2
= 2 โ„Ž ln +โˆ’ 1 2 โˆ’ 1โˆ’ 4 Productivity Index = 2 โ„Ž 1 2 ln 4 1.781 2 + = เดค โˆ’ [=] โ‹… J is constant after transient flow period Stages of Flow () = โˆ’ 2โ„Ž 1 2 ln 4 1.781 2 + 2 + - When pressure disturbance first approaches boundary - Short time period and difficult to model mathematically 1 โˆ’ 2 = 2โ„Ž ln 1 2 โˆ’ 1โˆ’ 2 1 2 โˆ’ 2 2 (โˆ’) = ln() + โˆ’ =1 โˆž โˆ’1 ) (! (, ) = 1 + 4โ„Ž โˆ’ 2 4 1. Infinite Acting/Transient Flow = ) 2โ„Ž( เดค โˆ’ ln โˆ’ 1 2 โˆ’ 1โˆ’ 4 + 2. Transitional/Late Transient Flow 3. Stabilized Flow Pseudo/Semi SS Closed drainage boundary =0 0<<1 Actual Performance Steady State (SS) Open drainage boundary =1 4. Depletion Flow - Pwf limit reached; well โ€ฒ s BHP held constant - Wellโ€™s flow rate begins to decline - Exponential decline can be derived (equations shown to the left) - Hyperbolic b-factor is empirical (refer to Decline Curve Analysis) PSS: **For gas flow, replace pressure with pseudopressure: () = เถฑ 2 = โˆ’ lim โˆ’ = + เดค โˆ’ lim 1โˆ’ โˆ’ โˆ’ เดค = โˆ’ เดค = lim + เดค โˆ’ lim โˆ’ โˆ’ = เดค โˆ’ = เดค โˆ’ lim โˆ’ โˆ’ = โˆ’ เดค = [=] โˆ’1 ) (โˆ’) โ‰ˆ ln( Valid if < 0.01 โ‰ˆ โˆ’ 162.6 โ„Ž log + log 2 โˆ’ 3.23 Aquifer Models + + + + เธ” = โˆ’ โˆ’ 1โˆ’ + โˆ’ 1โˆ’ + โˆ’ Free-gas expansion Free-oil expansion Free-water expansion Rock expansion Net gas withdrawal Net oil withdrawal Net water withdrawal Water influx = Cumulative Gas Produced = = Original free oil = = Original free gas = Can combine free-water expansion and rock expansion into composite expansivity = + 1โˆ’ = โˆ’ = โˆ’ = = โˆ’ โ‰ˆ โ‰ˆ = 1 = = + โ‰ˆ โ‰ˆ * = Gas Injected = W[=] = + Original Free Oil Estimation P/z Plot โ€“ OGIP Estimation Plot applicable for undersaturated reservoirs with Volatile, Black, Undersaturated, or Dead Oils เดค P z i Water influx No water influx เดฅ เดค P z ab โˆ’ G ab =G r G = OGIP เดค = เธ– เดค โˆ’ เดค 1 โˆ’ intercept slope = Recovery factor = =0 Zero intercept slope = Water influx No water influx Carter-Tracy (1960) Drive Indices - Constant terminal-rate solution - Incorporates transient and SSS flow - Preferred model for simulators = = gd e = โ€ฒ( + ) - Assumes instantaneous response - No time dimension - Assumes SSS relationship - Not applicable for transient response - Constant terminal-pressure solution - Time based (superposition principle) - Applicable for transient and SSS flow Fetkovitch (1971) Hurst and Van Everdingen (1949) = โˆ’เดค = Pot Aquifer (Coats, 1970) + = Gas cap drive Solution gas drive Formation drive Natural water drive = **Different definition can be used to account for an artificial water drive Drive Indices must add up to 1.0 + + = = ( โˆ’ ) โˆ’ 1โˆ’ + โˆ’ 1โˆ’ + ( โˆ’ ) = Cumulative Oil Produced = = Reservoir Voidage[=] [=] เต— [=] เต— Compressibility Factor Black Oil Phase Diagram Undersaturated Reservoir Key Properties API Gravity ยฐ = 141.5 โˆ’ 131.5 Specific Gravity = = = Relate to z-factor = = Pressure Dependent Fluid Properties BP 400 800 1200 1600 Pressure (psi) 40 20 60 1 1.5 1.1 1.2 0.02 = 0.04 Pressure (psi) 0.02 0.03 0.01 400 800 1200 1600 0.01 1.1 โ€“ Free Gas 1.2 โ€“ Volatilized Oil 2.1 โ€“ Solution Gas 2.2 โ€“ Free Oil 1 โ€“ Gaseous Phase (Gas + Volatilized Oil) 2 โ€“ Oleic Phase (Oil + Solution Gas) Oil Piston = เตฏ (1 โˆ’ )+ ( โˆ’ 1โˆ’ = เตฏ (1 โˆ’ )+ ( โˆ’ 1โˆ’ = + = + Reservoir Conditions = P > BP Oleic Gaseous Aqueous Capillary Pressure creates transition zone between phases Surface Conditions P < BP Isothermal = = = = 1 2 2 1 = [=] + + = [=] + + Component Concentrations Legend OIL 2 2 1 1 1.1 1.1 1.1 1.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 1.2 1.2 1.2 [=] เต— [=] เต— [=] เต— [=] เต— Gas Oil Gas Gas Oil = = [=] 1 kPa = 0.1450 psi 1 MPa = 10 bar 1 atm = 14.696 psi 1 atm = 1.013 bar 1 in = 2.54 cm 1 ft = 0.3048 m 1 mile = 5,280 ft 1 m 3 = 6.2898 bbl 1 bbl = 5.6146 ft 3 1 bbl = 42 US gal 1 ft 3 = 7.4805 gal R = 459.67 + ยฐF K = 273.15 + ยฐC ยฐF = 1.8 ยฐC + 32 1 acre = 43,560 ft 2 1 m 2 = 10.764 ft 2 1 Darcy = 9.8692 x 10 -9 cm 2 Euler (ฮณ) = 0.5772 = ln(1.781) Gravitational Constant = 9.806 m/s 2 Natural logarithm base = 2.71828 Gas Constant = 8.314 ฮค Pa โ‹… m 3 mol K 1 g/cm 3 = 62.428 lb m /ft 3 1 dyne = 2.248 x 10 -6 lb f 1 mD/cp = 6.33 x 10 -3 ft 2 /psi-day 1 lb m = 453.592 g 1 cp = 1.0 mPa-s 1 ฮค kg l = 8.347 ฮค lb m gal 1000 ฮค kg m 3 = 0.4335 ฮค psi ft 1 Newton = 1 x 10 5 dynes 1 Darcy = 1.0623 x 10 -11 ft 2 Standard Temperature = 60ยฐF Standard Pressure = 14.696 psia Water density at SC = 62.37 ฮค lb m ft 3 Molar Mass of Air = 28.966 g/mol V M IG = 379.3 ฮค scf lbmol @ 14.696 psia Univ. Gas = 10.732 ฮค psia โ‹… ft 3 lbmol โ‹… R = =1 5 Volumetrics 1 =โ„Ž 0 + 10 2 Isopach Map Each contour line represents a line of constant thickness in the reservoir 40 30 50 20 10 50 0 = โ„Ž = average oil saturation = reservoir pore volume 2 =โ„Ž 10 + 20 2 = เต˜ [=] = เต˜ [=] Pressure Material Balance Equation Formation Skin Decline Curve Analysis Cumulative Recovery Reservoir Fluids Conversions and Constants is usually 0.01 โˆ’ .02ยฐ/ = + = + = depth = Depth Gas Kick OWOC OGOC Normal Pressure Gradient = 0.433 if fresh H 2 O 0.465 if brine Well Testing = + = Diffusivity Equation Mass Balance leads to Continuity Equation โˆ’ 1 ) ( = ) ( โˆ’ ) ( = ) ( Introduce Darcyโ€™s Law Introduce Formation Volume Factor Introduce Compressibility Introduce Diffusivity Constant = = 1D Diffusivity Equation = 1 = 1 = 2 2 =โˆ’ = โˆ’ โˆ’() = ) ( = 2 Reservoir Pressure and Temperature =เถฑ =0 () = โˆ’ = 1 + ฮค 1 = ) (1 โˆ’ 1โˆ’ โˆ’ 1โˆ’ = = โˆ’ = = ln Rate b-factor Cumulative Recovery Decline Rate Exponential Hyperbolic Harmonic =0 =1 0<<1 = (1 + ) = 0 0 ODE: โˆ’ 1 = ;= @ = 0; เถฑ =0 = โˆ’ เถฑ +1 Time Time Production Rate (q) Production Rate (q) Economic Limit Economic Limit As b-factor increases, wellโ€™s economic life increases EL =1 =0 = 0.5 EL =1 =0 = 0.5 =1 =0 = 0.5 0 0 Recovery Reservoir Engineering โ€“ Primary Recovery Created by James Riddle with guidance from Dr. Matthew T. Balhoff and contributions from Jenny Ryu and Matt Mlynski 100 1000 10 1 100 1000 10 1 Contact [email protected] with comments/suggestions (Arps, 1940) Fluid Type Dry Gas >0 0 >0 0 0 -- Wet Gas >0 0 >0 >0 R vi 0 Condensate >0 0 >0 >0 >0 0 Volatile Oil 0 >0 >0 >0 >0 >0 Black Oil 0 >0 >0 >0 0 >0 Undersaturated Oil 0 >0 >0 >0 0 R si Dead Oil 0 >0 0 >0 -- 0 Drawdown Test Analysis = โˆ’ 162.6| | โ„Ž log + = 162.6 โ„Ž 1 10 100 1000 Semi-log Plot (k & s) P 1 PSS Flow Well Storage Transient Flow Pressure time (hours) = 1.151 ,1 โˆ’ | | โˆ’ log 2 + 3.23 m bu = [psi/log cycle] 10000 1000 100 10 Pressure Semi-log Plot (k & s) Horner time เตซ + ฮค ) ,1 = 1 = โ„Ž [=]consistent units [=] = 1.151 โˆ’ 1 | | โˆ’ log 2 + 3.23 [=] [=] โˆ’1 [=]STB/day [=] โ„Ž[=] [=] log = log 4 1.781 2 + 0.87s + 0 โˆ’ | | Buildup Test Analysis t [=]โ„Ž [=] [=] [=] โ„Ž[=] [=] [=]STB/day Linear Plot (A & ) PSS Flow Transient Flow P 0 1:2 = 31.62 = 30.88 = 22.6 = 5.38 1:4 โˆ—โˆ—mT from semi-log plot [=] โˆ’1 , 2 = ft 2 Pressure time (hours) 0 200 400 600 m T =[psi/log cycle] = =[psi/hr] = 162.6 โ„Ž Field Units (โˆ’) โ†‘ = = ln ฮค + ln ฮค + (+) โ†“ Skin is unitless and specific to each well = 0.869|| = 2โ„Ž = transient slope

Reservoir Engineering Primary Recovery...Carter-Tracy (1960) Drive Indices - Constant terminal-rate solution - Incorporates transient and SSS flow - Preferred model for simulators

  • Upload
    others

  • View
    10

  • Download
    1

Embed Size (px)

Citation preview

  • ๐ฝ =2๐œ‹๐‘˜๐‘—โ„Ž

    ๐œ‡๐‘—๐ต๐‘— ln๐‘Ÿ๐‘’๐‘Ÿ๐‘ค

    + ๐‘  โˆ’12 โˆ’

    1 โˆ’ ๐‘“4

    Productivity Index

    ๐ฝ =2๐œ‹๐‘˜๐‘—โ„Ž

    ๐œ‡๐‘—๐ต๐‘—12

    ln4๐ด

    1.781๐ถ๐ด๐‘Ÿ๐‘ค2+ ๐‘ 

    ๐ฝ =๐‘ž

    เดค๐‘ƒ โˆ’ ๐‘ƒ๐‘ค๐‘“[=]

    ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’

    ๐‘๐‘ ๐‘– โ‹… ๐‘‘๐‘Ž๐‘ฆ

    J is constant after transient flow period

    Stages of Flow

    ๐‘ƒ๐‘ค๐‘“(๐‘ก) = ๐‘ƒ๐‘– โˆ’๐‘ž๐‘ ๐‘๐œ‡๐ต

    2๐œ‹๐‘˜โ„Ž

    1

    2ln

    4๐ด

    1.781๐ถ๐ด๐‘Ÿ๐‘ค2+

    2๐œ‹๐‘˜๐‘ก

    ๐œ™๐œ‡๐‘๐‘‡๐ด+ ๐‘ 

    - When pressure disturbance first approaches boundary

    - Short time period and difficult to model mathematically

    ๐‘ƒ1 โˆ’ ๐‘ƒ2 =๐‘ž๐œ‡

    2๐œ‹๐‘˜โ„Žln

    ๐‘Ÿ1๐‘Ÿ2

    โˆ’1 โˆ’ ๐‘“

    2

    ๐‘Ÿ1๐‘Ÿ๐‘’

    2

    โˆ’๐‘Ÿ2๐‘Ÿ๐‘’

    2

    ๐ธ๐‘–(โˆ’๐‘ฅ) = ln(๐‘ฅ) + ๐›พ โˆ’

    ๐‘›=1

    โˆž

    โˆ’1 ๐‘›๐‘ฅ๐‘›

    )๐‘›(๐‘›!

    ๐‘ƒ(๐‘Ÿ, ๐‘ก) = ๐‘ƒ1 +๐‘ž๐œ‡

    4๐œ‹๐‘˜โ„Ž๐ธ๐‘– โˆ’

    ๐œ™๐œ‡๐‘๐‘‡๐‘Ÿ2

    4๐‘˜๐‘ก

    1. Infinite Acting/Transient Flow

    ๐‘ž๐‘œ๐‘ ๐‘ =)2๐œ‹๐‘˜โ„Ž( เดค๐‘ƒ โˆ’ ๐‘ƒ๐‘ค

    ๐œ‡๐‘œ๐ต๐‘œ ln๐‘Ÿ๐‘’๐‘Ÿ๐‘ค

    โˆ’12 โˆ’

    1 โˆ’ ๐‘“4 + ๐‘ 

    2. Transitional/Late Transient Flow

    3. Stabilized Flow

    Pseudo/Semi SS

    Closed drainage boundary

    ๐‘“ = 00 < ๐‘“ < 1

    Actual Performance

    Steady State (SS)

    Open drainage boundary

    ๐‘“ = 1

    4. Depletion Flow

    - Pwf limit reached; wellโ€ฒs BHP held constant

    - Wellโ€™s flow rate begins to decline

    - Exponential decline can be derived (equations shown to the left)

    - Hyperbolic b-factor is empirical (refer to Decline Curve Analysis)

    PSS:

    **For gas flow, replace pressure with pseudopressure:

    ๐‘š(๐‘ƒ) = เถฑ๐‘ƒ๐‘Ÿ๐‘’๐‘“

    ๐‘ƒ 2๐‘ƒ

    ๐œ‡๐‘ง๐œ•๐‘ƒ

    ๐‘ก๐‘ =๐‘๐‘ก๐‘‰๐‘๐‘ž๐‘

    ๐‘ƒ๐‘– โˆ’ ๐‘ƒlim โˆ’๐‘๐‘ก๐‘‰๐‘

    ๐ฝ

    ๐‘๐‘ = ๐‘ž๐‘๐‘ก๐‘ +๐ฝ

    ๐œ†เดค๐‘ƒ๐‘ โˆ’ ๐‘ƒlim 1 โˆ’ ๐‘’

    โˆ’๐œ† ๐‘กโˆ’๐‘ก๐‘

    เดค๐‘ƒ ๐‘ก = ๐‘ƒ๐‘– โˆ’๐‘ž๐‘

    ๐‘๐‘ก๐‘‰๐‘๐‘ก

    เดค๐‘ƒ ๐‘ก = ๐‘ƒlim + เดค๐‘ƒ๐‘ โˆ’ ๐‘ƒlim ๐‘’โˆ’๐œ† ๐‘กโˆ’๐‘ก๐‘

    ๐‘ž = ๐ฝ เดค๐‘ƒ โˆ’ ๐‘ƒ๐‘ค๐‘“

    ๐‘ž = ๐ฝ เดค๐‘ƒ๐‘ โˆ’ ๐‘ƒlim ๐‘’โˆ’๐œ† ๐‘กโˆ’๐‘ก๐‘

    ๐‘ž๐‘ = โˆ’๐‘‰๐‘ƒ๐‘๐‘‡๐œ• เดค๐‘ƒ

    ๐œ•๐‘ก

    ๐œ†

    ๐œ† =๐ฝ

    ๐‘‰๐‘๐‘๐‘ก[=]๐‘กโˆ’1

    )๐ธ๐‘–(โˆ’๐‘ฅ) โ‰ˆ ln(๐‘’๐›พ๐‘ฅ

    Valid if ๐‘ฅ < 0.01

    ๐‘ƒ๐‘ค๐‘“ ๐‘ก โ‰ˆ ๐‘ƒ๐‘– โˆ’162.6๐‘ž๐‘ ๐‘๐ต๐œ‡

    ๐‘˜โ„Žlog ๐‘ก + log

    ๐‘˜

    ๐œ‡๐œ™๐‘๐‘ก๐‘Ÿ๐‘ค2โˆ’ 3.23

    Aquifer Models

    ๐บ๐‘“๐‘”๐‘–๐ธ๐‘” + ๐‘๐‘“๐‘œ๐‘–๐ธ๐‘œ + ๐‘Š๐ธ๐‘ค + ๐‘‰๐‘๐‘–๐ธ๐‘“ + เธ”๐‘Š๐‘’ = ๐บ๐‘ƒ โˆ’ ๐บ๐ผ๐ต๐‘” โˆ’ ๐ต๐‘œ๐‘…๐‘ฃ1 โˆ’ ๐‘…๐‘ฃ๐‘…๐‘ 

    + ๐‘๐‘ƒ๐ต๐‘œ โˆ’ ๐ต๐‘”๐‘…๐‘ 1 โˆ’ ๐‘…๐‘ฃ๐‘…๐‘ 

    + ๐‘Š๐‘ƒ โˆ’ ๐‘Š๐ผ ๐ต๐‘คFree-gas

    expansionFree-oil

    expansion

    Free-water expansion

    Rock expansion Net gas withdrawal Net oil withdrawal

    Net water withdrawalWater influx

    ๐บ๐‘ƒ = Cumulative Gas Produced = ๐‘ ๐‘๐‘“๐‘๐‘“๐‘œ๐‘– = Original free oil = ๐‘†๐‘‡๐ต๐บ๐‘“๐‘”๐‘– = Original free gas = ๐‘ ๐‘๐‘“

    Can combine free-water expansion and rock expansion into composite expansivity

    ๐‘๐‘‡ =๐‘๐‘“ + ๐‘๐‘ค๐‘†๐‘ค๐‘–

    1 โˆ’ ๐‘†๐‘ค๐‘–

    ๐ธ๐‘” = ๐ต๐‘ก๐‘” โˆ’ ๐ต๐‘ก๐‘”๐‘–๐ธ๐‘œ = ๐ต๐‘ก๐‘œ โˆ’ ๐ต๐‘ก๐‘œ๐‘–

    ๐‘Š =๐‘‰๐‘๐‘–๐‘†๐‘ค๐‘–

    ๐ต๐‘ค๐‘–๐ธ๐‘“ =

    ๐‘‰๐‘๐‘– โˆ’ ๐‘‰๐‘

    ๐‘‰๐‘๐‘–โ‰ˆ ๐‘๐‘“๐›ฅ๐‘ƒ ๐‘๐‘“ โ‰ˆ ๐‘๐‘ =

    1

    ๐œ™

    ๐œ•๐œ™

    ๐œ•๐‘ƒ๐‘‡

    ๐ธ๐‘ค = ๐ต๐‘ค๐‘–๐‘๐‘ค๐›ฅ๐‘ƒ

    ๐ธ๐‘œ๐‘ค๐‘“ = ๐ธ๐‘œ + ๐ต๐‘œ๐‘–๐‘๐‘‡๐›ฅ๐‘ƒ ๐ธ๐‘œ๐‘ค๐‘“ โ‰ˆ ๐ธ๐‘œ

    ๐ธ๐‘”๐‘ค๐‘“ โ‰ˆ ๐ธ๐‘”

    *๐‘–๐‘“ ๐‘๐‘ค ๐‘Ž๐‘›๐‘‘ ๐‘๐‘“ ๐‘Ž๐‘Ÿ๐‘’ ๐‘›๐‘’๐‘”๐‘™๐‘’๐‘๐‘ก๐‘’๐‘‘

    ๐บ๐ผ = Gas Injected = ๐‘ ๐‘๐‘“W๐‘’[=]๐‘…๐ต

    ๐ธ๐‘”๐‘ค๐‘“ = ๐ธ๐‘” + ๐ต๐‘”๐‘–๐‘๐‘‡๐›ฅ๐‘ƒ

    Original Free Oil EstimationP/z Plot โ€“ OGIP Estimation

    Plot applicable for undersaturated reservoirs with Volatile, Black, Undersaturated, or Dead Oils

    เดคP

    zi

    Water influx

    No water influx

    เดฅ๐

    ๐ณ

    เดคP

    zab

    ๐†๐ โˆ’ ๐†๐ˆ

    Gab = Gr

    G = OGIP

    เดค๐‘ƒ

    ๐‘ง=

    เธ–

    เดค๐‘ƒ

    ๐‘ง๐‘–

    โˆ’เดค๐‘ƒ

    ๐‘ง๐‘–

    1

    ๐บ๐บ๐‘ƒ โˆ’ ๐บ๐ผ

    intercept slope

    ๐‘…๐น =๐บ๐‘Ÿ๐บ

    Recovery factor

    ๐น = ๐‘๐‘“๐‘œ๐‘–๐ธ๐‘œ๐‘ค๐‘“ ๐บ๐‘“๐‘”๐‘– = 0

    Zero intercept

    slope = ๐‘๐‘“๐‘œ๐‘–

    Water influx

    No water influx

    ๐…

    ๐„๐จ๐ฐ๐Ÿ

    Carter-Tracy (1960)

    Drive Indices

    - Constant terminal-rate solution- Incorporates transient and SSS flow- Preferred model for simulators

    ๐‘Š๐‘’๐น

    = ๐ผ๐‘›๐‘ค๐‘‘

    ๐บ๐‘“๐‘”๐‘–๐ธ๐‘”

    ๐น= ๐ผgd

    ๐‘Še = ๐‘Šโ€ฒ(๐‘๐‘“ + ๐‘๐‘ค)๐›ฅ๐‘ƒ

    - Assumes instantaneous response- No time dimension

    - Assumes SSS relationship- Not applicable for transient response

    - Constant terminal-pressure solution- Time based (superposition principle)- Applicable for transient and SSS flow

    Fetkovitch (1971)

    Hurst and Van Everdingen (1949)

    ๐‘‘๐‘Š๐‘’๐‘‘๐‘ก

    = ๐ฝ ๐‘ƒ๐‘Ž โˆ’ เดค๐‘ƒ

    ๐‘Š๐‘’ = ๐ต ๐›ฅ๐‘ƒ๐‘„๐ท ๐‘ก๐ท

    Pot Aquifer (Coats, 1970)

    ๐‘Š๐ธ๐‘ค๐น

    +๐‘‰๐‘๐‘–๐ธ๐‘“

    ๐น= ๐ผ๐‘“๐‘ค๐‘‘

    Gas cap drive

    Solution gas drive

    Formation drive

    Natural water drive

    ๐‘๐‘“๐‘œ๐‘–๐ธ๐‘œ

    ๐น= ๐ผ๐‘ ๐‘‘

    **Different definition can be used to account for an artificial water drive

    Drive Indices must add up to 1.0

    ๐บ๐‘“๐‘”๐‘–๐ธ๐‘”๐‘ค๐‘“ + ๐‘๐‘“๐‘œ๐‘–๐ธ๐‘œ๐‘ค๐‘“ + ๐‘Š๐‘’ = ๐น = (๐บ๐‘ โˆ’ ๐บ๐ผ)๐ต๐‘” โˆ’ ๐ต๐‘œ๐‘…๐‘ฃ

    1 โˆ’ ๐‘…๐‘ฃ๐‘…๐‘ + ๐‘๐‘ƒ

    ๐ต๐‘œ โˆ’ ๐ต๐‘”๐‘…๐‘ 

    1 โˆ’ ๐‘…๐‘ฃ๐‘…๐‘ + (๐‘Š๐‘ƒ โˆ’ ๐‘Š๐ผ)๐ต๐‘ค

    ๐‘๐‘ = Cumulative Oil Produced = ๐‘†๐‘‡๐ต๐น = Reservoir Voidage[=]๐‘…๐ต๐ธ๐‘”๐‘ค๐‘“[=] เต—๐‘…๐ต

    ๐‘ ๐‘๐‘“ ๐ธ๐‘œ๐‘ค๐‘“[=] เต—๐‘…๐ต

    ๐‘†๐‘‡๐ต

    ๐๐’ˆ

    Compressibility Factor

    Black Oil Phase Diagram Undersaturated Reservoir Key Properties

    API Gravity

    ๐ด๐‘ƒ๐ผยฐ =141.5

    ๐›พโˆ’ 131.5

    Specific Gravity

    ๐›พ๐‘” =๐œŒ๐‘”

    ๐œŒ๐‘Ž๐‘–๐‘Ÿ ๐‘†๐ถ=

    ๐‘€๐‘”

    ๐‘€๐‘Ž๐‘–๐‘Ÿ

    ๐›พ๐‘œ =๐œŒ๐‘œ๐œŒ๐‘ค ๐‘†๐ถ

    Relate ๐ต๐‘” to z-factor

    ๐‘ƒ = ๐‘๐‘ ๐‘–๐‘Ž ๐‘‡ = ๐‘…

    Pressure Dependent Fluid Properties

    ๐๐จ

    BP

    400 800 1200 1600

    Pressure (psi)

    ๐๐ญ๐จ40

    20

    60

    1

    1.5

    1.1

    1.20.02

    ๐‘ƒ๐‘‰ = ๐‘ง๐‘๐‘…๐‘‡ 0.04

    Pressure (psi)

    0.02

    0.03

    0.01

    400 800 1200 16000.01

    ๐‘ฉ๐’ˆ

    1.1 โ€“ Free Gas1.2 โ€“ Volatilized Oil2.1 โ€“ Solution Gas2.2 โ€“ Free Oil1 โ€“ Gaseous Phase (Gas + Volatilized Oil)2 โ€“ Oleic Phase (Oil + Solution Gas)

    Oil

    Pis

    ton

    ๐ต๐‘ก๐‘” =เตฏ๐ต๐‘”(1 โˆ’ ๐‘…๐‘ฃ๐‘–๐‘…๐‘ ) + ๐ต๐‘œ(๐‘…๐‘ฃ๐‘– โˆ’ ๐‘…๐‘ฃ

    1 โˆ’ ๐‘…๐‘ ๐‘…๐‘ฃ

    ๐ต๐‘ก๐‘œ =เตฏ๐ต๐‘œ(1 โˆ’ ๐‘…๐‘ ๐‘–๐‘…๐‘ฃ) + ๐ต๐‘”(๐‘…๐‘ ๐‘– โˆ’ ๐‘…๐‘ 

    1 โˆ’ ๐‘…๐‘ ๐‘…๐‘ฃ

    ๐ถ๐‘œ =๐‘†๐‘œ๐ต๐‘œ

    +๐‘†๐‘”

    ๐ต๐‘”๐‘…๐‘ฃ

    ๐ถ๐‘” =๐‘†๐‘”

    ๐ต๐‘”+

    ๐‘†๐‘œ๐ต๐‘œ

    ๐‘…๐‘ 

    Reservoir Conditions

    ๐ถ๐‘— =๐‘†๐‘‡๐ต

    ๐‘…๐ต

    P > BP

    Oleic

    Gaseous

    AqueousCapillary Pressure creates

    transition zone between phases

    Surface Conditions

    P < BP

    Isothermal

    ๐ต๐‘” =

    ๐ต๐‘œ = ๐‘…๐‘  =

    ๐‘…๐‘ฃ =1

    2

    2

    1

    ๐ต๐‘ก๐‘œ = [=]๐‘…๐ต

    ๐‘†๐‘‡๐ต

    +

    +

    ๐ต๐‘ก๐‘” = [=]๐‘…๐ต

    ๐‘ ๐‘๐‘“+

    +

    Component ConcentrationsLegend

    OIL

    2

    21

    1

    1.1 1.1 1.1

    1.1

    2.12.1

    2.1

    2.2 2.2 2.2 2.21.2

    1.2

    1.2

    ๐ต๐‘œ[=] เต—๐‘…๐ต

    ๐‘†๐‘‡๐ต ๐ต๐‘”[=] เต—๐‘Ÿ๐‘๐‘“

    ๐‘ ๐‘๐‘“๐‘…๐‘ [=] เต—๐‘ ๐‘๐‘“

    ๐‘†๐‘‡๐ต๐‘…๐‘ฃ[=] เต—

    ๐‘†๐‘‡๐ต๐‘ ๐‘๐‘“

    Gas

    Oil

    Gas

    Gas

    Oil

    ๐ถ๐‘ค =๐‘†๐‘Š๐ต๐‘Š

    ๐ต๐‘” =๐‘ƒ๐‘†๐ถ

    ๐‘‡๐‘†๐ถ๐‘ง๐‘‡

    ๐‘ƒ[=]

    ๐‘Ÿ๐‘๐‘“

    ๐‘ ๐‘๐‘“

    1 kPa = 0.1450 psi1 MPa = 10 bar1 atm = 14.696 psi1 atm = 1.013 bar

    1 in = 2.54 cm1 ft = 0.3048 m1 mile = 5,280 ft

    1 m3 = 6.2898 bbl1 bbl = 5.6146 ft3

    1 bbl = 42 US gal1 ft3 = 7.4805 gal

    R = 459.67 + ยฐFK = 273.15 + ยฐCยฐF = 1.8 ยฐC + 32

    1 acre = 43,560 ft2

    1 m2 = 10.764 ft2

    1 Darcy = 9.8692 x 10-9 cm2

    Euler (ฮณ) = 0.5772 = ln(1.781)

    Gravitational Constant = 9.806 m/s2

    Natural logarithm base = 2.71828

    Gas Constant = 8.314 ฮคPa โ‹… m3 mol K

    1 g/cm3 = 62.428 lbm /ft3

    1 dyne = 2.248 x 10-6 lbf

    1 mD/cp = 6.33 x 10-3 ft2/psi-day

    1 lbm = 453.592 g

    1 cp = 1.0 mPa-s

    1 ฮคkg l = 8.347 ฮคlbm gal

    1000 ฮคkg m3 = 0.4335 ฮคpsi ft

    1 Newton = 1 x 105 dynes

    1 Darcy = 1.0623 x 10-11 ft2

    Standard Temperature = 60ยฐF

    Standard Pressure = 14.696 psia

    Water densityโ€‰at SC = 62.37 ฮคlbm ft3

    Molar Mass of Air = 28.966 g/mol

    VMIG = 379.3 ฮคscf lbmol @ 14.696 psia

    Univ. Gas = 10.732 ฮคpsia โ‹… ft3 lbmol โ‹… R

    ๐‘ =

    ๐‘›=1

    5

    ๐‘‰๐‘›๐œ™๐‘›๐‘†๐‘œ๐‘›๐ต๐‘œ

    Volumetrics

    ๐‘‰1 = โ„Ž๐ด0 + ๐ด10

    2

    Isopach Map

    Each contour line represents a line of constant thickness in the reservoir

    4030

    50

    2010

    50

    0

    ๐‘‰๐‘ = ๐ดโ„Ž๐œ™

    ๐‘†๐‘œ = average oil saturation๐‘‰๐‘ = reservoir pore volume

    ๐‘‰2 = โ„Ž๐ด10 + ๐ด20

    2

    ๐‘ = เต˜๐‘‰๐‘๐‘†๐‘œ

    ๐ต๐‘œ[=]๐‘†๐‘‡๐ต ๐บ = เต˜

    ๐‘‰๐‘๐‘†๐‘”๐ต๐‘”

    [=]๐‘ ๐‘๐‘“

    Pressure

    Material Balance Equation

    Formation Skin

    Decline Curve Analysis

    Cumulative Recovery ๐‘๐‘

    Reservoir FluidsConversions and Constants

    ๐›ผ๐‘‡ is usually 0.01 โˆ’ .02ยฐ๐น/๐‘“๐‘ก

    ๐‘‡ = ๐‘‡๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ + ๐›ผ๐‘‡๐‘ง

    ๐‘ƒ = ๐‘ƒ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ + ๐›ผ๐‘ƒ๐‘ง

    ๐‘ง = depth ๐›ผ๐‘ƒ = ๐œŒ๐‘“๐‘”D

    epth

    Gas Kick

    OWOC

    OGOC

    ๐œŒ๐‘œ๐‘”

    ๐œŒ๐‘ค๐‘”๐œŒ๐บ๐‘”

    Normal Pressure Gradient

    ๐›ผ๐‘ƒ =

    0.433๐‘๐‘ ๐‘–

    ๐‘“๐‘กifโ€‰freshโ€‰H2O

    0.465๐‘๐‘ ๐‘–

    ๐‘“๐‘กifโ€‰brine

    Well Testing

    ๐‘๐‘ก = ๐‘๐‘“ + ๐‘๐‘“๐‘™๐‘ข๐‘–๐‘‘

    ๐ต =๐œŒ๐‘†๐ถ๐œŒ๐‘…๐ถ

    Diffusivity EquationMass Balance leads to Continuity Equation

    โˆ’1

    ๐‘Ÿ

    )๐œ•(๐œŒ๐‘Ÿ๐‘ข๐‘Ÿ๐œ•๐‘Ÿ

    =)๐œ•(๐œŒ๐œ™

    ๐œ•๐‘กโˆ’

    )๐œ•(๐œŒ๐‘ข๐‘ฅ๐œ•๐‘ฅ

    =)๐œ•(๐œŒ๐œ™

    ๐œ•๐‘ก

    Introduce Darcyโ€™s Law

    Introduce Formation Volume Factor

    Introduce Compressibility

    Introduce Diffusivity Constant ๐›ผ =๐‘˜

    ๐œ‡๐œ™๐‘๐‘ก

    ๐œ•๐‘ƒ

    ๐œ•๐‘ก=

    ๐›ผ

    ๐‘Ÿ

    ๐œ•

    ๐œ•๐‘Ÿ๐‘Ÿ

    ๐œ•๐‘ƒ

    ๐œ•๐‘Ÿ

    1D Diffusivity Equation

    ๐‘๐‘“๐‘™๐‘ข๐‘–๐‘‘ = ๐ต๐œ•

    ๐œ•๐‘ƒ

    1

    ๐ต๐‘๐‘“ =

    1

    ๐œ™

    ๐œ•๐œ™

    ๐œ•๐‘ƒ๐‘‡

    ๐œ•๐‘ƒ

    ๐œ•๐‘ก= ๐›ผ

    ๐œ•2๐‘ƒ

    ๐œ•๐‘ฅ2

    ๐‘ข๐‘Ÿ = โˆ’๐‘˜

    ๐œ‡๐›ป๐‘ƒ = โˆ’

    ๐‘˜

    ๐œ‡

    ๐œ•๐‘ƒ

    ๐œ•๐‘Ÿ

    โˆ’๐›ป(๐œŒ๐‘ข) =)๐œ•(๐œŒ๐œ™

    ๐œ•๐‘ก

    ๐œ•๐‘ƒ

    ๐œ•๐‘ก= ๐›ผ ๐›ป2๐‘ƒ

    Reservoir Pressure and Temperature

    ๐‘๐‘ = เถฑ๐‘ก=0

    ๐‘ก

    ๐‘ž(๐‘ก)๐‘‘๐‘ก

    ๐‘ž = ๐‘ž๐‘–๐‘’โˆ’๐ท๐‘–๐‘ก

    ๐‘ž =๐‘ž๐‘–

    1 + ๐‘๐ท๐‘–๐‘กฮค1 ๐‘

    ๐‘๐‘ =๐‘ž๐‘–

    ๐‘

    )๐ท๐‘–(1 โˆ’ ๐‘๐‘ž๐‘–

    1โˆ’๐‘ โˆ’ ๐‘ž1โˆ’๐‘ ๐ท = ๐ท๐‘–๐‘ž

    ๐‘ž๐‘–

    ๐‘

    ๐‘๐‘ =๐‘ž๐‘– โˆ’ ๐‘ž

    ๐ท๐‘–๐ท = ๐ท๐‘–

    ๐‘๐‘ =๐‘ž๐‘–๐ท๐‘–

    ln๐‘ž๐‘–๐‘ž

    Rate ๐‘žb-factor Cumulative Recovery ๐‘๐‘ Decline Rate ๐ท

    Exponential

    Hyperbolic

    Harmonic

    ๐‘ = 0

    ๐‘ = 1

    0 < ๐‘ < 1

    ๐‘ž =๐‘ž๐‘–

    (1 + ๐ท๐‘–๐‘ก)๐ท = ๐ท๐‘–

    ๐‘ž

    ๐‘ž๐‘–

    0 0

    ODE: โˆ’1

    ๐‘ž

    ๐‘‘๐‘ž

    ๐‘‘๐‘ก= ๐ท๐‘–

    ๐‘ž

    ๐‘ž๐‘–

    ๐‘; ๐‘ž = ๐‘ž๐‘– @๐‘ก = 0;

    ๐ท๐‘–

    ๐‘ž๐‘–๐‘ เถฑ

    ๐‘ก=0

    ๐‘ก

    ๐‘‘๐‘ก = โˆ’ เถฑ๐‘ž๐‘–

    ๐‘ž ๐‘‘๐‘ž

    ๐‘ž๐‘+1

    Time Time

    Pro

    du

    ctio

    n R

    ate

    (q)

    Pro

    du

    ctio

    n R

    ate

    (q)

    Economic Limit

    Economic LimitAs b-factor increases, wellโ€™s economic life increases

    EL

    ๐‘ = 1๐‘ = 0 ๐‘ = 0.5

    EL๐‘ = 1๐‘ = 0 ๐‘ = 0.5

    ๐‘ = 1๐‘ = 0 ๐‘ = 0.5

    00

    Rec

    ov

    ery

    ๐‘

    ๐‘

    Reservoir Engineering โ€“ Primary Recovery

    Created by James Riddle with guidance from Dr. Matthew T. Balhoff and contributions from Jenny Ryu and Matt Mlynski

    100

    1000

    10

    1

    100

    1000

    10

    1

    Contact [email protected] with comments/suggestions

    (Arps, 1940)

    Fluid Type ๐†๐Ÿ๐ ๐ข ๐๐Ÿ๐จ๐ข ๐†๐ฉ ๐๐ฉ ๐‘๐ฏ ๐‘๐ฌDry Gas >0 0 >0 0 0 --Wet Gas >0 0 >0 >0 Rvi 0

    Condensate >0 0 >0 >0 >0 0Volatile Oil 0 >0 >0 >0 >0 >0Black Oil 0 >0 >0 >0 0 >0Undersaturated Oil 0 >0 >0 >0 0 RsiDead Oil 0 >0 0 >0 -- 0

    Drawdown Test Analysis

    ๐‘ƒ๐‘ค๐‘  = ๐‘ƒ๐‘– โˆ’162.6๐ต|๐‘ž๐‘ ๐‘|๐œ‡

    ๐‘˜โ„Žlog

    ๐‘ก๐‘ + ๐›ฅ๐‘ก

    ๐›ฅ๐‘ก

    ๐‘˜ = 162.6๐‘ž๐‘ ๐‘๐ต๐‘œ๐œ‡

    โ„Ž๐‘š๐‘๐‘ข

    1 10 100 1000

    Semi-log Plot (k & s)

    P1

    PSS Flow

    Well Storage

    Transient Flow

    Pre

    ssu

    re

    time (hours)

    ๐‘  = 1.151๐‘ƒ๐‘ค๐‘ ,1 โˆ’ ๐‘ƒ๐‘ค๐‘“

    |๐‘š๐‘๐‘ข|โˆ’ log

    ๐‘˜๐‘œ๐œ‡๐‘œ๐‘๐‘ก๐‘Ÿ๐‘ค

    2๐œ™+ 3.23

    mbu = [psi/log cycle]

    10000 1000 100 10

    Pre

    ssu

    re

    Semi-log Plot (k & s)

    Horner time เตซ๐‘ก๐‘ + ๐›ฅ๐‘ก ฮค) ๐›ฅ ๐‘ก

    ๐‘ƒ๐‘ค๐‘ ,1

    ๐›ฅ๐‘ก = 1

    ๐ด =๐‘ž๐‘ ๐‘๐ต๐‘œ

    ๐‘๐‘กโ„Ž๐œ™๐‘š๐‘ ๐‘ [=]consistentโ€‰units

    ๐œ‡[=]๐‘๐‘

    ๐‘  = 1.151๐‘ƒ๐‘– โˆ’ ๐‘ƒ1

    |๐‘š๐‘‡|โˆ’ log

    ๐‘˜๐‘œ๐œ‡๐‘œ๐‘๐‘ก๐‘Ÿ๐‘ค

    2๐œ™+ 3.23

    ๐‘˜[=]๐‘š๐‘‘

    ๐‘๐‘ก[=]๐‘๐‘ ๐‘–โˆ’1

    ๐‘ž๐‘ ๐‘[=]STB/day

    ๐‘ƒ[=]๐‘๐‘ ๐‘–

    โ„Ž[=]๐‘“๐‘ก

    ๐‘Ÿ๐‘ค[=]๐‘“๐‘ก

    log๐ถ๐ด = log4๐ด

    1.781๐‘Ÿ๐‘ค2 + 0.87s +

    ๐‘ƒ0 โˆ’ ๐‘ƒ๐‘–|๐‘š๐‘‡|

    Buildup Test Analysis

    t๐‘[=]โ„Ž๐‘Ÿ

    ๐‘˜[=]๐‘š๐‘‘

    ๐‘ƒ[=]๐‘๐‘ ๐‘–

    ๐œ‡[=]๐‘๐‘

    โ„Ž[=]๐‘“๐‘ก

    ๐‘Ÿ๐‘ค[=]๐‘“๐‘ก

    ๐‘ž๐‘ ๐‘[=]STB/day

    Linear Plot (A & ๐ถ๐ด)

    PSS Flow

    Transient Flow

    P0

    1:2

    ๐ถ๐ด = 31.62

    ๐ถ๐ด = 30.88 ๐ถ๐ด = 22.6

    ๐ถ๐ด = 5.381:4

    โˆ—โˆ—mT from semi-log plot

    ๐‘๐‘ก[=]๐‘๐‘ ๐‘–โˆ’1

    ๐ด, ๐‘Ÿ๐‘ค2 = ft2

    Pre

    ssu

    re

    time (hours)0 200 400 600

    mT =[psi/log cycle]

    ๐‘ก๐‘ =๐‘๐‘

    ๐‘ž๐‘ ๐‘

    ๐‘š๐‘ ๐‘ =[psi/hr]

    ๐‘˜ = 162.6๐‘ž๐‘ ๐‘๐ต๐‘œ๐œ‡

    โ„Ž๐‘š๐‘‡

    Field Units

    (โˆ’)๐‘†๐‘˜๐‘–๐‘› ๐‘ž โ†‘

    ๐‘ž๐‘ ๐‘ก๐‘–๐‘š๐‘ž๐‘œ๐‘Ÿ๐‘–๐‘”

    =๐ฝ๐‘ ๐‘ก๐‘–๐‘š๐ฝ๐‘œ๐‘Ÿ๐‘–๐‘”

    =ln ฮค๐‘Ÿ๐‘’ ๐‘Ÿ๐‘ค + ๐‘ ๐‘œ๐‘Ÿ๐‘–๐‘”

    ln ฮค๐‘Ÿ๐‘’ ๐‘Ÿ๐‘ค + ๐‘ ๐‘ ๐‘ก๐‘–๐‘š

    (+)๐‘†๐‘˜๐‘–๐‘› ๐‘ž โ†“

    Skin is unitless and specific to each well

    ๐›ฅ๐‘ƒ๐‘ ๐‘˜๐‘–๐‘› = 0.869|๐‘š|๐‘ 

    ๐›ฅ๐‘ƒ๐‘ ๐‘˜๐‘–๐‘› =๐‘ž๐‘ ๐‘๐ต๐œ‡

    2๐œ‹๐‘˜โ„Ž๐‘ 

    ๐‘š = transient slope

  • Darcyโ€™s Law for Multiple Phases

    1D: ๐‘ข๐‘— = โˆ’๐‘˜๐‘˜๐‘Ÿ๐‘—

    ๐œ‡๐‘—

    ๐œ•๐‘ƒ๐‘—

    ๐œ•๐‘ฅ+ ๐œŒ๐‘—๐‘”sin๐›ผ

    ๐‘“๐‘ค =1 +

    ๐‘˜๐‘˜๐‘Ÿ๐‘œ๐‘ข๐œ‡๐‘œ

    ๐œ•๐‘ƒ๐‘๐œ•๐‘ฅ

    โˆ’ ๐›ฅ๐œŒ๐‘”sin๐›ผ

    1 +๐‘˜๐‘Ÿ๐‘œ๐œ‡๐‘ค๐‘˜๐‘Ÿ๐‘ค๐œ‡๐‘œ

    1 โˆ’ ๐‘๐‘”sin๐›ผ

    1 +๐‘˜๐‘Ÿ๐‘œ๐œ‡๐‘ค๐‘˜๐‘Ÿ๐‘ค๐œ‡๐‘œ

    1

    1 +๐‘˜๐‘Ÿ๐‘œ/๐œ‡๐‘œ๐‘˜๐‘Ÿ๐‘ค/๐œ‡๐‘ค

    1D flow of oil and water๐‘— = phase

    ๐œ™๐œ•๐‘†๐‘—

    ๐œ•๐‘ก+

    ๐œ•๐‘ข๐‘—

    ๐œ•๐‘ฅ= 0

    ๐‘ข๐‘— = โˆ’๐‘˜๐‘Ÿ๐‘—

    ๐œ‡๐‘—เทจ๐‘˜ ๐›ป๐‘ƒ๐‘— + ๐œŒ๐‘—๐‘”๐›ปโ„Ž

    Mass Balance for Multiphase

    if constant ๐œ™, ๐œŒ๐‘—

    ๐‘“๐‘— =๐‘ข๐‘—

    ๐‘ข๐‘ข๐‘— =

    ๐‘ž๐‘—

    ๐ด๐‘ข = ๐‘ข๐‘—

    ๐œ™๐œ•๐‘†๐‘—

    ๐œ•๐‘ก+ ๐‘ข

    ๐œ•๐‘“๐‘—

    ๐œ•๐‘ฅ= 0

    ๐œ•๐‘ƒ๐‘๐œ•๐‘ฅ

    =๐œ•๐‘ƒ๐‘œ๐œ•๐‘ฅ

    โˆ’๐œ•๐‘ƒ๐‘ค๐œ•๐‘ฅ

    ๐‘“๐‘— = 1

    ๐‘ข๐‘œ + ๐‘ข๐‘ค๐‘ข

    = 1

    Combine Darcyโ€™s Law, definition of fractional flow, and capillary pressure

    Introduce capillary pressure

    Fractional Flow Derivation

    ๐‘๐‘” =๐‘˜๐‘˜๐‘Ÿ๐‘œ๐›ฅ๐œŒ๐‘”

    ๐‘ข๐œ‡๐‘œ

    ๐›ผ = rsvr dipโ€‰angle

    if

    ๐‘ƒ๐‘ = 0

    Multiphase Flow

    if

    ๐›ผ = 0

    ๐›ผ = dispersivity

    Miscible DisplacementMechanisms of Mixing

    1. Molecular Diffusion ๐ท๐‘š

    ๐ท๐‘’ =๐ท๐‘š๐œ

    =๐ท๐‘š๐น๐œ™

    2. Convective Mixing (Dispersion)

    3. Small Scale Permeability Variations

    ๐พ๐ฟ >> ๐พ๐‘‡

    ๐น =๐‘Ž

    ๐œ™๐‘š

    ๐œ = tortuosity

    ๐พ๐‘‡ = ๐ท๐‘’ + ๐›ผ๐‘‡๐‘ฃ๐›ฝ๐‘‡

    ๐พ๐ฟ = ๐ท๐‘’ + ๐›ผ๐ฟ๐‘ฃ๐›ฝ๐ฟLongitudinal

    Transverse

    ๐ถ๐ท =1

    2๐‘’๐‘Ÿ๐‘“

    )๐‘ฅ โˆ’ ๐‘ฃ(๐‘ก โˆ’ ๐‘ก๐‘ 

    )4๐พ๐ฟ(๐‘ก โˆ’ ๐‘ก๐‘ โˆ’ ๐‘’๐‘Ÿ๐‘“

    ๐‘ฅ โˆ’ ๐‘ฃ๐‘ก

    4๐พ๐ฟ๐‘ก

    )๐‘’๐‘Ÿ๐‘“๐‘(๐‘›) = 1 โˆ’ ๐‘’๐‘Ÿ๐‘“(๐‘›

    ๐ถ๐ท =๐‘ โˆ’ ๐‘๐‘–

    ๐‘๐‘–๐‘›๐‘— โˆ’ ๐‘๐‘–

    ๐ถ๐‘’ = ๐ถ๐ท|๐‘‹๐‘‘=1

    Convection - Dispersion

    +๐‘’๐‘ฅ๐‘‘๐‘๐‘ƒ๐‘’

    2๐‘’๐‘Ÿ๐‘“๐‘

    ๐‘ฅ๐‘‘ + ๐‘ก๐‘‘

    2 ฮค๐‘ก๐‘‘ ๐‘๐‘ƒ๐‘’

    ๐ถ๐ท(๐‘ฅ๐‘‘,๐‘ก๐‘‘) =1

    2๐‘’๐‘Ÿ๐‘“๐‘

    ๐‘ฅ๐‘‘ โˆ’ ๐‘ก๐‘‘

    2 ฮค๐‘ก๐‘‘ ๐‘๐‘๐‘’

    2nd term negligible

    ๐œ•๐ถ๐ท๐œ•๐‘ก๐‘‘

    +๐œ•๐ถ๐ท๐œ•๐‘ฅ๐‘‘

    โˆ’1

    ๐‘๐‘ƒ๐‘’

    ๐œ•2๐ถ๐ท

    ๐œ•๐‘ฅ๐‘‘2 = 0

    ๐ถ๐ท = 0.5โ€‰โ€‰whenโ€‰โ€‰๐‘ก๐‘‘ = 1

    Pulse/Slug Injection (from time 0 to ๐‘ก๐‘ )

    ๐›ฅ๐‘ฅ๐‘‘ = 3.625๐‘ก๐‘‘

    ๐‘๐‘ƒ๐‘’

    Co

    nce

    ntr

    atio

    n ๐ถ

    ๐ท

    Dimensionless Distance ๐‘ฅ๐‘‘

    Effect of Peclet Number

    ๐‘๐‘ƒ๐‘’ = 1000

    ๐‘๐‘ƒ๐‘’ = 10๐‘๐‘ƒ๐‘’ = 100

    ๐‘๐‘ƒ๐‘’ =๐‘ข๐ฟ

    ๐œ™๐›ซ๐ฟโ‰ก

    ๐ฟ

    ๐›ผ๐ฟ

    ๐‘ก๐‘‘ = 0.5

    ๐‘ฅ๐‘‘ =๐‘ฅ

    ๐ฟ๐‘ก๐‘‘ =

    ๐‘ข๐‘ก

    ๐œ™๐ฟ

    ๐‘ฅ๐‘‘|๐ถ๐ท=0.1 โˆ’ ๐‘ฅ๐‘‘|๐ถ๐ท=0.9 = ๐›ฅ๐‘ฅ๐‘‘

    ๐›ฅ๐‘ฅ๐‘‘ = widthโ€‰ofโ€‰mixingโ€‰zone๐ถ๐ท = 0.1

    ๐ถ๐ท = 0.9

    ๐ท๐‘’ = effective diffusivity

    ๐‘ฃ =๐‘ข

    ๐œ™

    ๐พ = dispersioncoefficient

    ๐พ๐ฟ

    )ln(๐‘ฃ

    Diffusion and Dispersion

    Diffusion controls

    Dispersion controls

    ๐›ฝ๐‘‡ โ‰… 1.2

    ๐‘Š๐‘– > ๐‘Š๐‘–,100 ๐ธ๐ด = 1

    ๐‘Š๐‘–,100 = ๐‘Š๐‘–,๐ต๐‘‡๐‘’1โˆ’๐ธ๐ด,๐ต๐‘‡

    0.274

    ๐‘“๐‘ค|๐‘†๐‘ค2 =๐‘Š๐‘‚๐‘…

    ๐‘Š๐‘‚๐‘… + 1

    ๐‘„๐‘–โˆ— = ๐‘„๐‘–,100

    โˆ— +๐‘Š๐‘– โˆ’ ๐‘Š๐‘–,100

    ๐‘‰๐‘

    Buckley-Leverett Extension to 2-D๐‘Š๐‘– < ๐‘Š๐‘–,๐ต๐‘‡ ๐‘Š๐‘–,๐ต๐‘‡ < ๐‘Š๐‘– < ๐‘Š๐‘–,100Definitions

    ๐‘„๐‘–โˆ— =

    ๐‘Š๐‘–๐‘‰๐‘๐ธ๐ด

    =1

    ๐‘“๐‘คโ€ฒ |๐‘†๐‘ค2

    ๐‘†๐‘ค2 = ๐‘†๐‘ค5 = ๐‘†๐‘ค๐‘ = ๐‘†๐‘ค|๐‘ฅ๐‘‘=1

    ๐‘Š๐‘–,๐ต๐‘‡ = ๐‘‰๐‘๐ธ๐ด,๐ต๐‘‡ าง๐‘†๐‘ค๐‘“ โˆ’ ๐‘†๐‘ค๐‘– = ๐‘๐‘ƒ,๐ต๐‘‡

    ๐ธ๐ด,๐ต๐‘‡ = 0.546 +.0317

    ๐‘€ าง๐‘ +

    0.30223

    ๐‘’๐‘€เดค๐‘ โˆ’ .005097๐‘€ าง๐‘ 

    ๐‘„๐‘–,๐ต๐‘‡โˆ— =

    ๐‘Š๐‘–,๐ต๐‘‡๐‘‰๐‘๐ธ๐ด

    = าง๐‘†๐‘ค๐‘“ โˆ’ ๐‘†๐‘ค๐‘–

    ๐ธ๐ด = ๐ธ๐ด,๐ต๐‘‡ + 0.274ln ฮค๐‘Š๐‘– ๐‘Š๐‘–,๐ต๐‘‡

    ๐‘„๐‘–โˆ— = effective ๐‘ก๐‘‘

    ๐‘Ž1 = 3.65๐ธ๐ด,๐ต๐‘‡ ๐‘Ž2 = ๐‘Ž1 + ln ฮค๐‘Š๐‘– ๐‘Š๐‘–,๐ต๐‘‡

    ๐‘๐‘ƒ = าง๐‘†๐‘ค2 โˆ’ ๐‘†๐‘ค๐‘– ๐‘‰๐‘

    ๐‘๐‘ƒ = าง๐‘†๐‘ค2 โˆ’ ๐‘†๐‘ค๐‘– ๐ธ๐ด๐‘‰๐‘; าง๐‘†๐‘ค2 = ๐‘†๐‘ค2 + ๐‘„๐‘–โˆ— 1 โˆ’ ๐‘“๐‘ค2

    ๐‘„๐‘–โˆ— = ๐‘„๐‘–,๐ต๐‘‡

    โˆ— 1 + ๐‘Ž1๐‘’โˆ’๐‘Ž1 ๐ธ๐‘– ๐‘Ž2 โˆ’ ๐ธ๐‘– ๐‘Ž1

    าง๐‘†๐‘ค2 = าง๐‘†๐‘ค5 = าง๐‘†๐‘ค าง๐‘†๐‘ค๐‘“ = แˆ˜๐‘†๐‘ค

    ๐‘€ าง๐‘  =๐œ†๐‘Ÿ๐‘ค + ๐œ†๐‘Ÿ๐‘œ | าง๐‘†๐‘ค๐‘“๐œ†๐‘Ÿ๐‘ค + ๐œ†๐‘Ÿ๐‘œ |๐‘†๐‘ค๐‘–

    ๐œ•๐‘๐‘ƒ๐‘ข๐œ•๐‘Š๐‘–

    =1

    ๐‘Š๐‘–

    0.274๐‘Š๐‘–,๐ต๐‘‡ ๐‘†๐‘ค๐‘“ โˆ’ ๐‘†๐‘ค๐‘–

    ๐ธ๐ด,๐ต๐‘‡ าง๐‘†๐‘ค๐‘“ โˆ’ ๐‘†๐‘ค๐‘–

    - For low viscosity oil or condensate (NI/NP) > 1

    - For similar fluid viscosities (NI/NP) = 1

    Well Patterns

    5-spot (NI/NP) = 1

    - For viscous oil (NI/NP) < 1

    Rules of Thumb

    Injector

    Producer

    ๐‘Š๐‘‚๐‘… =๐‘“๐‘ค|๐‘†๐‘ค๐‘ 1 โˆ’ เต—

    ๐œ•๐‘๐‘ƒ๐‘ข๐œ•๐‘Š๐‘–

    1 โˆ’ ๐‘“๐‘ค|๐‘†๐‘ค๐‘ 1 โˆ’ เต—๐œ•๐‘๐‘ƒ๐‘ข

    ๐œ•๐‘Š๐‘–+ เต—

    ๐œ•๐‘๐‘ƒ๐‘ข๐œ•๐‘Š๐‘–

    Reservoir Simulation

    Improved Oil Recovery

    Created by James Riddle with guidance from Dr. Matthew T. Balhoff and contributions from Jenny Ryu and Matt Mlynski Contact [email protected] with comments/suggestions

    Reservoir Engineering โ€“ Improved Recovery

    ๐’Š ๐’Š + ๐Ÿ ๐’Š + ๐Ÿ๐‘ƒ, ๐›ท, ๐‘†๐‘ค , ๐ต

    ๐ด, ๐‘˜, ๐œ‡๐‘– = 1

    ๐‘˜๐‘Ÿ๐œ‡๐ต

    ๐‘–+12

    =

    ๐‘˜๐‘Ÿ ๐‘†๐‘ค,๐‘–+1๐œ‡ ๐‘ƒ๐‘–+1 ๐ต ๐‘ƒ๐‘–+1

    if ๐›ท๐‘–+1 > ๐›ท๐‘–

    ๐‘˜๐‘Ÿ ๐‘†๐‘ค,๐‘–

    ๐œ‡ ๐‘ƒ๐‘– ๐ต ๐‘ƒ๐‘–if ๐›ท๐‘– > ๐›ท๐‘–+1

    เตฏ๐‘˜๐‘Ÿ(๐‘†๐‘ค,๐‘–เตฏ๐‘˜๐‘Ÿ(๐‘†๐‘ค,๐‘–+1

    Upwinding Harmonic Mean

    ๐‘˜๐ด

    ๐›ฅ๐‘ฅ๐‘–+

    12

    =2๐‘˜๐‘–๐ด๐‘–๐‘˜๐‘–+1๐ด๐‘–+1

    ๐‘˜๐‘–๐ด๐‘–๐›ฅ๐‘ฅ๐‘–+1 + ๐‘˜๐‘–+1๐ด๐‘–+1๐›ฅ๐‘ฅ๐‘–

    Heterogeneities

    ๐‘‡๐‘–+

    12

    =๐‘˜๐‘Ÿ๐œ‡๐ต

    ๐‘–+12

    ๐‘˜๐ด

    ๐›ฅ๐‘ฅ๐‘–+

    12

    ๐‘‡ =๐‘˜๐ด

    ๐œ‡๐ต๐‘ค๐›ฅ๐‘ฅ

    Finite Differences Approximation

    ๐‘“(๐‘ฅ + ๐›ฅ๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐‘“โ€ฒ(๐‘ฅ)๐›ฅ๐‘ฅ +1

    2!๐‘“โ€ณ(๐‘ฅ)๐›ฅ๐‘ฅ2 +

    1

    3!๐‘“"โ€ฒ(๐‘ฅ)๐›ฅ๐‘ฅ3+. . .Taylor Series:

    ErrorDeriv.

    )๐‘‚(๐›ฅ๐‘ก

    )๐‘‚(๐›ฅ๐‘ก2

    )๐‘‚(๐›ฅ๐‘ฅ2

    )๐‘‚(๐›ฅ๐‘ก

    FD ApproximationType

    )๐‘ƒ(๐‘ก + ๐›ฅ๐‘ก) โˆ’ ๐‘ƒ(๐‘ก

    ๐›ฅ๐‘ก

    )๐‘ƒ(๐‘ก) โˆ’ ๐‘ƒ(๐‘ก โˆ’ ๐›ฅ๐‘ก

    ๐›ฅ๐‘ก

    )๐‘ƒ(๐‘ก + ๐›ฅ๐‘ก) โˆ’ ๐‘ƒ(๐‘ก โˆ’ ๐›ฅ๐‘ก

    2๐›ฅ๐‘ก

    )๐‘ƒ(๐‘ฅ + ๐›ฅ๐‘ฅ) โˆ’ 2๐‘ƒ(๐‘ฅ) + ๐‘ƒ(๐‘ฅ โˆ’ ๐›ฅ๐‘ฅ

    ๐›ฅ๐‘ฅ2

    ๐œ•๐‘ƒ

    ๐œ•๐‘ก

    ๐œ•2๐‘ƒ

    ๐œ•๐‘ฅ2

    ๐œ•๐‘ƒ

    ๐œ•๐‘ก

    ๐œ•๐‘ƒ

    ๐œ•๐‘ก

    Forward

    Backward

    Centered

    Centered

    Neumann ฮค๐œ•๐‘ƒ ๐œ•๐‘ฅ = 0

    ึŠ๐‘ท๐‘›+1

    = ๐‘ป +1

    ๐›ฅ๐‘ก๐‘ฉ

    โˆ’11

    ๐›ฅ๐‘ก๐‘ฉ ึŠ๐‘ท

    ๐‘›+ ึŠ๐‘ธ

    ึŠ๐‘ท๐‘›+1

    = ึŠ๐‘ท๐‘›

    + ๐›ฅ๐‘ก๐‘ฉโˆ’1 ึŠ๐‘ธ โˆ’ ๐‘ป ึŠ๐‘ท๐‘›

    Crank-Nicholson ๐œƒ = 0.5

    Explicit:

    Implicit:

    ๐‘ƒ๐‘ โˆ’ ๐‘ƒ๐‘+1๐›ฅ๐‘ฅ

    = 0; ๐‘ƒ๐‘ = ๐‘ƒ๐‘+1

    Dirichlet ๐‘ƒ(0, ๐‘ก) = ๐‘ƒ๐ต1

    N N+1

    CFL ConditionStability

    **Necessary for stability of IMPES

    Explicit Method

    (1D)

    = time stepP ( , )P x t

    x

    P Pin

    = grid block

    Analytical (Continuous) Solution Numerical (Discrete) Solution

    1 โˆ’ ๐œƒ ๐‘ป +1

    ๐›ฅ๐‘ก๐‘ฉ ึŠ๐‘ท

    ๐‘›+1=

    1

    ๐›ฅ๐‘ก๐‘ฉ โˆ’ ๐œƒ๐‘ป ึŠ๐‘ท

    ๐‘›+ ึŠ๐‘ธ

    0 1

    Boundary Condition

    ๐‘ƒ๐ต =๐‘ƒ0 + ๐‘ƒ1

    2; ๐‘ƒ0 = 2๐‘ƒ๐ต โˆ’ ๐‘ƒ1

    ๐›ฅ๐‘ฅ

    req

    ๐›ฅ๐‘ฅ

    ๐›ฅ๐‘ฅ

    req

    Pwf

    Pl

    P2

    q2rw

    rwr๐‘’๐‘ž = 0.28

    ฮค๐‘˜๐‘ฆ ๐‘˜๐‘ฅเต—1 2๐›ฅ๐‘ฅ2 + ฮค๐‘˜๐‘ฅ ๐‘˜๐‘ฆ

    เต—1 2๐›ฅ๐‘ฆ2เต—1 2

    ฮค๐‘˜๐‘ฆ ๐‘˜๐‘ฅเต—1 4 + ฮค๐‘˜๐‘ฅ ๐‘˜๐‘ฆ

    เต—1 4

    เตฏ๐‘ž๐‘ค = โˆ’๐ฝ๐‘™๐‘ค(๐‘ƒ๐‘™ โˆ’ ๐‘ƒ๐‘ค๐‘“

    ๐‘Ÿ๐‘’๐‘ž = ๐›ฅ๐‘ฅ๐‘’โˆ’

    ๐œ‹2 โ‰ˆ 0.2๐›ฅ๐‘ฅ

    ๐‘ƒ2 = ๐‘ƒ๐‘™ โˆ’๐‘ž๐‘ค๐œ‡๐ต๐‘ค2๐œ‹๐‘˜โ„Ž

    ๐‘™๐‘›๐›ฅ๐‘ฅ

    ๐‘Ÿ๐‘’๐‘ž

    Radial Solution

    ๐ฝ๐‘™๐‘ค =

    2๐œ‹โ„Ž ๐‘˜๐‘ฅ๐‘˜๐‘ฆ

    ๐œ‡๐ต๐‘ค ln ฮค๐‘Ÿ๐‘’๐‘ž ๐‘Ÿ๐‘ค + ๐‘ 

    Saturation (solve explicitly)Pressure (solve implicitly)

    ๐“ + ๐‰ +๐

    ๐›ฅ๐‘ก๐๐‘›+1 =

    ๐

    ๐›ฅ๐‘ก๐๐‘› + ๐ ๐’๐‘ค

    ๐‘›+1 = ๐’๐‘ค๐‘› + ๐12

    โˆ’1 โˆ’๐“๐‘ค๐๐‘›+1 + ๐๐‘ค โˆ’ ๐‚๐‘ก๐‘ค ๐

    ๐‘›+1 โˆ’ ๐๐‘›

    ๐“ = ๐“๐‘ค +๐ต๐‘œ๐ต๐‘ค

    ๐“๐‘œ ๐ = ๐๐‘ค +๐ต๐‘œ๐ต๐‘ค

    ๐๐‘œ ๐๐‘– =๐‘‰๐‘–๐œ™๐‘–๐‘๐‘ก,๐‘–

    ๐ต๐‘ค

    ๐’…12,๐‘– =๐‘‰๐‘–๐œ™๐‘–

    ๐ต๐‘ค,๐‘–๐›ฅ๐‘ก๐‘๐‘ก = ๐‘๐‘ค๐‘†๐‘ค + ๐‘๐‘œ๐‘†๐‘œ + ๐‘๐‘…๐‚๐‘ก๐‘ค,๐‘– = ๐‘†๐‘ค,๐‘–

    ๐‘› ๐‘๐‘ค,๐‘– + ๐‘๐‘Ÿ,๐‘–

    IMPES (Implicit Pressure and Explicit Saturation)

    ๐‰ = ๐‰๐‘ค +๐ต๐‘œ๐ต๐‘ค

    ๐‰๐‘œ

    ๐œ‚ โ‰ก๐›ผ๐›ฅ๐‘ก

    ๐›ฅ๐‘ฅ 2โ‰ค 0.5

    ๐‘ข๐›ฅ๐‘ก

    ๐›ฅ๐‘ฅ< 1

    Variables change from

    block to block

    IOR: Improved Oil Recovery

    Hydraulic Fracturing

    Pressure Maintenance

    Other- Microbial- Acoustic

    Thermal

    Tertiary Recovery (EOR)

    Gas Injection

    Artificial Lift

    Secondary Recovery

    Natural Flow

    Primary Recovery

    Waterflooding

    Chemical- Steam- Hot Water- Combustion

    - Carbon Dioxide- Hydrocarbon- Nitrogen Flue

    - Alkali- Surfactant- Polymer

    IOR

    Adapted from SPE-SPE-8490B, 87864

    Stages of Recovery

    เตฏ๐‘๐‘๐‘‘ = ๐ธ๐ด๐ธ๐ท๐ธ๐ผ(๐‘†๐‘œ๐‘– โˆ’ ๐‘†๐‘œ๐‘Ÿ

    3D Cumulative Oil Recovery

    ๐ธ๐ท = Displacement Efficiency

    ๐ธ๐ผ = Vertical Sweep Efficiency

    ๐ธ๐ด = Areal Sweep Efficiency

    EA =Areaโ€‰contactedโ€‰byโ€‰fluid

    Totalโ€‰area

    EI =Crossโˆ’sectionalโ€‰areaโ€‰contactedโ€‰byโ€‰fluid

    Totalโ€‰crossโˆ’sectionalโ€‰area

    ED =Amountโ€‰ofโ€‰oilโ€‰displaced

    Totalโ€‰moveableโ€‰oilโ€‰

    ๐ธ๐ท =๐‘†๐‘œ๐‘– โˆ’ าง๐‘†๐‘œ

    1 โˆ’ ๐‘†๐‘ค๐‘Ÿ โˆ’ ๐‘†๐‘œ๐‘Ÿ๐ธ๐ด is a ๐‘“ ๐‘€ าง๐‘  ,โ€‰๐‘ก๐‘‘ , pattern

    **Oil Saturation constant during Primary Recovery

    Effect of Trapped Gas on Residual Oil

    Capillary Desaturation Curve

    ๐‘๐‘ฃ๐‘ =๐‘ข๐œ‡

    ๐œŽ[=] ฮค(๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘  ๐‘๐‘Ž๐‘๐‘–๐‘™๐‘™๐‘Ž๐‘Ÿ๐‘ฆ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’๐‘ )

    (Lake, 2014)

    Prod.

    wW

    w OO W

    OGG

    O

    Water-Wet

    WF

    O

    GO W

    WGO

    WF

    W

    Oil-Wet

    WF

    WF

    OW

    ๐‘“๐‘ค =1 โˆ’ ๐‘๐‘”

    ๐‘œ 1 โˆ’ ๐‘† ๐‘šsin๐›ผ

    1 +1 โˆ’ ๐‘† ๐‘š

    ๐‘€๐‘œ๐‘†๐‘›

    1

    1 +1 โˆ’ ๐‘† ๐‘š

    ๐‘€๐‘œ๐‘†๐‘›

    ๐‘๐‘ƒ๐‘‘ = าง๐‘†๐‘ค โˆ’ ๐‘†๐‘ค๐‘–

    ๐‘€ =๐œ†๐‘Ÿ๐‘ค๐œ†๐‘Ÿ๐‘œ

    =ฮค๐‘˜๐‘Ÿ๐‘ค ๐œ‡๐‘คฮค๐‘˜๐‘Ÿ๐‘œ ๐œ‡๐‘œ

    At Breakthrough

    ๐‘ก๐‘‘,๐ต๐‘‡ =1

    ๐‘“๐‘ค๐‘“โ€ฒ |๐‘†๐‘ค๐‘“

    ๐‘๐‘ƒ๐‘‘,๐ต๐‘‡ = ๐‘ก๐‘‘,๐ต๐‘‡๐‘“๐‘œ๐‘– ๐‘“๐‘œ๐‘– = 1 โˆ’ ๐‘“๐‘ค|๐‘†๐‘ค๐‘–

    Wat

    er S

    atu

    rati

    on

    (๐‘† ๐‘ค

    )

    Fractional Flow โ€“ 1D Water Flood

    ๐‘˜๐‘Ÿ๐‘ค = ๐‘˜๐‘Ÿ๐‘ค๐‘œ ๐‘†๐‘›

    Mobility Ratio

    ๐œ†๐‘Ÿ๐‘— = relativeโ€‰mobility

    ๐‘€๐‘œ =ฮค๐‘˜๐‘Ÿ๐‘ค

    ๐‘œ ๐œ‡๐‘คฮค๐‘˜๐‘Ÿ๐‘œ

    ๐‘œ ๐œ‡๐‘œ

    Corey Equations

    ๐‘˜๐‘Ÿ๐‘œ = ๐‘˜๐‘Ÿ๐‘œ๐‘œ (1 โˆ’ S)๐‘š

    ๐‘† =๐‘†๐‘ค โˆ’ ๐‘†๐‘ค๐‘Ÿ

    1 โˆ’ ๐‘†๐‘ค๐‘Ÿ โˆ’ ๐‘†๐‘œ๐‘Ÿ

    Fractional Flow

    ๐‘๐‘”๐‘œ =

    ๐‘˜๐‘˜๐‘Ÿ๐‘œ๐‘œ ๐›ฅ๐œŒ๐‘”

    ๐‘ข๐œ‡๐‘œ

    ๐‘“๐‘คโ€ฒ =

    ๐œ•๐‘“๐‘ค๐œ•๐‘†๐‘ค

    =๐œ•๐‘“๐‘ค๐œ•๐‘†

    ๐œ•๐‘†

    ๐œ•๐‘†๐‘ค

    Important Definitions

    ๐‘ฅ๐‘‘ =๐‘ฅ

    ๐ฟt๐‘‘ =

    ๐‘ข๐‘ก

    ๐œ™๐ฟ[=]PVI

    ๐‘๐‘ƒ =๐‘‰๐‘๐‘๐‘ƒ๐‘‘

    ๐ต๐‘œ[=]STB

    After Breakthrough

    ๐‘ก๐‘‘ =1

    ๐‘“๐‘คโ€ฒ |๐‘†๐‘ค๐‘

    (๐‘“๐‘ค๐‘— usually 1)

    าง๐‘†๐‘ค = ๐‘†๐‘ค๐‘ +๐‘“๐‘ค๐‘— โˆ’ ๐‘“๐‘ค|๐‘†๐‘ค๐‘

    ๐‘“๐‘คโ€ฒ |๐‘†๐‘ค๐‘

    แˆ˜๐‘†๐‘ค = ๐‘†๐‘ค๐‘“ +๐‘“๐‘ค๐‘— โˆ’ ๐‘“๐‘ค|๐‘†๐‘ค๐‘“

    ๐‘“๐‘คโ€ฒ |๐‘†๐‘ค๐‘“

    Decreasing ๐‘€๐‘œ

    Breakthrough

    1 โˆ’ ๐‘†๐‘œ๐‘Ÿ

    ๐‘†๐‘ค๐‘Ÿ ๐‘†๐‘ค๐‘“

    แˆ˜๐‘†๐‘ค = าง๐‘†๐‘ค,๐ต๐‘‡

    Draw BT tangent line

    from initial ๐‘†๐‘คF

    ract

    ion

    al F

    low

    (๐‘“ ๐‘ค

    )

    Water Saturation (๐‘†๐‘ค)

    าง๐‘†๐‘ค = avg. ๐‘†๐‘ค inโ€‰sweptโ€‰area

    Dimensionless Distance (๐‘ฅ๐‘‘)

    ๐‘†๐‘ค๐‘“

    ๐‘ฅ๐‘‘๐‘“

    ๐‘ฅ๐‘‘ = ๐‘ก๐‘‘๐‘“๐‘คโ€ฒ ๐‘†๐‘ค

    ๐‘†๐‘ค๐‘–

    Dimensionless Distance (๐‘ฅ๐‘‘)

    ๐‘†๐‘ค๐‘“

    Shock Front

    ๐‘ฅ๐‘‘๐‘“

    ๐‘†๐‘ค๐‘–๐‘†๐‘ค๐‘–

    ๐‘†๐‘ค๐‘“๐‘ฅ๐‘‘๐‘“

    แˆ˜๐‘†๐‘ค

    แˆ˜๐‘†๐‘คaverage ๐‘†๐‘ค

    behind shock

    Effect of Mobility Ratio

    Mo=0.1

    Mo=100Mo=10Mo=1

    Decreasing ๐‘€๐‘œ

    Fra

    ctio

    nal

    Flo

    w (

    ๐‘“ ๐‘ค)

    Pore Volumes Injected (t๐‘‘)

    Cu

    mu

    lati

    ve O

    il (

    ๐‘๐‘ƒ

    ๐‘‘)

    Effect of ๐‘€๐‘œ on Oil Recovery

    Effect of Gravity

    *Gas flood would be inverse effect

    ฮฑ = โˆ’ 15โˆ˜

    ฮฑ = 15โˆ˜ฮฑ = 0โˆ˜

    Fra

    ctio

    nal

    Flo

    w (

    ๐‘“ ๐‘ค)

    Fra

    ctio

    nal

    Flo

    w (

    ๐‘“ ๐‘ค) Effect of Wettability

    WWOW

    As ๐‘“๐‘ค curve shifts right,

    breakthrough occurs later and produce oil quicker

    ๐‘† ๐‘ค๐‘

    ๐‘Š๐‘‚๐‘… =๐ต๐‘œ๐ต๐‘ค

    ๐‘“๐‘ค|๐‘†๐‘ค๐‘

    1 โˆ’ ๐‘“๐‘ค|๐‘†๐‘ค๐‘

    Pore Volumes Injected

    Before Breakthrough

    Increasing water

    wettability

    Increasing reservoir dip angle

    if

    ๐›ผ = 0

    (๐‘“๐‘ค๐‘— usually 1)

    ๐‘†๐‘™๐‘๐‘œ๐‘›

    *Oil-Wet Rock is inverse

    3-Phase Permeability

    ๐‘˜๐‘Ÿ๐‘ค isโ€‰aโ€‰functionโ€‰of ๐‘†๐‘ค

    Mixed-Wet Rock

    Water Wet Rock

    Oil Wet Rock

    Petrophysics Review

    Permeability Variations

    เดค๐‘˜ =ฯƒ ๐‘˜๐‘–โ„Ž๐‘–ฯƒ โ„Ž๐‘–

    Vertical Variation

    เดค๐‘˜ =ฯƒ ๐ฟ๐‘–

    ๐ฟ๐‘–๐‘˜๐‘–

    Horizontal Variation

    เดค๐‘˜ =ln ฮค๐‘Ÿ๐‘’ ๐‘Ÿ๐‘ค

    ln ฮค๐‘Ÿ๐‘– ๐‘Ÿ๐‘–โˆ’1

    ๐‘˜๐‘–

    Radial Variation

    เดค๐‘˜ = ๐‘˜๐‘–๐‘˜๐‘–+1. . . ๐‘˜๐‘›ฮค1 ๐‘› Geometric

    Mean

    Capillary Pressure

    ๐‘ƒ๐‘(๐‘ง) = ๐›ฅ๐œŒ๐‘“๐‘”๐‘ง

    ๐‘ƒ๐‘ =2๐œŽcos๐œƒ

    ๐‘Ÿ

    ๐‘ƒ๐‘1๐‘ƒ๐‘2

    =ฮค๐‘˜2 ๐œ™2

    ฮค๐‘˜1 ๐œ™1

    ๐ฝ(๐‘†๐‘ค) =๐‘ƒ๐‘๐œŽ

    ๐‘˜

    ๐œ™

    ๐‘ƒ๐‘(๐‘†๐‘ค) = ๐‘ƒ๐‘›๐‘ค โˆ’ ๐‘ƒ๐‘ค

    ๐‘˜๐‘” = ๐‘˜๐ฟ 1 +๐‘

    ๐‘ƒ

    โˆ’๐œ•๐‘ƒ

    ๐œ•๐‘ฅ=

    ๐œ‡ ๐‘ข

    ๐‘˜+ ๐›ฝ๐œŒ๐‘ข2

    Water Wet Rock

    ๐‘˜๐‘Ÿ๐‘ค๐‘œ < ๐‘˜๐‘Ÿ๐‘œ

    ๐‘œ

    ๐‘†๐‘ค > 0.5 when ๐‘˜๐‘Ÿ๐‘ค curveintersects ๐‘˜๐‘Ÿ๐‘œ curve

    Relative Permeability

    ๐‘˜๐‘— = ๐‘˜๐‘˜๐‘Ÿ๐‘—

    Darcyโ€™s Law Variations

    ๐›ท = ๐‘ƒ + ๐œŒ๐‘”โ„Ž๐‘ข = โˆ’๐‘˜

    ๐œ‡

    ๐œ•๐›ท

    ๐œ•๐‘ฅ

    WW Rock

    Forcheimer (valid at high flow rates, Re>1)

    ๐›ฝ material constant; depends on pore structure

    Klinkenberg Effect (valid for gas flow at low pressure)

    ๐‘˜๐ฟ = liquid perm

    ๐‘˜๐‘” = gas perm

    b factor important when k < 10md๐‘˜๐ฟ[=]๐‘˜โˆž

    ๐‘˜๐‘Ÿ๐‘œ ๐‘†๐‘œ , ๐‘†๐‘ค ๐‘˜๐‘Ÿ๐‘” ๐‘†๐‘”

    ๐‘˜๐‘Ÿ๐‘ค ๐‘†๐‘ค, ๐‘†๐‘œ

    ๐‘˜๐‘Ÿ๐‘œ ๐‘†๐‘œ ๐‘˜๐‘Ÿ๐‘” ๐‘†๐‘”

    ๐‘˜๐‘Ÿ๐‘ค ๐‘†๐‘ค, ๐‘†๐‘œ

    ๐‘˜๐‘Ÿ๐‘œ ๐‘†๐‘œ , ๐‘†๐‘ค

    ๐‘˜๐‘Ÿ๐‘” ๐‘†๐‘”

    Rel

    ativ

    e P

    erm

    eab

    ility

    WaterSaturation

    ๐‘˜๐‘Ÿ๐‘œ๐‘ค๐‘œ

    ๐‘˜๐‘Ÿ๐‘ค๐‘œ

    1-๐‘†๐‘œ๐‘Ÿ,๐‘ค๐‘†๐‘ค๐‘Ÿ๐‘†๐‘ค๐‘๐‘œ๐‘› 1-๐‘†๐‘œ๐‘–๐‘Ÿ๐‘Ÿ,๐‘ค

    LiquidSaturation

    ๐‘˜๐‘Ÿ๐‘œ๐‘ค

    ๐‘˜๐‘Ÿ๐‘ค

    ๐‘˜๐‘Ÿ๐‘”๐‘œ

    ๐‘˜๐‘Ÿ๐‘œ๐‘”๐‘œ

    ๐‘˜๐‘Ÿ๐‘œ๐‘”

    ๐‘˜๐‘Ÿ๐‘”

    1-๐‘†๐‘”๐‘๐‘œ๐‘›

    1-๐‘†๐‘”๐‘Ÿ๐‘†๐‘™๐‘Ÿ,๐‘”

    ๐‘†๐‘œ๐‘–๐‘Ÿ๐‘Ÿ,๐‘”

    ๐‘†๐‘œ๐‘Ÿ,๐‘”

    ๐‘†๐‘ค๐‘๐‘œ๐‘›

    Rel

    ativ

    e P

    erm

    eab

    ility

    ๐‘›๐‘ค = non-wetting phase