RESULTS1 lab1

Embed Size (px)

Citation preview

  • 8/11/2019 RESULTS1 lab1

    1/12

    RESULTS

    Table 1: Data measured for the 28 x 1mm Cu pipe (Pipe 1, d=26mm)

    Flow rate /m

    3

    h

    -1

    Upstreampressure /m

    Downstreampressure /m

    Pressuredifference (=Head

    loss due to

    friction, Hf)/m

    4.0 0.452 0.205 0.247

    3.0 0.378 0.230 0.148

    2.0 0.322 0.249 0.073

    Flow rate /L h-1 Upstreampressure /m

    Downstreampressure /m

    Pressuredifference (=Head

    loss due to

    friction, Hf)/m

    500 0.270 0.264 0.006

    250 0.267 0.265 0.002

  • 8/11/2019 RESULTS1 lab1

    2/12

    Table 2: Data measured for the 18 x 1mm Cu pipe (Pipe 2, d=16mm)

    Flow rate /m3h

    -1 Upstream pressure /m Downstream pressure

    /m

    Pressure difference

    (=Head loss due to

    friction, Hf)/m

    2 0.570 0.350 0.220

    1 0.418 0.143 0.275

    Flow rate /L h-1

    Upstream pressure /m Downstream pressure

    /m

    Pressure difference

    (=Head loss due to

    friction, Hf)/m

    500 0.329 0.240 0.089

    400 0.300 0.248 0.052

    300 0.331 0.271 0.060

    100 0.329 0.279 0.050

  • 8/11/2019 RESULTS1 lab1

    3/12

    Table 3: Data measured for the St galvanized pipe (Pipe 3, d=16mm)

    Flow rate /L h-1

    Upstream pressure /m Downstream pressure

    /m

    Pressure difference

    (=Head loss due to

    friction, Hf)/m

    500 0.469 0.224 0.245

    400 0.423 0.270 0.153

    300 0.396 0.308 0.088

    200 0.374 0.335 0.039

    Flow rate /m3h

    -1 Upstream pressure /m Downstream pressure

    /m

    Pressure difference

    (=Head loss due to

    friction, Hf)/m

    0.4 0.504 0.190 0.314

    d

    Table 4: Results calculated for mean velocity (u) and Reynolds number (Re)

    Pipe Area of pipe/m2 Volumetric Flow

    (Q)/m3s-1

    Uniform velocity of

    flow (u)/ms-1

    Reynolds Number

    1 5.31 x 10-4 11.20 x 10-4 2.11 61364.65

    8.34 x 10-4 1.57 45659.96

    5.56 x 10-4

    1.05 30536.91

    1.39x 10-4

    0.26 7561.52

    0.70 x 10 -4 0.13 3780.76

    2 2.01 x 10 -4 5.56 x 10-4 2.77 49574.94

    2.78 x 10-4

    1.38 24697.99

    1.39 x 10-4

    0.69 12348.99

  • 8/11/2019 RESULTS1 lab1

    4/12

    1.11 x 10-4 0.55 9843.40

    8.34 x 10-5 0.41 7337.81

    2.78 x 10-5

    0.14 2505.59

    3 2.01 x 10-4

    1.11 x 10-4

    0.55 9843.40

    1.39 x 10-4 0.69 12348.99

    1.11 x 10-4 0.55 9843.40

    8.34 x 10-5

    0.41 7337.81

    5.56 x 10-5 0.28 5011.19

    Table 5: Results calculated for experimental friction factor, theoretical friction factor and Reynolds

    number for each pipe

    Pipe Head loss due

    to friction, Hf

    /m

    Reynolds

    Number

    Typical

    Roughness

    Height (k)/m

    Theoretical

    Friction Factor

    Experimental

    Friction Factor

    (Darcys Friction

    Factor)

    1 0.247 61364.65 0.001 x 10-3

    0.019904 0.02177

    0.148 45659.96 0.021236 0.023561

    0.073 30536.91 0.02329 0.025982

    0.006 7561.52 0.033433 0.034828

    0.002 3780.76 0.04117 0.046438

    2 0.220 49574.94 0.020921 0.006924

    0.275 24697.99 0.024545 0.03487

    0.089 12348.99 0.029241 0.045141

    0.052 9843.40 0.031082 0.04151

  • 8/11/2019 RESULTS1 lab1

    5/12

    0.060 7337.81 0.033743 0.08619

    0.050 2505.59 0.047122 0.616013

    3 0.245 9843.40 0.1 x 10-3

    0.031082 0.195576

    0.153 12348.99 0.029241 0.077601

    0.088 9843.40 0.031082 0.070248

    0.039 7337.81 0.033743 0.056024

    0.314 5011.19 0.037746 0.96714

    Table 6: Results calculated to plot a graph of log against log Re for each pipe

    Pipe Reynolds number,

    Re

    Log (Re) Theoretical

    friction factor

    Log( )

    1 61364.65 4.787918 0.019904 -1.70106

    45659.96 4.659536 0.021236 -1.67293

    30536.91 4.484825 0.02329 -1.63283

    7561.52 3.878609 0.033433 -1.47582

    3780.76 3.577579 0.04117 -1.38542

    2 49574.94 4.695262 0.020921 -1.67942

    24697.99 4.392662 0.024545 -1.61004

    12348.99 4.091631 0.029241 -1.53401

    9843.40 3.993145 0.031082 -1.50749

    7337.81 3.865566 0.033743 -1.47182

    2505.59 3.39891 0.047122 -1.32678

    3 9843.40 3.993145 0.031082 -1.50749

  • 8/11/2019 RESULTS1 lab1

    6/12

    12348.99 4.091631 0.029241 -1.53401

    9843.40 3.993145 0.031082 -1.50749

    7337.81 3.865566 0.033743 -1.47182

    5011.19 3.699941 0.037746 -1.42313

    SAMPLE CALCULATIONS

    Converting Lh-1to m3h-1

    1m3= 1000000 cm

    3

    But 1L = 1000cm3

    1m3= 1000L

    1L= 10-3m3 If Q= 600 Lh

    -1,

    then Q= (600 x 10-3) =0.6m3h-1

    Converting m3h

    -1to m

    3s

    -1

    1 h= 3600s

    1h-1=(1/3600)= 2.78 x 10-4

    If Q= 0.6m3h

    -1,

    Then Q= 0.6 x (2.78 x 10-4

    ) = 1.67 x 10-4

    m3s

    -1

    Calculating uniform velocity of flow (u) in ms-1

    Re: Q= u A

    u= Q/A

    A= r2= (0.013)

    2= 5.31 x 10

    -4m

    2(For pipe 1)

    For Q= 1.67 x 10-4

    and A= 5.31 x 10-4

    m2,

    u= (1.67 x 10-4)/ (5.31 x 10-4)

    u= 0.315 ms-1

    Calculating Reynolds Number

    v

    udRe , where v=0.894 x 10-6for water at 25oC

    For u=0.315, d=0.026m and v= 0.894 x 10-6

    ,

    07.916110894.0

    )026.0)(315.0(Re

    6

  • 8/11/2019 RESULTS1 lab1

    7/12

    Calculating the Theoretical Friction Factor ( )

    Recall Haalands Relationship:

    11.1

    71.3Re

    9.6

    log8.1

    1

    d

    k

    where is the friction factor for the pipe

    k is the typical roughness height (m)

    Re is Reynolds number

    d is the diameter of the pipe

    For Cu pipe of diameter 0.026 m, k=0.001 x 10-3

    , Re=9161.07

    1 = -1.8 log {[6.9/9161.07]+[0.001 x 10-3/3.71(0.026)]1.11}

    = -1.8 log {(0.000753) + (0.000010366)1.11}

    = -1.8 log (0.000753 + 0.000002933)

    =-1.8(-3.12)

    =5.616

    = 1/(5.616) = 0.178

    = (0.178)2= 0.0317

    Calculating the Experimental Friction Factor( )Recall Equation to calculate Darcy Friction Factor:

    2

    2

    Lu

    gdhf

    where L is the length of the pipes under study= 1.3m

    hfis head loss due to friction

    g is acceleration due to gravity = 9.81 m2s

    -1

    d is diameter of the pipe

    u is the uniform velocity of flow

    For hf= 0.025, d= 0.026m, u=0.315 ms-1

    = [(0.025)x2(9.81)(0.026)] /[(1.35)(0.315)2]

    = (0.012753)/(0.13396)

    =0.0952

  • 8/11/2019 RESULTS1 lab1

    8/12

    Calculating for the Cu (28x1mm) pipe

    Average Re= (7619.69 + 9161.07 + 15239.37 + 30536.91 + 45659.96)/ 5

    = 21643.4

    Using the Haaland Equation,

    1

    = -1.8 log {(6.9/21643.4) + [(0.001x10-3)/ (3.71)(0.026)]1.11}

    = -1.8 log [(3.19x10-4)+ (2.933x10-6)

    =-1.8 log (3.22x10-4

    )

    =-1.8(-3.492)

    =6.286

    = [1/ (6.286)]2

    = (0.159)2

    = 0.0253

    Average hf=(0.005+ 0.025+ 0.043 + 0.10+ 0.175)/5

    =0.0786

    Average U= (0.262+ 0.315+ 0.524+ 1.05 +1.57)/5

    = 0.744 ms-1

    Using equation for the Darcy Friction Factor,

    = {(0.0786)(2)(9.81)(0.026)/[(1.35)(0.744)2

    ]}

    = (0.0401)/(0.747)

    =0.0537

    Calculating for the Cu (18 x 1mm) pipe

  • 8/11/2019 RESULTS1 lab1

    9/12

    Average Re= (4957.49 + 7409.40 + 9879.19 + 14872.48 + 49574.94)/ 5

    = 17338.7

    Using the Haaland Equation,

    1

    = -1.8 log{(6.9/17338.7) + [(0.001X10-3

    )/(3.71x 0.016)]1.11

    }

    = -1.8 log[(3.98x10-4

    ) + (5.028x10-6

    )]

    = -1.8 log(4.03x10-4)

    = -1.8(-3.395)

    =6.111

    = [(1/6.111)2]

    = (0.164)2

    = 0.0269

    Average hf= (0.008+ 0.002 +0.031 +0.085 +0.233)/5

    = 0.0718

    Average U= (0.277 +0.414 +0.552 +0.831 +2.77)/5

    = 0.969 ms-1

    Using the equation for Darcy Friction Factor,

    = {[(0.0718)(2)(9.81)(0.016)]/[(1.35)(0.969)2]}

    = (0.0225)/(1.27)

    = 0.0177

    Calculating for the St galvanized pipe

    Average Re= (2469.80 + 4957.49+ 7409.40+ 9879.19 +14872.48)/5

    = 7917.7

    Using the Haaland Equation,

    1

    = -1.8 log{(6.9/7917.7) + [(0.1x10-3

    )/(3.71 x 0.016)]1.11

    }

  • 8/11/2019 RESULTS1 lab1

    10/12

    = -1.8 log[(8.71x10-4) + (8.344x10-4)]

    = -1.8 log(1.71x10-3)

    =-1.8(-2.768)

    =4.982

    = [(1/4.982)2]

    = (0.201)2

    =0.0404

    Using the equation for Darcy Friction Factor,

    Average hf= (0.008+ 0.023+ 0.058+ 0.107+ 0.355)/5

    = 0.110

    Average U= (0.138+ 0.277+ 0.414 + 0.552+ 0.831)/5

    = 0.442 ms-1

    = {*(0.110)(2)(9.81)(0.016)]/[(1.35)(0.442)2]}

    = [(0.0345)/(0.264)]

    =0.131

  • 8/11/2019 RESULTS1 lab1

    11/12

    -1.8

    -1.7

    -1.6

    -1.5

    -1.4

    -1.3

    -1.2

    0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

    log()

    log (Re)

    Graph 1 showing logvs log Re for all three pipes

    Cu pipe (18x1)

    Cu pipe(28x1)

    1/2'' St galvanized pipe

    -1.8

    -1.7

    -1.6

    -1.5

    -1.4

    -1.3

    -1.2

    0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

    log()

    log (Re)

    Graph 1 showing logvs log Re for Cu pipe (18x1)

    Cu pipe (18x1)

  • 8/11/2019 RESULTS1 lab1

    12/12

    -1.8

    -1.7

    -1.6

    -1.5

    -1.4

    -1.3

    -1.2

    0.015 0.02 0.025 0.03 0.035 0.04 0.045

    log()

    log (Re)

    Graph 1 showing logvs log Re for Cu pipe (28x1)

    Cu pipe(28x1)

    -1.6

    -1.55

    -1.5

    -1.45

    -1.4

    -1.35

    -1.3

    -1.25

    -1.2

    0.015 0.02 0.025 0.03 0.035 0.04

    log()

    log (Re)

    Graph 1 showing logvs log Re for all three pipes

    1/2'' St galvanized pipe