33
RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS MILENA GRIFONI M. THORWART R. EGGER G. CUNIBERTI H. POSTMA C. DEKKER 200 nm ter Postma et al. Science (2001) 25 nm Discussions: Y. Nazarov

RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS

  • Upload
    kueng

  • View
    55

  • Download
    0

Embed Size (px)

DESCRIPTION

200 nm. after Postma et al. Science (2001). RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS. MILENA GRIFONI. M. THORWART R. EGGER G. CUNIBERTI H. POSTMA C. DEKKER. 25 nm. Discussions: Y. Nazarov. e. e. source. dot. drain. C g . V. V g. addition energy. a). b). m L. m R. - PowerPoint PPT Presentation

Citation preview

Page 1: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS

MILENA GRIFONI

M. THORWARTR. EGGERG. CUNIBERTI

H. POSTMAC. DEKKER

200 nmafter Postma et al. Science (2001)

25 nm

Discussions: Y. Nazarov

Page 2: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

QUANTUM DOTS

eVTkB ,

addition energy

EC

eNN 2

)()1(2

dotdot

dotsourceV Vg

Cg drain

e e

001dot ),1( NNg EEVN

Coulomb blockade

)(dot N

a)

L R

single electron tunneling

)(dot N

b) ...1 NNN

L R

Page 3: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

ORTHODOX SET THEORYC

ondu

ctan

ce

Gate voltage

hold woud)a(SWNTfor 8.0end

1MAX

end TGLuttinger leads SETs

Furusaki, Nagaosa PRB (1993)

1MAX

TG semiconducting dot + Fermi leads

Beenakker PRB (1993)

Sequential tunneling

Gate voltage C

ondu

ctan

ce T2 > T1(a)

TkE B

Page 4: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

NANOTUBE DOT IS A SETPostma, Teepen, Yao, Grifoni, Dekker, Science 293 (2001)

Coulomb blockade in quantum regime

Ec = 41 meV, E = 38 meV > kBT up to 440 K

1MAX

TG1

MAXend TG

dI/dV d2I/dV2

Gate voltage (V)

Bia

s vo

ltage

(V)

30 K

unconventional

Page 5: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

PUZZLE

Why nanotube SET not ? 1

MAXend TG

1MAX

endend TG endendend 2

Correlated sequential tunneling Gate voltage

T2 > T1(b)

Con

duct

ance

unscreened Coulomb interaction ? Maurey, Giamarchi, EPL (1997)

weak tunneling at metallic contacts ? Kleimann et al., PRB (2002)

asymmetric barriers ? Nazarov, Glazman, PRL (2003)

correlated tunneling ? Postma et al., Science (2001), Thorwart et al. PRL (2002)Hügle and Egger, EPL (2004)

Page 6: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

OVERVIEW

METALLIC SINGLE-WALL NANOTUBES (SWNT)

SWNT LUTTINGER LIQUIDS SWNT WITH TWO BUCKLES

UNCOVENTIONAL RESONANT TUNNELING EXPONENT

1D DOT WITH LUTTINGER LEADS

CORRELATED TUNNELING MECHANISM

Page 7: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

METALLIC SWNT MOLECULES

metallic 1D conductor with 2 linear bands

k

EF

Energy

LUTTINGER FEATURES

Page 8: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

Let us focus on spinless LL case,

generalization to SWNT case later

DOUBLE-BUCKLED SWNT´s

after Rochefort et al. 1998

buckles act as tunneling barriers

Luttinger liquid with two impurities

50 x 50 nm2

Page 9: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

WHAT IS A LUTTINGER LIQUID ?

Fk k

R

linear spectrum

bosonization identity )(/ ~ iLR e

charge density

xFkx

)(

example: spinless electrons in 1D

L

Fk

)(kE

L L

R Rq~0

)'()'()('1])()([2v

'22F

0 xxxVxdxdxxxdxH xxx

+ forward scattering )(ˆ qV

FE

Page 10: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

LUTTINGER HAMILTONIAN

])(1)([2

v 220 x

gxgdxH x

2.0ln

v81

1

v1

12

0

RReV

gS

FF

)(rangedshort )( 0 xVdxVxV captures interactioneffects

nanotubes

g/vv F

Page 11: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

TRANSPORT

extimptot HHHH 0

gCgVV

Luttinger liquids

localized impurities voltage sources

constkUxUxdxH impimpimp )(ˆ),()( backscattering

constxVxVxdxeH extextext )(),()( forward scattering

Page 12: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

TRANSPORT

2/)()(2/)( LR xxtN

)()()( LR xxtn charge transferred across the dot

charge on the island

Brownian`particles´ n, Nin tilted washboard potentialCn

CCeV

NeVHtot

ggext

2

)cos()cos( nNUH impimp

)(2

lim tNeI t

continuity equation

) 0, , ; , , ( lim2,

i i f fn N

f tn Nt n N P N e

f f

reduced densitymatrix

11

nnNNe1 e2

nN

2

Page 13: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

CURRENTExact trace over bosonic modes

L Rx x x x, ), (

]' , [ ]' , [ ]' [ ] [ ' ) 0, , ; , , (*

n n F N N F N A N A ND ND n Nt n N Pn N i i f f

bare actionext impH H bulk modes reduced

density matrix

) , (n N N

mass gap for ncharging energy

LINEAR TRANSPORTdynamics states dynamics states2

nonlocal in time coupling )' (' ), (t N t N

1 , 1 n n

n n,

1 , 1 n n

N N,

1 , 1 N N

1 , 1 N N

Page 14: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

CORRELATIONS

tiTk

tJdtWB

sincoth)cos1()()(

02

W

,

0 /

) range finite for only ( 0 / 1

SWNT , 2. 0

g

g

correlations involving different/same barriers /WN N,

1 , 1 N N

1 , 1 N N

0 , ) ( g

J

gx

E F

0

v

) ( J

)()()()( 32212321 SSSSW = S+iR

dipole

dipole-dipole

Page 15: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

FINITE RANGE?

Page 16: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

FINITE RANGE?not needed

Page 17: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

CORRELATIONS II

tiTk

tJdtWB

sincoth)cos1()()(

02

W

,

N N,

1 , 1 N N

1 , 1 N N

)()()()( 32212321 SSSS

W = S+iR

• zero range W : purely oscillatory WOhmic + oscillations

<cosh const, <sinh

0321 ,, Ohm

Page 18: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

EFFECT OF THE CORRELATIONS ?

FIRST CONSIDER UNCORRELATED TUNNELING

• MASTER EQUATION APPROACH Ingold, Nazarov (1992) (g = 1), Furusaki PRB (1997)

• GENERATING FUNCTION METHOD (FROM PI SOLUTION) Grifoni, Thorwart, unpublished

Page 19: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

MASTER EQUATION FOR UST

Rb Lb Rf Lf

tot

Rb Lb Rf Lfe

n N

N tt n P N e I,

) , ( lim2

linear regime: only n = 0,1 charges

end Lf

f LT e e dn iE W L

~ Re20

/ ) 1 ( ) (2

N N,

1 , 1 N N

1 , 1 N N

W

golden rule rateexample

Uncorrelated sequential tunneling:• only lowest order tunneling process • master equation for populations:

2/R L

Ingold, Nazarov (1992) (g = 1), Furusaki PRB (1997)

) , ( ) , 1 ( ) , 1 (

) , ( ) , ( ) ( ) , (

1 1 1

1

t n P t n P t n P

t n P t n P t n P

N Lb N Lf N Rb

N Rf N Rb Rf Lb Lf N

tot

Page 20: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

MASTER EQUATION FOR UST II

) (b ftot

Rb Lb Rf Lfe e I

) , ( ) , ( ) , ( ) ( ) , (2 2t n P t n P t n P t n PN b N f N b f N

b

f

Note:

can also be obtained from the master eq.

Is there a simple diagrammatic interpretation of f/b ?

Page 21: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

GENERATING FUNCTION METHOD

Different view from path integral approach

n N

Nn N

N tn P N t n P N I,

20

,

) , ( ˆ lim ) , ( lim

0

20) , ( lim

F

n N

NN

n P e F,

) , ( ˆ ) , (

generating function

exact series expression

2

) ( ) (0) ( ˆ ) ( ˆ lim

m

mb

mfI I I

contributions to the f/b current of order mExample: m = 2 (divergent!)

(c)2)N,2(N

N),(NN),(N

2)N,2(N

N),(N

2)N,2(N (a) (b)

W

cotunneling

Page 22: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

GENERATING FUNCTION METHOD FOR ST

N N,

1 , 1 N N

1 , 1 N N Sequential tunneling approximation:

Consider only (but all) paths which are back tothe diagonal after two steps(giustified for strong Coulomb interaction)

)(ˆlim2

)(0

m

mII

Page 23: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

GENERATING FUNCTION METHOD FOR ST

N N,

1 , 1 N N

1 , 1 N N Sequential tunneling approximation:

Consider only (but all) paths which are back tothe diagonal after two steps(giustified for strong Coulomb interaction)

)(ˆlim2

)(0

m

mII

Page 24: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

GENERATING FUNCTION METHOD FOR ST

Sequential tunneling approximation:

Consider only (but all) paths which are back tothe diagonal after two steps(giustified for strong Coulomb interaction)

)(ˆlim2

)(0

m

mII

bm

bfm

fm LTRRTLI 22)( )()()(ˆ

L

R

non trivial cancellationsamong contributionof different paths

Page 25: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

GENERATING FUNCTION METHOD FOR CST

Sequential tunneling approximation:

Consider only (but all) paths which are back tothe diagonal after two steps(giustified for strong Coulomb interaction)

)(ˆlim2

)(0

m

mII

bm

bfm

fm LTRRTLI 22)( )()()(ˆ

L

R

non trivial cancellationsamong contributionof different paths

Correlations!

Page 26: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

GENERATING FUNCTION METHOD FOR UST

Sequential tunneling approximation:

Consider only (but all) paths which are back tothe diagonal after two steps(giustified for strong Coulomb interaction)

)(ˆlim2

)(0

m

mII

])()([)(ˆ 221

)(Lb

mtotRbRf

mtotLfm

m eI

L

R

b f e IRftot tot

Lf

... 1 1 lim

2

0

tot

Rb Lb Rf Lfe

0 lim

again

UST: onlyintra-dipoleCorrelations!

Page 27: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

GENERATING FUNCTION METHOD FOR UST II

Interpretation:

Higher order paths provide a finite life-timefor intermediate dot state, which regularizes the divergent fourth-order paths

)(ˆlim2

)(0

m

mII

tot

LbRb

tot

RfLfbf ee )(

)](cos[)](cos[4 1111

)()(32

01

22231

REREeeeddd RfLfSSRL

ftot

)()()( iRStW

L

R

tot

2,lim 0

totecc RfLff

Page 28: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

CST)()(22)( ˆˆ)()()(ˆ m

bm

fbm

bfm

fm IILTRRTLI

Let us lookorder by order:

)()()(32

01

22

0)2( 31321

4lim

SSRLf eeeddd

133132113 coscos),,(cosh RERE RfLf

133132113 sinsin),,(sinh RERE RfLf

m=2

/// RiSW

Short cut notation: RfLfRfLff sscceI )/()(ˆ )2(

cosh

sinh

divergent =0

exact!

Page 29: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

CST II

)()(22)( ˆˆ)()(ˆ mb

mfb

mbf

mf

m IILTRRTLI

m=3

As for UST, sum up higher order terms to get a finite result

divergent

RfLfRfLfRfLfRfLff scsssccssccceI )/(ˆ )3(

RfLfRfLfRfLfRfLf ccccssccsssc

• Consider only diverging diagrams• Linearize in dipole-dipole interaction = 0

RbLbRfLf ccccc

Approximations:

Page 30: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

CST III

summation over m Systematic expansion in

RfLfRfLfRfLfRfLff csscssccsscceI )/()(ˆ

tote

RfLff cc0lim

modified line width

end

end

TT

tot

RfLff const.

~~2

UST

at resonance

ss

tote

Page 31: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

MASTER EQUATION FOR CST

2 / /,a b f L R n N

N tt n P N e I,

) , ( lim2

) , ( ) , (

) , ( ) , 1 ( ) , 1 (

) , ( ) , ( ) ( ) , (

2 2 2 2

1 1 1

1 2 2 1

t n P t n P

t n P t n P t n P

t n P t n P t n P

N f N b

N Lb N Lf N Rb

N Rf N f b tot N

transferthrough 1 barrier(irreducibile contributions ofsecond and higher order)

transfer trough dot (irreducibilecontributions at least of fourth order)

Thorwart et al. unpublished finite life-time due to higher orderpaths found self consistently

Page 32: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

RESULTS GMAX

nanotubes:

spinless LL:

31

41, 1

effeff

gggg

112endend

g

endend

endend

*

1/

TG

TTGMAX

23.0g

4 bosonic fields

spin2 band2

Kane, Balents, Fisher PRL (1997), Egger, Gogolin, PRL (1997)

Thorwart et al., PRL (2002)

Page 33: RESONANT TUNNELING IN CARBON NANOTUBE  QUANTUM DOTS

CONCLUSIONS & REMARKS

0endendend 1MAX )1( TgG

leads

dot

• UNCONVENTIONAL COULOMB BLOCKADE

0F /v xTkL BT LOW TEMPERATURES : BREAKDOWN OF UST IN LINEAR REGIME

NONINTERACTING ELECTRONS g =1REMARK