30
Results from the HCPB pebble Results from the HCPB pebble - - bed bed assembly irradiation assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel, J.G. van der Laan a NRG Petten, the Netherlands Ceramic Breeder workshop 127, 1 December 2005

Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Results from the HCPB pebbleResults from the HCPB pebble--bed bed assembly irradiationassembly irradiation

L. Magielsen, J.H. Fokkens, J.B.J. Hegeman,

M.S. Stijkel, J.G. van der Laan

a NRG Petten, the Netherlands

Ceramic Breeder workshop 127, 1 December 2005

Page 2: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

OutlineOutline

Objectives of the Pebble Bed Assembly irradiationIrradiation characteristics and designIn-pile performance of the capsuleModel developmentsOutlook

Page 3: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

ObjectivesObjectives

Study the thermo-mechanical behaviour under neutron irradiation of a section of the solid breeder blanketAchieve DEMO representative levels of temperature and defined thermal-mechanical loads

45 m

m8

45 m

m8

9

Ceramic pebbles: Li4SiO4 : ~ 0.5 mmor Li2TiO3/Li2ZrO3 : ~ 1 mm

Beryllium pebbles: large : ~ 2 mm small : ~ 0.15 mm

BERYLLIUM BINARY PEBBLE-BED

CERAMIC PEBBLE-BED

BERYLLIUM BINARY PEBBLE-BED

Page 4: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Strategy for blanket developmentStrategy for blanket development

Out-of-pileComponent

Tests

Out-of-pileComponent

Tests

Basic Material

Tests

Basic Material

Tests

In-pileSubmodules

Tests

In-pileSubmodules

Tests

Beryllium (ref. & irrad.)Ceramic (ref. & irrad.)Eurofer (ref. & irrad.)

Helica (ref.)Helicatta (ref.)

PBA irradiatiom

TBM design & test blanket moduleTBM design & test blanket moduleD

EM

O b

lank

et d

esig

nan

d de

velo

pmen

tD

EM

O b

lank

et d

esig

nan

d de

velo

pmen

t

Page 5: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Strategy for HCPB Strategy for HCPB pebblepebble--bed irradiationbed irradiation

Basic Materials

tests

ModellingPebble bed

Design pebble bed assembly

In pile performance pebble bed assembly

Improved model

irradiation effects

PIE Pebble bed

deformation, gas gap formation

HCPB – TBM design

Validation of gas gap

formationOut of pile

performance pebble bed assembly

Model improvements by out-of-pile

results

Page 6: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

PBA module

thermocouple

Aluminium filler

Aluminium filler

Beryllium bed

dosimeter

heat barrier EuroferFloating plate Eurofer

Beryllium bed

ceramic bedBellow inconel 718

Containment Eurofer

Purge gas tubes

Containment 316L

Pebble bed assembliesPebble bed assemblies

Page 7: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Filling procedure and module assemblyFilling procedure and module assembly

Filling in a number of stepsPre compactionX-ray inspections to check for the plate positions

Page 8: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Filling procedureFilling procedure

After inspection of assembled test-element:Stepped pre-compaction, 1, 2, 3 MPa plus 24 hrs at 350°CLast inspections prior and after sealing.

Purge line splitter

pebbles well aligned with plate

large pebble: low density near wall

Pre-compaction procedure (1)

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35

Time [ s ]

Tem

pera

ture

[ °C

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pres

sure

[ M

Pa ]

temperaturepressure

Page 9: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Target temperaturesTarget temperatures

Li2TiO3

T= 850 oC

Li4SiO4

T= 650 oC

Li2TiO3

T= 850 oC

Li4SiO4

T= 850 oC

Test element #1 and # 4 same material at different temperatureTest element # 2 and # 3 different in grain size and creep behaviour All first containments are continuously purged with He + 1000 ppm H2 and optionally with Ne/He + 1000 ppm H2 for extra T control

Page 10: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

MaterialsMaterials

Test element 1 2 3 4Material Li4SiO4 Li2TiO3 Li2TiO3 Li4SiO4Supplier FZK CEA CEA FZKNRG code NRG 100 NRG 113 NRG 105 NRG 1006 Li enrichmentLithium burn upPebble dimensions mm 0.25-0.63 0.8-1.2 0.8-1.2 0.25-0.63Quantity of breeder material g 24.94 32.28 32.62 25.17Quantity of Beryllium g 91.54 92.7 92.95 92.95Beryllium supplierBeryllium pebble size mmPurge gas 1st containment 2nd containmentGas flow 1st containment ml/min 2nd containment ml/minPressure 1st containment bar 2nd containment barMax. temperature breeder oC < 725 < 900 < 950 < 910Temp. Floating plates oC < 450 < 580 < 600 < 585Temp. Eurofer 1st containment oC < 200 < 285 < 300 < 290Temp. Beryllium beds oC < 420 < 540 < 550 < 540

20-12033

0.9-1.1He + 0.1 vol. % H2

Mixture He/ Ne100

7.5% (natural)plm. 3%

NGK

Page 11: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

InIn--pile resultspile results12th cycle ended Nov.2005, with accumulated 300 Full Power Days (~ 7200 hours)Accumulate in 12 cycles, or 7200 hours:

Approx. 2 dpa in Eurofer8 1022 at T productionTotal lithium burn ups 2 to 3 %

Cycle Exp. Orientation Incore position Material filler elementNeutroradiograph -- -- --

03-04 Z H4 AlNeutroradiograph -- -- --

03-06 Z H4 Stainless steel03-07 N H6 Al03-08 Z H6 Al03-09 N H6 Al03-10 Z H6 Al03-11 N H6 Al03-12 Z H6 Al

Neutroradiograph -- -- --04-03 N H6 Water rich04-04 N H6 Al04-08 Z H4 Al04-09 N H4 Al

Neutroradiograph -- -- --

Page 12: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

InIn--pile resultspile results

Page 13: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Tritium production: (n,Tritium production: (n,αα) nuclear heating) nuclear heating

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

Time [days]

IC1

sign

al [

mC

i/min

]

IC1 signal IC1

0 5 10 15 20 250

0.5

1

1.5

2

2.5

Time [days]

IC1

sign

al [

mC

i/min

]

IC1

0 5 10 15 20 250

0.5

1

1.5

2

2.5

3

3.5

Time [days]

IC1

sign

al [

mC

i/min

]

IC1 signal IC1

0 5 10 15 20 250

0.5

1

1.5

2

2.5

3

Time [days]

IC1

sign

al [

mC

i/min

]

IC1 signal IC1

Page 14: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

InIn--pile resultspile results

Before start of in-pile operation, after first cycle and after 8 cycles a radiograph was takenTE-#3 gives best image for evaluation, parallax for other quite significantNo evidence for large gaps found yet; to be detailed with the post-irradiation neutrography

Page 15: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Conclusion from the inConclusion from the in--pile behaviourpile behaviour

PBA irradiation has been completed after 12 irradiation cycles (300 FPD)Power density slightly lower than expected, reducing temperaturecontrol margins; use of Neon in primary containment reference purge gas (He-Ne+0.1%H2)The neutron flux gradient is significant, but allows reconstruction of radial temperature profilesThermocouple tubes interfere with the heat transport, giving underestimate readings for the breeder bed and overestimate readings for the lower floating platesIn addition the thermal contact between the Eurofer test-element and Al filler is enhanced by the thermal flux, and neon addition to primary purge No evidence for gaps from intermediate neutrography

Page 16: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Modelling of pebble bedsModelling of pebble beds

0 1 2 3axial strain (%)

0

2

4

6

unia

xial

stre

ss (M

Pa)

first pressure increase:important for pressurebuild-up at BOL

thermal creep: important for compensation of swelling

first pressure decrease:important for gap formaqtion

1σ ε1

Engineering modelFitting experimental data from oedometric tests

Page 17: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Modelling of the PBAModelling of the PBA

Model improvements with the in-pile operation experienceIncluded the thermal barrier for pre compaction calculation to achieve lower compaction in the upper beryllium bedIncluding the a gas gap between eurofer and lower Al fillerStart up calculation of first irradiation cycle with all power steps to simulate the actual start-up to allow the proper creep compactionCooldown of PBA irradiation at shut down of reactor

Page 18: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

InstrumentationInstrumentation

Radial distribution Thermo-couples axial distribution

Page 19: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Temperatures during the first startTemperatures during the first start--upup

Beryllium pebble beds

Upper Beryllium bed, high Upper Beryllium bed, close to breeder

Upper Beryllium bed , close to breeder Lower Beryllium bed, bottom

Page 20: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Ceramic pebble bed

Temperatures during the first startTemperatures during the first start--upup

Ceramic bed, close to centre

ceramic bed, outside radius

Page 21: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Temperatures during the first startTemperatures during the first start--upup

Upper plate, ΔT=30 oC

Lower plate, ΔT=90 oC

Eurofer floating plates

Page 22: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Change of thermal conductivity in berylliumChange of thermal conductivity in beryllium

Due to compaction of the beryllium beds which results in higher contact area between the pebble beds the effective thermal conductivity increases

Page 23: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Creep compaction in the breeder bedsCreep compaction in the breeder beds

Page 24: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Mean stresses in the Pebble Bed AssemblyMean stresses in the Pebble Bed Assembly

Page 25: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Cool down after neutron irradiation Cool down after neutron irradiation

Cool down after 24 hrs of in-pile operation at 45 MWInstantaneous shut-down of the powerAllow for a cool down period of 250 s

Page 26: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Conclusions from the thermoConclusions from the thermo--mechanical mechanical modelmodel

All calculated temperatures for the Be beds are 50oC lower than in-pile measurementsFor Breeder bed calculated tempertures are well comparable to in-pile dataCalculated floating plate temperatures differ more for the lower floating plate, due to heat transport Even after 48 hours the beds did not reach the final compaction state

After cooling gas gaps predicted between the floating plates and the pebble beds

Page 27: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Possible PIE of PBAPossible PIE of PBA

For the validation of the model resultsGas-gap detection by infiltration methods in the 2nd containmentGas-gap (eurofer floating plates and pebble beds) detection by pebble-bed infiltrationPebble bed deformation to estimate compactionPebble deformation (if possible number of contacts and contact area’s etc.)

For the verification of the HCPB conceptPebble fragmentation, porosity, tritium release for ceramic and beryllium pebblesResidual strength of the materialsEurofer-breeder and Eurofer-beryllium interactionsTritium/hydrogen interactions with eurofer

Validation of the instrumentation usedSPND’s, thermocouples, Ionisation chambers

Page 28: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

Possible PIE of PBAPossible PIE of PBA

Infiltration of the 2nd containmentPartially infiltration of the PBA pebble beds

Bed deformations

Gas gaps

interfaces

Pebble characteristics

impregnated Separate pebbles

Eurofer with T and H2

Page 29: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

RemarksRemarks

PBA combine a number of inherent HCPB performance issues:pebble-bed filling, vibration, packing densitythermal behaviour of pebble-bedsmechanical behaviour of pebble-beds (2-D/3-D)bed-solid interfaces; possibility of gap formationmodelling capabilities (e.g. SCATOLA benchmark)reference gas purge in all pebble-beds & tritium permeation compatibility of ceramic and beryllium with Eurofer-97, and tube clads (vz. TBM instrumentation)Eurofer-97 in a structural function during irradiation, in hydrogen rich environmentBeryllium pebbles in TBM relevant temperature and dose range

Page 30: Results from the HCPB pebble-bed assembly irradiation · 2016-06-25 · Results from the HCPB pebble-bed assembly irradiation L. Magielsen, J.H. Fokkens, J.B.J. Hegeman, M.S. Stijkel,

OutlookOutlook

Dismantling 2nd containmentsStart cutting and evaluate gas gapsResin impregnationDetailed P.I.E.Neutron dosimetryCutting scheme to be determined along with additional P.I.E. on Be and Eur-97 and interfaces