73
RETRAINING OBSTRUCTIVE RETRAINING OBSTRUCTIVE PULMONARY DISEASE SUBJECTS: PULMONARY DISEASE SUBJECTS: From theory From theory to practice to practice Alain VARRAY Diplôme Européen Universitaire en Activités Physiques Adaptées

RETRAINING OBSTRUCTIVE PULMONARY DISEASE SUBJECTS: From theory to practice Alain VARRAY Diplôme Européen Universitaire en Activités Physiques Adaptées

Embed Size (px)

Citation preview

RETRAINING OBSTRUCTIVE RETRAINING OBSTRUCTIVE

PULMONARY DISEASE SUBJECTS:PULMONARY DISEASE SUBJECTS:

From theoryFrom theory to practice to practice

Alain VARRAY

Diplôme Européen Universitaire

en Activités Physiques Adaptées

From

To…

COPDCOPDChronic Obstructive Pulmonary DiseaseChronic Obstructive Pulmonary Disease

Permanent and irreversible bronchial obstruction chronic hypoxemia

In 2020: probably 3rd cause of mortality in the world

From a clinical point of view:Main symptom: dyspneaVery poor respiratory function (permanent)obvious and high exercise intolerance

Physical Activity and COPD: Physical Activity and COPD: not evident at all !not evident at all !

2 main hurdles :PA increased breathlessness

to be avoided in dyspneic individuals

PA does not change respiratory function so,

PA considered difficult and useless

or even non relevant

Major changesMajor changes

In ten years, many works have improved our understanding of the COPD/exercise interface :

Exercise tolerance is not only linked to COPD severity

COPD muscle shows important abnormalities Quantitative aspect (low muscle mass) Qualitative aspect (muscle structure) Functional consequences Metabolic aspect: the muscle impairments

are not linked with insufficient O2 delivery

2001 AJRCCM editorial : COPD as a muscle disease

WHAT IS THE CONSEQUENCE ?WHAT IS THE CONSEQUENCE ?

Reminder of reasons in favor of PA avoidance Poor exercise tolerance due to pulmonary function

impossible to improve it (chronic disease)exercise induces dyspnea worsening

New evidences in favor of APA :Alteration of muscle function early dyspnea

PA can be used to improve muscle function

for the same disease severity improve exercise tolerance is possible, so better quality of life

The main key…The main key…

To prove that muscle impairment is responsible for early dyspnea

COPD MUSCLE STRUCTURECOPD MUSCLE STRUCTURE

Less fat free mass Loss of maximal force Predictive of peak V'O2

________________ Baarends et al. Eur Respir J, 1997, 10 : 2807-13.

Localized muscle endurance Localized muscle endurance

Interest of localized exercise:

Muscle evaluation without cardiorespiratory limitation

Exercise with adequate O2 supply

Despite this: Endurance time (Tlim)

______ Serres, Gauthier, Varray, Préfaut. Chest, 1998, 113: 900-05.

0

50

100

150

200

250

300

350

400

COPD CONTROL

Tlim

(s)

.

*

Muscle structure abnormalities: typologyMuscle structure abnormalities: typology

Whittom, Jobin, Simard, Leblanc, Simard, Bernard, Belleau, Maltais. Med Sci Sports Exerc, 1998; 30: 1467-74.

CONTROL

COPD

Muscle structure abnormalitiesMuscle structure abnormalities

Decreased activity of oxidative enzymes in COPD Maltais et al, Am J Respir Crit Care Med, 1996.

Citrate synthase, HADH Normal activity of glycolytic enzymes:

LDH, HK, PFK

Explains excessive anaerobic contribution during exercise (localized or general)…

Excessive anaerobic contribution – Excessive anaerobic contribution – localized exerciselocalized exercise

Mean Power Output (W.cm2)

0.0 0.1 0.2 0.3 0.4

Pi/P

Cr

0

1

2

3

4

CONTROL

_______________________ Wuyam, Payen, Levy, et al. Eur Respir J, 1992, 5: 157-62.

Excessive anaerobic contribution – Excessive anaerobic contribution – localized exerciselocalized exercise

Mean Power Output (W.cm2)

0.0 0.1 0.2 0.3 0.4

Pi/P

Cr

0

1

2

3

4

CONTROLCOPD

_______________________ Wuyam, Payen, Levy, et al. Eur Respir J, 1992, 5: 157-62.

**

**

**

Excessive anaerobic contribution – Excessive anaerobic contribution – general exercisegeneral exercise

Maltais, Jobin, Sullivan, Bernard, Whittom, Killian, Desmeules, Belanger, LeBlanc. J Appl Physiol

1998, 84: 1573-80.

Excessive anaerobic contribution – Excessive anaerobic contribution – general exercisegeneral exercise

Maltais, Jobin, Sullivan, Bernard, Whittom, Killian, Desmeules, Belanger, LeBlanc. J Appl Physiol

1998, 84: 1573-80

**

**

*

Muscle oxidative stress evidenceMuscle oxidative stress evidence

• COPD tested in local muscle exercise conditions (quadriceps)

• Assessment of oxidative stress (TBARs)

*

Couillard, Koechlin, Cristol, Varray, Prefaut. Eur Respir J, 2002, 20: 1123-9.

• Consequences on:

Muscle membrane integrity

Impairment of oxidative pathways

Muscle impairment occurs before any Muscle impairment occurs before any problem in Oproblem in O22 supply supply

Warm-up (min)

0 1 2 3

M-W

ave

am

plit

ud

e (

% p

re-e

xe

rcis

e v

alu

es)

75

80

85

90

95

100

105

110

115

EXERCISE (% total duration)

25 50 75 100

Recovery (min)

0 5 10 15

Gosselin, Poulain, Ramonatxo, Ceugniet, Préfaut, Varray. Muscle & Nerve, 2003, 27: 170-9.

Muscle impairment occurs before any Muscle impairment occurs before any problem in Oproblem in O22 supply supply

Warm-up (min)

0 1 2 3

M-W

ave

am

plit

ud

e (

% p

re-e

xe

rcis

e v

alu

es)

75

80

85

90

95

100

105

110

115 ELDERLY NON COPD

EXERCISE (% total duration)

25 50 75 100

Recovery (min)

0 5 10 15

Gosselin, Poulain, Ramonatxo, Ceugniet, Préfaut, Varray. Muscle & Nerve, 2003, 27: 170-9.

Muscle impairment occurs before any Muscle impairment occurs before any problem in Oproblem in O22 supply supply

Warm-up (min)

0 1 2 3

M-W

ave

am

plit

ud

e (

% p

re-e

xe

rcis

e v

alu

es)

75

80

85

90

95

100

105

110

115 COPDELDERLY NON COPD

EXERCISE (% total duration)

25 50 75 100

Recovery (min)

0 5 10 15

*

*****

***

**** **

** **

Gosselin, Poulain, Ramonatxo, Ceugniet, Préfaut, Varray. Muscle & Nerve, 2003, 27: 170-9.

Consequences for exercise adaptationsConsequences for exercise adaptations

Decreased aerobic pathway for a given exercise intensity

Abnormal, excessive anaerobic contribution

Lactic acid Lactic acid [H [H++]]

HH++ + HCO + HCO33- - (buffering)(buffering)

COCO22 production production [H[H++] ]

Excessive stimulation of respiratory centers + respiratory limitation

Dyspnea worseningEven with stable disease severity

X

INTENSE EXERCISE INTENSE EXERCISE

SEVERESEVEREDECREASEDDECREASED

RESPIRATORY IMPAIRMENTRESPIRATORY IMPAIRMENT

DYSPNEA

ACTIVITYACTIVITY

DECONDITIONINGDECONDITIONING

STOPPEDSTOPPED MODERATEMODERATE

MODERATE EXERCISEMODERATE EXERCISE

DAILY ACTIVITIESDAILY ACTIVITIES

Dyspnea spiral…

….even if stable disease severity

INTENSE EXERCISEINTENSE EXERCISE

MEDERATE EXERCISE MEDERATE EXERCISE

DAILY ACTIVITIESDAILY ACTIVITIES

SEVERE MODERATESEVERE MODERATEDECREASED STOPPEDDECREASED STOPPED

RESPIRATORY IMPAIRMENTRESPIRATORY IMPAIRMENT

DYSPNEADYSPNEA

ACTIVITYACTIVITY DECONDITIONINGDECONDITIONING

INITIAL OR PRIMEINITIAL OR PRIMEPATHOLOGYPATHOLOGY

SECONDARYSECONDARYPATHOLOGY:PATHOLOGY:

DeconditioningDeconditioning++

Muscle Muscle dysfunctiondysfunction

SYNTHESISSYNTHESIS

PRIME PATHOLOGY: DYSPNEA due to respiratory impairment

SECONDARY PATHOLOGY: dyspnea due to respiratory center hyper activation Deconditioning consequence Muscle dysfunction

DYSPNEA MANAGEMENT : Fight against prime pathology (medical treatment) Subject RECONDITIONING = fight against secondary

pathology

AIMS OF EXERCISE TRAININGAIMS OF EXERCISE TRAINING

Fight against Deconditioning and muscle dysfunction :

cardio respiratoryperipheral

To solve problems due to prime and secondary pathology

TO DECREASE TO DECREASE DYSPNEADYSPNEA

A.P.A. JUSTIFICATIONA.P.A. JUSTIFICATION

PRIME PATHOLOGY:Medical and paramedical managementTreatment stabilisation and optimization

SECONDARY PATHOLOGY :EPSA teacher directly concernedWork on relationship between

Metabolic effects physical practice and Health increase

Decreased dyspnea so increased quality of life

BASIC KNOWLEDGE NEEDED TO BASIC KNOWLEDGE NEEDED TO OPTIMIZE A.P.A.OPTIMIZE A.P.A.

Good adaptation of exercise testingMethodological basis of individualizationExercise tests too often done incorrectly

dyspnea measurement (diagnosis and evaluation)

Optimal training intensity Field test development Retraining follow-up

ADAPTED EXERCISE TESTINGADAPTED EXERCISE TESTING

Basic principle : Individualize on standardized basis

Main principles:Continuous testProgressively increasedStep duration = 1 minTotal test duration = about 10 min after

warm-up so imperative individualization of load increment

WHY INDIVIDUALIZATION ?WHY INDIVIDUALIZATION ?

Initially, exercise inadaptation are proportional to pathology severity

Most of the time : exercise testing too short impossible ventilatory threshold assessment No maximal exercise test (RER<1.10) Bad interpretation of subject ability to

perform exercise and training programing

HOW INDIVIDUALIZE ?HOW INDIVIDUALIZE ?

STEPS:Calculation of theoretical max. O2 uptakeCorrection according FEV1 (% theoretical)Calculation of expected maximal power

output by converting in watts (remove 250 ml/min and divide by 10.3)

Warm-up = 20 % of expected Pmax during 3 min

Step = 8% of expected Pmax (every minute)

CALCULATION OF THEORETICAL VCALCULATION OF THEORETICAL VOO22maxmax

Predicted maximal O2 uptake(ml.min-1)

MEN

a) if weight<0.79 x height - 60.7

b) if weight>0.79 x height - 60.7

WOMEN

c) if weight<0.65 x height - 42.8

d) if weight>0.65 x height - 42.8

weight x (50.72 - 0.372 x age)

(0.79 x height - 60.7) x (50.72 - 0.372 x age)

(42.8 + weight) x (22.78 - 0.17 x age)

height x (14.81 - 0.11 x age)

Wasserman et al., Principles of exercise testing and interpretation. Wasserman et al., Principles of exercise testing and interpretation. Lea & Febiger, Philadelphia, 1986: pp.72.Lea & Febiger, Philadelphia, 1986: pp.72.

height in cm ; weight in kgheight in cm ; weight in kgage in yearsage in years

EXAMPLEEXAMPLE

Man: 38 years, 80 kg, 1.76 m and FEV1 = 65% of theoretical value

V'O2max théor. (formula b)=2865 ml.min-1

Corrected V'O2max =2865 x 0,65= 1862 ml.min-1

Expected Pmax =(1862-250)/10,3 = 156 watts SO:

Warm-up = 156 x 0,2 = 31 watts Increment = 156 x 0,08 = 12,5 watts per

minute

EXAMPLE FOR EXPECTED Pmax =EXAMPLE FOR EXPECTED Pmax =156 WATTS156 WATTS

Warm-up: 3 minWarm-up: 3 min 10 steps of 1 min10 steps of 1 min 2 min2 min 3 min3 min

31 watts31 watts 12.5 12.5 wattswatts

UnloadeUnloaded d cyclingcycling

restrest

20 % exp. Pmax20 % exp. Pmax 80 % exp. Pmax / 1080 % exp. Pmax / 10 RecoveryRecovery

MEASUREMENT OF VENTILATORY MEASUREMENT OF VENTILATORY THRESHOLDTHRESHOLD

DURING INCREMENTAL EXERCISE/Recording V’O2 and V’CO2 (breath-by-breath)Averaging every 10 secondsComputation of V’O2 / V’CO2 relationship

Ventilatory threshold = breakdown of linearity

Ventilatory Threshold

Interest of individualization at Interest of individualization at ventilatory thresholdventilatory threshold

directly function of aerobic physical fitness Individualization / real capacities Before excessive hyperventilation Very well tolerated (no or few dyspnea) Efficient to induce training effects Easy learning of individualized practice Usable in current life If impossible to measure dyspnea

threshold

DYSPNEA by Visual Analog Scale (VAS)DYSPNEA by Visual Analog Scale (VAS)

NO DYSPNEA ASPHYXIA

10 or 20 cm

At each work load (every min) dyspnea evaluationDelete mark after measurement from zero point

=3,7=1,8 =5,6=1,1 =2,4

DYSPNEA THRESHOLDDYSPNEA THRESHOLD(Visual Analog Scale – VAS)(Visual Analog Scale – VAS)

OPTIMIZATION...

RETRAINING DEVELOPMENT

USEFULNESS OF FIELD TESTS

RATIONALERATIONALE

Disadvantage of individualized training :Regular cardio respiratory evaluation =>

cost Solution :

Adapted field test

One of the most popular :6 or 12 min walking test

6 MINUTE WALKING TEST6 MINUTE WALKING TEST

From Cooper test (12 min) shortened until 6 min

Linearity of walking pace (12 = 2 x 6) highly simple Excellent reproducibility

If correct learningWithout verbal encouragementalone

Very well correlated with V'O2sl

ADAPTED TO ASSESS TRAINING EFFECTS ADAPTED TO ASSESS TRAINING EFFECTS ??

NOT YET STUDIED :Relationship with physical fitness =

Not sufficient (correlation cause to effect relationship)

QUESTION :6 min walking test is it able to identify

physiological modifications due to retraining ?

Protocol : study of relationshipsAerobic physical fitness and 6 min WT

Before and after retraining

6MWT and training effects6MWT and training effects

*

RELATIONSHIP 6MWT AND VENTILATORY RELATIONSHIP 6MWT AND VENTILATORY THRESHOLDTHRESHOLD

WT Distance (m)

0 500 600 700 800 900

VT

h (

l/min

)

0.00.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

BEFORE TRAINING

p<0.001r = 0.79

WT Distance (m)

0 500 600 700 800 900

VT

h (

l/m

in)

0.00.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

AFTER TRAINING

p<0.01r = 0.67

RELATIONSHIP 6MWT AND VRELATIONSHIP 6MWT AND VOO22slsl

WT Distance (m)

0 500 600 700 800 900

VO

2 S

L (

ml/m

in.k

g)

015

20

25

30

35

40

45 r = 0.89

p<0.001

BEFORE TRAINING

WT Distance (m)

0 500 600 700 800 900

VO

2 S

L (

ml/m

in.k

g)

015

20

25

30

35

40

45p<0.001r = 0.78

AFTER TRAINING

oo

PHYSICAL FITNESS PREDICTIONPHYSICAL FITNESS PREDICTION

For VO2 sl (r=0.95):

For ventilatory threshold (r=0.91):

In addition:After training measured and calculated

values non different (diff. Mean = 0.06 l.min-1)

2.63 - FEV10.124 + weight0.019 + Distance0.004sl2OV

1.577 - FEV10.095 - weight0.014 + Distance0.003V Th

6 MIN WALKING TEST6 MIN WALKING TEST

Sensitive to physical fitness variation: ventilatory threshold +++++

Max O2 uptake +/-

Possible aerobic physical fitness prediction Stables relationships throughout training Valid equations even after training

INTEREST ++++

Enright and Sherrill, Am Rev Resp Crit Care Med, 1998, 158: 1384-87.

ADDITIONAL INTEREST

Possible to use predictive equations:

Quantification of impairment vs normal population

Lim it o f norm alityca lcula ted va lue - 153 m eters

M en(7.57 x height) - (5.02 x age) - (1 .76 x w e ight) - 309 m

height in cm ; w e ight in kg ; age in years

L im it o f norm alityca lcula ted va lue - 139 m eters

W om en(2.11 x height) - (2.29 x w e ight) - (5 .78 x age) + 667 m

height in cm ; w e ight in kg ; age in years

Predictive equationsage ranged from 40 to 80 years

Enright and Sherrill, Am Rev Resp Crit Care Med, 1998, 158: 1384-87.

OPTIMIZATION OPTIMIZATION

WHICH INTENSITIES ?WHICH INTENSITIES ?

STATE OF THE ARTSTATE OF THE ART

Works of literature :No consensus

Most of the time :Training intensities based on % reserve

heart rate [ HRrest + (HRmax - HRrest) % ] Interest :

Simplicity of realization

PROBLEMPROBLEM : NEED TO CERTIFY : NEED TO CERTIFY EFFECTIVENESS OF RESULTSEFFECTIVENESS OF RESULTS

Relevance ???No consideration of cardio respiratory

fitnessstandardization is in opposition to

individualization

QUESTION :Which method lead to best results ?

-- INTEREST ---- INTEREST --

Stays in specialized centers :More and more shortened

SO :High need to be as efficient as possibleThat is

Obtain best results every time In a minimum amount of time

PROTOCOLPROTOCOL

2 groups studied :Trained at the same absolute HR, but :

1 gpe at ventilatory threshold (individualization)

1 gpe at 50% of reserve HR (standardtion )training at the same frequency and duration

Blind final evaluation

RESULT 1 RESULT 1 RESERVE HR NO RELEVENT INTENSITYRESERVE HR NO RELEVENT INTENSITY

Moyennes individuelles des fréquences cardiaques (bat.min-1)

80 90 100 110 120 130 140

Diff

éren

ces

indi

vidu

elle

s en

tre

50%

de

fréq

uenc

eca

rdia

que

de r

éser

ve e

t Fc

au s

euil

vent

ilato

ire

(bat

.min

-1)

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

+2 DS

Moyenne

-2 DS

% de VO2SL pré-entraînement

50 60 70 80 90 100

Del

ta la

ctat

e (m

mo

l.l-1

)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

***

NS

NSNS

NS

NS

NSNS

NS

NS

*

**

% de VO2SL pré-entraînement

50 60 70 80 90 100

Del

ta V

E (

l.min

-1)

-14

-12

-10

-8

-6

-4

-2

0

2

4

NS NS NSNS

NS

NS

NS

NS

NS

**

***

**

o

o

o

Entraînement standardiséEntraînement individualisé

p i

nte

r-g

rou

pe

< 0

.001

p i

nte

r-g

rou

pe

< 0

.001

Reserve HR :Random resultsUnder- or over-estimation of efficient

intensities

CONCLUSIONCONCLUSION

Another reserve HR % choice cannot be a solution to

improve this technique

GENERAL RESULTSGENERAL RESULTS

Exercise adaptations : Better exercise tolerance : dyspnea decrease Restoration on self confidence

Enhancement of quality of life : General well-being, emotional state (Ojanen et al,

1993) durable effect (Dekhuijzen et al., 1990)

Improvement of psychological state : Never linked with resting pulmonary function Always related to possible physical activity amount

linked to functional state

Main resultsMain results

Validated in international literature:Original studies and meta-analysisEvidence-based medicine: rating the

strength of evidence

Respiratory rehabilitation based on A.P.AFromFrom:Joint ACCP/AACVPR Evidence-Based Guidelines. Chest, 1997, 112:1363:96.Fabbri and Hurd; GOLD Scientific Committee. Eur Respir J, 2003, 22: 1-2. Unique technique assessed with grade A for:

breathlessness health-related quality of life depression and anxiety associated with

COPD hospitalization number and durationAmazingly better exercise tolerance

exercise capacity dyspnea for a given exercise intensity

Grade B for: Improved survival

AEROBIC PHYSICAL FITNESSAEROBIC PHYSICAL FITNESS

___________________________ Vallet et al., Rev. Mal. Resp., 1993

Entraînés Non entraînés

VO

2SL

(l.m

in-1

)

0

1

2

Entraînés Non entraînés

Seu

il ve

ntila

toire

(l.m

in-1

)

0

1

2

T0 T6

**

*

ns

ns

o

Ven

tilat

ory

Thr

esho

ld (

l.min

-1)

Trained UntrainedTrained Untrained

Effects on ventilatory requirementEffects on ventilatory requirement

______ Varray, Mercier, Préfaut. Int. J. Rehab. Res., 1995, 18: 297-312.

Very high ventilatory savings

VENTILATORY REQUIREMENTVENTILATORY REQUIREMENT

Ventilation decrease for a given exercise intensity:

Increased ventilatory comfort for any exercise intensity

Decreased respiratory cost (dyspnea )

SO: more O2 for exercising muscles : Exercise capacity increased Better exercise efficiency

0

0.5

1

1.5

2

2.5

3

3.5V

O2

(l/m

in)

Before training After training

respiratory muscles

exercising muscles

o

respiratory muscles

exercising muscles

BREATHING PATTERNBREATHING PATTERN

% de VEmax pré-entraînement

20 40 60 80 100

VT (

l)

0.2

0.4

0.6

0.8

1.0

1.2

1.4Avant entraînement

Après entraînement

o

_________________ Varray et al., Int. J. Rehab. Res., 1995

Before training

After training

% of pre-training ventilation

BREATHING PATTERN MODIFICATION BREATHING PATTERN MODIFICATION

• VT always higher for a given ventilation : Better alveolar ventilation Airways turbulences decrease for a given

obstruction level Explanation of the effects on dynamic

hyperinflation Dyspnea decrease during exercise (lower fb) Reduced ventilatory cost

% de VO2SL pré-entraînement

50 60 70 80 90 100

Del

ta la

ctat

e (m

mol

.l-1

)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

***

NS

NSNS

NS

NS

NSNS

NS

NS

*

**

% de VO2SL pré-entraînement

50 60 70 80 90 100

Del

ta V

E (l

.min

-1)

-14

-12

-10

-8

-6

-4

-2

0

2

4

NS NS NSNS

NS

NS

NS

NS

NS

**

***

**

o

o

o

Entraînement standardiséEntraînement individualisé

p in

ter-

grou

pe <

0.0

01

p in

ter-

grou

pe <

0.0

01

Individualization versus standardizationIndividualization versus standardization

Standard training Individualised training

% pre-training pic V’O2 % pre-training pic V’O2

% de VEmax pré-entraînement

50 60 70 80 90 100

VT

(l)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

% de VEmax pré-entraînement

50 60 70 80 90 100

VT (

l)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

NS

NS

NS

NS

NS

NS

o

***

**

**

**

**

*

o

Avant entraînement

Après entraînement

Avant entraînement

Après entraînement

GROUPE STANDARDISATIONGROUPE INDIVIDUALISATION

Individualization versus standardization Individualization versus standardization (breathing pattern)(breathing pattern)

_____________________ Vallet et al., Eur. Resp. J., 1997

% pre-training V’E max % pre-training V’E max

Before training

After training

Before training

After training

INDIVIDUALIZED GROUP STANDARDIZED GROUP

Effects on muscle dysfunction – Effects on muscle dysfunction – localized exerciselocalized exercise

Tlim (secondes)

0 100 200 300 400 500 600 700 800 900

Wlim

0

500

1000

1500

2000

2500

3000

3500

4000

*

*

*

Avant entraînementPuissance critique avant entraînement

Après entraînementPuissance critique après entraînement

Before trainingCritical power before training

After trainingCritical power after training

Localized exercise

No cardiorespiratory limitation

Assessment of muscle function per se

__________ Serres, Varray, Vallet, Micallef, Préfaut. J Cardiopulm Rehab, 1997, 17: 232-8.

Delay in fatiguethreshold

Effects on muscle dysfunction – Effects on muscle dysfunction – localized exerciselocalized exercise

Tlim (secondes)

0 100 200 300 400 500 600 700 800 900

Wlim

0

500

1000

1500

2000

2500

3000

3500

4000

*

*

*

Avant entraînementPuissance critique avant entraînement

Après entraînementPuissance critique après entraînement

Before trainingCritical power before training

After trainingCritical power after training

__________ Serres, Varray, Vallet, Micallef, Préfaut. J Cardiopulm Rehab, 1997, 17: 232-8.

Local endurance

+250%

Effects on muscle dysfunction – Effects on muscle dysfunction – general exercisegeneral exercise

Gosselin, Lambert, Poulain, Martin, Prefaut, Varray. Muscle & Nerve, 2003, 28: 744-53.

Muscle efficiencyMuscle efficiency

_________________________ Gosselin et al., Muscle & Nerve, 2003.

Before trainingAfter training

COST/EFFECTIVENESS RELATIONSHIPSCOST/EFFECTIVENESS RELATIONSHIPS

5 years PRE-R.R. 4.24* / 1069** 2.34* / 586** 3.2* / 801**

5 years POST-R.R. 6.28* / 1570** 3.78* / 946** 1.67* / 417**

EVOLUTION COST/ 5 years (1193$/day) + 600 000 $ + 430 000 $ - 458 000 $

GROUP 1 GROUPE 2 GROUPE 3 Treatment : Treatment: Respiratory medical Médical + Education Rehabilitation n = 50 n = 50 n = 50

* : hospitalization days /patient/year ** : total hospitalization days during 5 years

+ work of Trautner (Eur. Resp. J., 1993) - asthma and health management :

For 1 DM (cost), 5 DM saved for public health economy

Sneider, J. Sneider, J. Cardio-pulm. Cardio-pulm. Rehab., 1988Rehab., 1988