could be reliable, economicaland environmentally safe. Using of these fungi, we canproduce a high amount of bioactive compounds withinshort duration in laboratory conditions. In the study usedalmost all proteins or enzymes for in silico assay to know theiractivity on different enzymes and literature reveals thatnobody has tried all these selected proteins for in silicoanti-diabetic activity. Hence, further in vivo studies aresuggested to investigate to isolate and identify purecompounds which are responsible for diabetic activity fromPenicillium species.

SIGNIFICANCE STATEMENTS

The endophytic fungi, Penicillium species of Tabebuiaargentea methanol extract yielded 18 different bioactivecompounds. The same extract significantly reduced theactivity of "-amylase, "-glucosidase and dipeptidylpeptidase IV enzymes in in vitro experiments. The moleculardocking studies help to know inhibitory activity and bindingmode of endophytic fungal phytochemicals with anti-diabetictarget proteins. The octadecanoic acid methyl ester, dimethylphthalate, di-iso-octyl phthalate and bis-ethylhexyl phthalatehave showed the highest binding affinity and good hydrogenbond interactions with active site residues.

ACKNOWLEDGMENTS

The authors are grateful to Visvesvaraya TechnologicalUniversity (VTU), Belagavi, Karnataka, India for providingfinancial support (Ref No. VTU/Aca./2010-11/A-9/11339 dated7 December 2010) with grant number VTU-RG:11339/2010-11for this investigation. We would also like to thanks Dr S Lokesh,DOS in Applied Botany and Biotechnology, University ofMysore, Mysore, India for assistance in identifying endophyticfungi.

REFERENCES

1. Yuan, Z.L., Y.C. Chen and X.J. Ma, 2011. Symbiotic fungi inroots of Artemisia annua with special reference to endophyticcolonizers. Plant Biosyst.: Int. J. Dealing Aspects Plant Biol.,145: 495-502.

2. Perotto, S., P. Angelini, V. Bianciotto, P. Bonfante andM. Girlanda et al., 2013. Interactions of fungi with otherorganisms. Plant Biosyst.: Int. J. Dealing Aspects Plant Biol.,147: 208-218.

3. Porras-Alfaro, A. and P. Bayman, 2011. Hidden fungi,emergent properties: Endophytes and microbiomes. Annu.Rev. Phytopathol., 49: 291-315.

4. Yan, X.N., R.A. Sikora and J.W. Zheng, 2011. Potential use ofcucumber (Cucumis sativus L.) endophytic fungi as seedtreatment agents against root-knot nematode Meloidogyneincognita. J. Zhejiang Univ. Sci. B, 12: 219-225.

5. Metwaly, A.M., H.A. Kadry, A.A. El-Hela, A.E.I. Mohammad,G. Ma, S.J. Cutler and S.A. Ross, 2014. Nigrosphaerin A a newisochromene derivative from the endophytic fungusNigrospora sphaerica. Phytochem. Lett., 7: 1-5.

6. Zhao, J., C. Li, W. Wang, C. Zhao and M. Luo et al., 2013.Hypocrea lixii, novel endophytic fungi producing anticanceragent cajanol, isolated from pigeon pea (Cajanus cajan [L.]Millsp.). J. Applied Microbiol., 115: 102-113.

7. Huang, J.X., J. Zhang, X.R. Zhang, K. Zhang, X. Zhang andX.R. He, 2014. Mucor fragilis as a novel source of the keypharmaceutical agents podophyllotoxin and kaempferol.Pharm. Biol., 52: 1237-1243.

108

(a) (b) (c)

Page 21: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

8. Deshmukh, S.K., P.D. Mishra, A. Kulkarni-Almeida, S. Verekarand M.R. Sahoo et al., 2009. Anti-inflammatory and anticanceractivity of ergoflavin isolated from an endophytic fungus.Chem. Biodivers., 6: 784-789.

9. Sadananda, T.S., M. Govindappa, G.V. Dutt, B. Bhat, P. Baishyaand C.P. Chandrappa, 2014. Isolation and characterization ofantiviral and ribosome inactivating protein from theendophytic fungi Alternaria sp from Viscum album usingMADLI-TOF-MS and their antibacterial activity. Drug Invent.Today, 6: 105-112.

10. Zhang, H., C. Ying and X. Bai, 2014. Advancement inendophytic microbes from medicinal plants. Int. J. Pharm. Sci.Res., 5: 1589-1600.

11. Song, X.Q., X. Zhang, Q.J. Han, X.B. Li and G. Li et al., 2013.Xanthone derivatives from Aspergillus sydowii, anendophytic fungus from the liverwort Scapania ciliata S. Lacand their immunosuppressive activities. Phytochem. Lett.,6: 318-321.

12. Turbyville, T.J., E.K. Wijeratne, M.X. Liu, A.M. Burns andC.J. Seliga et al., 2006. Search for Hsp90 inhibitors withpotential anticancer activity: Isolation and SAR studies ofradicicol and monocillin I from two plant-associated fungi ofthe Sonoran Desert. J. Nat. Prod., 69: 178-184.

13. Kaul, S., S. Gupta, M. Ahmed and M.K. Dhar, 2012. Endophyticfungi from medicinal plants: A treasure hunt for bioactivemetabolites. Phytochem. Rev., 11: 487-505.

14. Kusari, S., S.P. Pandey and M. Spiteller, 2013. Untappedmutualistic paradigms linking host plant and endophyticfungal production of similar bioactive secondary metabolites.Phytochemistry, 91: 81-87.

15. Esteves-Souza, A., D.V. Figueiredo, A. Esteves, C.A. Camara,M.D. Vargas, A.C. Pinto and A. Echevarria, 2007. Cytotoxic andDNA-topoisomerase effects of lapachol amine derivatives andinteractions with DNA. Braz. J. Med. Biol. Res., 40: 1399-1402.

16. De Almeida, E.R., 2009. Preclinical and clinical studies oflapachol and beta-Lapachone. Open Nat. Prod. J., 2: 42-47.

17. Castellanos, J.R.G., J.M. Prieto and M. Heinrich, 2009.Red Lapacho (Tabebuia impetiginosa)-a globalethnopharmacological commodity? J. Ethnopharmacol.,121: 1-13.

18. Souza, M.A., S. Johann, L.A.R. dos Santos Lima, F.F. Camposand I.C. Mendes et al., 2013. The antimicrobial activity oflapachol and its thiosemicarbazone and semicarbazonederivatives. Memorias Instituto Oswaldo Cruz, 108: 342-351.

19. Breger, J., B.B. Fuchs, G. Aperis, T.I. Moy, F.M. Ausubel andE. Mylonakis, 2007. Antifungal chemical compoundsidentified using a C. elegans pathogenicity assay. PLoSPathog., Vol. 3. 10.1371/journal.ppat.0030018.

20. Lira, A.A.M., E.A. Sester, A.L.M. Carvalho, R.R. Strattmann,M.M. Albuquerque, A.G. Wanderley and D.P. Santana,2008. Development of Lapachol topical formulation:Anti-inflammatory study of a selected formulation.AAPS Pharm. Sci. Tech., 9: 163-168.

21. De Araujo, M.V., P.S.O. de Souza, A.C. de Queiroz,C.B.B. da Matta and A.B. Leite et al., 2014. Synthesis,leishmanicidal activity and theoretical evaluations of a seriesof substituted bis-2-hydroxy-1,4-naphthoquinones.Molecules, 19: 15180-15195.

22. Sadananda, T.S., R. Nirupama, K. Chaithra, M. Govindappa,C.P. Chandrappa and B.V. Raghavendra, 2011. Antimicrobialand antioxidant activities of endophytes from Tabebuiaargentea and identification of anticancer agent (lapachol).J. Med. Plants Res., 5: 3643-3652.

23. Channabasava and M. Govindappa, 2014. First report ofanticancer agent, lapachol producing endophyte, Aspergillusniger of Tabebuia argentea and its in vitro cytotoxicityassays. Bangladesh J. Pharmacol., 9: 129-139.

24. Govindappa, M., R. Channabasava, T.S. Sadananda,C.P. Chandrappa and T. Umashankar, 2014. Identification ofbioactive metabolites by GC-MS from an endophytic fungus,Alternaria alternate from Tabebuia argentea and theirin vitro cytotoxic activity. Int. J. Biol. Pharm. Res., 5: 527-534.

25. Bhardwaj, A., D. Sharma, N. Jadon and P.K. Agrawal, 2015.Antimicrobial and phytochemical screening of endophyticfungi isolated from spikes of Pinus roxburghii. Arch. Clin.Microbiol., Vol. 6, No. 3.

26. Devi, N.N. and M.S. Singh, 2013. GC-MS analysis ofmetabolites from endophytic fungus Colletotrichumgloeosporioides isolated from Phlogacanthus thyrsiflorusNees. Int. J. Pharm. Sci., 23: 392-395.

27. Dewi, R.T., Y.M. Iskandar, M. Hanafi, L.B.S. Kardono,M. Angelina, I.D. Dewijanti and S.D.S. Banjarnahor, 2007.Inhibitory effect of Koji Aspergillus terreus on "-glucosidaseactivity and postprandial hyperglycemia. Pak. J. Biol. Sci.,10: 3131-3135.

28. Elya, B., R. Handayani, R. Sauriasari, Azizahwati , U.S. Hasyyati,I.T. Permana and Y.I. Permatasari, 2015. Antidiabetic activityand phytochemical screening of extracts from Indonesianplants by inhibition of alpha amylase, alpha glucosidase anddipeptidyl peptidase IV. Pak. J. Biol. Sci., 18: 279-284.

29. Chakrabarti, R., S. Bhavtaran, P. Narendra, N. Varghese,L. Vanchhawng, H.M.S. Shihabudeen and K. Thirumurgan,2011. Dipeptidyl Peptidase-IV inhibitory activity of Berberisaristata. J. Nat. Prod., 4: 158-163.

30. Dennington, R., T. Keith and J. Millam, 2009. GaussView,Version 5. Semichem Inc., Shawnee, KS., USA.

31. Sharma, D., A. Pramanik and P.K. Agrawal, 2016. Evaluation ofbioactive secondary metabolites from endophytic fungusPestalotiopsis neglecta BAB-5510 isolated from leaves ofCupressus torulosa D. Don. 3 Biotech, Vol. 6.

32. Papitha, R., R. Lokesh, R. Kaviyarasi and C.I. Selvaraj, 2016.Phytochemical screening, FT-IR and gas chromatographymass spectrometry analysis of Tinospora cordifolia (Thunb.)Miers. Int. J. Pharmacogn. Phytochem. Res., 8: 2020-2024.

109

Page 22: Research Journal of Phytochemistry - docsdrive.comdocsdrive.com/pdfs/academicjournals/rjphyto/2017/90-110.pdf · The analysis of variance was used to determine the significance of

Res. J. Phytochem., 11 (2): 90-110, 2017

33. Salini, T.S., D. Divakaran, S. Shabanamol, S. Rebello andM.S. Jisha, 2014. Antimicrobial and immunomodulatorypotential of endophytic fungus Fusarium solani isolated fromWithania somnifera. World J. Pharm. Res., 3: 879-890.

34. Gond, S.K., A. Mishra, V.K. Sharma, S.K. Verma andR.N. Kharwar, 2013. Isolation and characterization ofantibacterial naphthalene derivative from Phoma herbarum,an endophytic fungus of Aegle marmelos. Curr. Sci.,105: 167-169.

35. Cui, J., C. Wang, S. Guo, L. Yang, P. Xiao and M. Wang, 2013.Evaluation of fungus-induced agilawood from Aquilariasinensis in China. Symbiosis, 60: 37-44.

36. Chowdhary, K. and N. Kaushik, 2015. Fungal endophytediversity and bioactivity in the Indian medicinal plantOcimum sanctum Linn. PloS One, Vol. 10.

37. Tiwari, P., B. Nathiya and G. Mahalingam, 2017. Antidiabeticactivity of endophytic fungi isolated from Ficus religiosa.Asian J. Pharm. Clin. Res., 10: 59-61.

38. Pavithra, N., L. Sathish, B. Nagasai, V. Venkatarathanamma,H. Pushpalatha, G.B. Reddy and K. Ananda, 2014. Evaluationof "-amylase, "-glucosidase and aldose reductase inhibitorsin ethyl acetate extracts of endophytic fungi isolated fromanti-diabetic medicinal plants. Int. J. Pharm. Sci. Res.,5: 5334-5341.

39. Artanti, N., S. Tachibana, L.B.S. Kardono and H. Sukiman, 2011.Screening of endophytic fungi having ability for antioxidativeand "-glucosidase inhibitor activities Isolated from Taxussumatrana. Pak. J. Biol. Sci., 14: 1019-1023.

40. Yogisha, S. and K.A. Raveesha, 2010. Dipeptidyl peptidase IVinhibitory activity of Mangifera indica. J. Nat. Prod., 3: 76-79.

41. Purnomo, Y., D.W. Soeatmadji, S.B. Sumitro and M.A. Widodo,2015. Anti-diabetic potential of Urena lobata leaf extractthrough inhibition of dipeptidyl peptidase IV activity. AsianPac. J. Trop. Biomed., 5: 645-649.

42. Borde, M.K., I.R. Mohanty, R.K. Suman and Y.A. Deshmukh,2016. Dipeptidyl peptidase-IV inhibitory activities ofmedicinal plants: Terminalia arjuna, Commiphora mukul,Gymnema sylvestre, Morinda citrifolia, Emblica officinalis.Asian J. Phrm. Clin. Res., 9: 180-182.

43. Premjanu, N. and C. Jaynthy, 2014. Antidiabetic activity ofphytochemical isolated from Lannea coromandelica leaves:An in silico approach. J. Chem. Pharm. Sci., 2: 41-44.

44. Sivajothi, V. and S.S. Dakappa, 2014. In vitro and in silicoantidiabetic activity of pyran ester derivative isolated fromTragia cannabina. Asian Pac. J. Trop. Biomed., 4: S455-S459.

45. Wulan, D.R., E.P. Utomo and C. Mahdi, 2015. Antidiabeticactivity of Ruellia tuberosa L., role of "-amylase inhibitor:In silico, in vitro and in vivo approaches. Biochem. Res. Int.,Vol. 2015.

46. Iqbal, S.S., P. Gurumurthy, P. Pravinkumar, Pawankumar andK.S. Pillai, 2015. GC-MS analysis, heavy metal content andpredication of anti-diabetic activity spectra of a novelpolyherbal formulation. Int. J. Applied Res., 1: 276-281.

47. Hashim, A., M.S. Khan and S. Ahmad, 2014. Alleviation ofhyperglycemia and hyperlipidemia by Phyllanthus virgatus G. Forst extract and its partially purified fraction instreptozotocin induced diabetic rats. EXCLI J., 13: 809-824.

48. Sasikala, P.R. and K.S. Meenak, 2016. In silico moleculardocking studies of multi-potential compounds isolated fromPremna serratifolia L. Innovare J. Life Sci., 4: 1-8.

49. Rajkumar, P., S. Selvaraj, R. Suganya, D. Velmurugan andS. Kumaresan, 2016. GC-MS characterization of theanti-diabetic compounds from the flowers of Cassiaauriculata (Avaram): A structure based molecular dockingstudies. Int. J. Innovat. Res. Sci. Eng. Technol., 5: 85-93.

50. Raajshree, K.R. and P. Chitra, 2016. Characterization, in vitroand in silico anti-diabetic activity in the leaf extracts ofMangifera indica. World J. Pharm. Res., 5: 1063-1082.

110