47
3.17.2011 Rev. 26 Page 1 REVERSE ELECTRODIALYSIS PROJECT REPORT ALEXANDRA EASTES BME/EE MINOR AEASTES@UCSC. EDU DYLAN HINGEY CMPE/ISM DYLAN. HINGEY@GMAIL.COM CHIRAG SHARMA BME CXSHARMA@UCSC.EDU DANNY TATE BME DSTATE@UCSC. EDU ULYSSES MORALES CMPE UMORALES@UCSC. EDU

REVERSE ELECTRODIALYSIS’’’’’’’’’’’’’’’ PROJECT’REPORT · determine! the! feasibility of! using reverse ]electrodialysis to! supplement! a! small! portion!

  • Upload
    vonhi

  • View
    238

  • Download
    3

Embed Size (px)

Citation preview

3.17.2011  Rev.  26   Page  1  

 

 

 

 

 

 

 

 

REVERSE  ELECTRODIALYSIS                                PROJECT  REPORT    

 

 

ALEXANDRA  EASTES                          BME/EE  MINOR                                                                              [email protected]  

DYLAN  HINGEY  CMPE/ISM  [email protected]  

CHIRAG  SHARMA  BME    [email protected]  

DANNY  TATE  BME  [email protected]  

ULYSSES  MORALES  CMPE  [email protected]  

 

 

3.17.2011  Rev.  26   Page  2  

 

TABLE  OF  CONTENTS  Motivation  for  Researching  Reverse  Electrodialysis  ......................................................................  4  

Background:  How  Does  a  Concentration  Cell  Work  [10,  12]  ..........................................................  9  

Specific  Aims  .................................................................................................................................  12  

Approach  .......................................................................................................................................  13  

Cell  construction........................................................................................................................  13  

Experimentation  ........................................................................................................................  15  

Developing  a  storage  component  for  the  cell  ...........................................................................  21  

Battery  options/charging  methods:  ......................................................................................  21  

Circuit  Design:  ........................................................................................................................  21  

Results:  ..................................................................................................................................  23  

Transfer  sensor  readings  from  client  to  server  .........................................................................  24  

Defining  the  Problem  of  Data  Transfer  .................................................................................  24  

Initial  Planning  and  Considerations  .......................................................................................  25  

Intermediate  and  Final  Solutions  ..........................................................................................  26  

Displaying  real-­‐time  voltage  and  current  readings  on  a  website  .............................................  29  

Overview:  ...............................................................................................................................  29  

Server  Setup:  .........................................................................................................................  29  

Web  Design:  ...........................................................................................................................  29  

Website  Graphs  and  Table  Output:  .......................................................................................  30  

Remote  Camera  monitoring  System:  ....................................................................................  35  

Closure:  ..................................................................................................................................  36  

Feasibility  Conclusion  of  Reverse  Electrodialysis  ..........................................................................  37  

System  block  diagram  ...................................................................................................................  38  

Budget  ...........................................................................................................................................  39  

 

 

3.17.2011  Rev.  26   Page  3  

 

Personnel  ......................................................................................................................................  41  

Alexandra  Eastes  .......................................................................................................................  41  

Dylan  Hingey..............................................................................................................................  42  

Ulysses  Morales  .........................................................................................................................  43  

Chirag  Sharma  ...........................................................................................................................  44  

Danny  Tate  ................................................................................................................................  45  

References  ....................................................................................................................................  46  

 

                                       

3.17.2011  Rev.  26   Page  4  

 

   MOTIVATION  FOR  RESEARCHING  REVERSE  ELECTRODIALYSIS    

In  the  United  States,  83%  of  energy   is  supplied  by  petroleum,  natural  gas  and  coal,  and  while  there   is   controversy   regarding   the   depletion   timeline   of   these  major   sources   of   energy,   it   is  indisputable  that  additional  sources  of  energy  are  needed  to  meet  the  increasing  global  energy  demands[1,2].  No  single  alternative  source  of  energy  has  proven  capable  of  supplying  sufficient  amounts   of   energy   to   replace   oil,   yet   technological   advancements   combined  with   continued  exploration  in  the  field  of  renewable  energy  provide  possibilities  for  the  future  [9].  In  response  to   the   need   to   explore   additional   sources   of   energy,   this   project   focuses   on   designing   a  concentration   cell   capable  of  producing  energy   from  a  naturally  occurring   salinity   gradient   in  Santa  Cruz,  CA  and  determining   the   feasibility  of   implementing  a   full   scale  power  plant  using  the   aforementioned   concentration   cell,   which   generates   energy   by   means   of   reverse  electrodialysis.  

 Figure  1  [1]:  (Taken  from  Lawrence  Livermore  National  Lab)  Estimated  U.S.  Energy  Use  in  2009.  The  U.S.  relies  heavily  on  non-­‐renewable  sources  of  energy,  which  are  being  depleted  because  of  population  growth,  price  of  oil  and  coal  compared  to  renewable  energies  and  the  convenience  of  infrastructure.  Alternative  sources  of  energy  must  be  explored  to  provide  energy  to  the  United  States  in  the  future.      

3.17.2011  Rev.  26   Page  5  

 

 

 

The  process  of  reverse  electrodialysis  generates  a  voltage  from  an  ionic  gradient  separated  by  a  semi-­‐permeable  membrane,   forming   a   concentration   cell   [3].   Examples   of   ionic   gradients   are  found  in  human  cells  [K+  channels]  [4],  electric  eels  [electrocytes]  [5],  and  estuaries  [river:ocean].  In   the   latter   example,   fresh   water   mixes   with   ocean   water   naturally   and   becomes   brackish  water,   but   this   unobstructed   diffusion   can   be   harnessed   into   energy   using   reverse  electrodialysis.   The  difference   in   salinity   between   river  water   (low   concentration  of   salt)   and  ocean  water  (high  concentration  of  salt)  at  an  estuary  can  be  separated  with  a  semi-­‐permeable  membrane,  resulting   in  a  voltage  defined  by  the  difference   in  saline  concentrations.    The  San  Lorenzo  River  in  Santa  Cruz,  CA,  which  flows  into  the  Monterey  Bay  forming  an  estuary  next  to  the  Santa  Cruz  Beach  Boardwalk,  is  the  location  of  interest  for  this  project  (Fig.  2).    

 

 

 

Figure  2:  (Taken  from  Google  Maps)  Google  Maps  Screen  Shot  of  the  San  Lorenzo  River.  Part  A  is  the  estuary  where  the  San  Lorenzo  River  flows  into  the  Monterey  Bay.  The  salinity  at  this  location  is  0.593mol/L  8.  Part  B  was  an  initial  area  of  interest,  but  the  lack  of  salinity  gradient  resulted  in  low  voltage.  Part  C  is  the  revised  fresh  water  resource  and  is  located  under  the  Water  Street  Bridge.    The  salinity  at  this  location  is  0.0033mol/L  8.  The  salinity  ratio  between  these  two  locations  is  1:182,  which  would  provide  127mV  for  each  concentration  cell  according  to  the  Nernst  Equation.  

3.17.2011  Rev.  26   Page  6  

 

 

 

To  determine  if  the  San  Lorenzo  River  and  Monterey  Bay  make  a  suitable  location  for  a  reverse-­‐electrodialysis  power  plant,  a  ten-­‐cell  stack  of  concentration  cells  will  be  created  and  tested  for  maximum  power  output  with  minimal   costs.  Voltage   sensors   (Gamry  Ref   600)  will   track   real-­‐time  readings  from  the  ten-­‐cell  stack  and  print  the  results  to  a  website  for  off-­‐site  monitoring.  The   power   generated   from   the   ten-­‐cell   stack   prototype   will   charge   a   small   battery   to  

 

Preliminary  theoretical  research  from  a  2009  thesis  paper  from  the  Netherlandsn  Post  states  that  

1m3   of   salt   water   mixing   with   1m3   of   fresh   water,   assuming   a   salinity   gradient   of   1:50,  generates  1.4MJ  (Equation  1)  [6].    

      (1)  

  Ci,x  =  NaCl  concentration  of  water  (subscript  c-­‐  concentrated,  d-­‐  dilute,  b-­‐brackish)    

    [mol/liter]  

  V      =  volume  of  water  [liters]  

  R      =  universal  gas  constant  [joule/mol  K]  

  T      =  absolute  temperature  [K]  

                  (2)  

  Gx  =  the  free  energy  from  each  individual  component  of  the  cell  

Using  data  from  the  United  States  Geological  Survey  (USGS),  which  measured  the  San  Lorenzo  River  average  annual  discharge  (flow)  between  205-­‐755  m3/sec,  and  assuming  an  ideal  situation  (1:50  salinity  gradient  and  100%  efficiency),  equation  1  can  be  applied  to  the  San  Lorenzo  River  resulting  in  a  theoretical  power  output  between  0.289GW-­‐1.057GW  [7].  Even  with  1%  efficiency,  given   these   theoretical   assumptions,   there   is   a   2.5MW  potential   from   the   San   Lorenzo  River  between  Branciforte,  Santa  Cruz  and  the  mouth  of  the  river.    

However,   Post   appears   to   have  miscalculated   the   energy   potential   from  mixing   1m3  of   river  water  with  1m3  of  ocean  water.  His  calculation  used  the  following  parameters   in  his  paper  on  page  43:  0.5mol/L  (sea  water),  0.01mol/L  (river  water),  absolute  temperature  T=293K,  universal  

3.17.2011  Rev.  26   Page  7  

 

gas   constant   R   =   8.314J/molK   and   a   volume  of   1m3   =   1000   liters   for   each   solution.   Breaking  equation  1  into  three  parts,  the  free  energy  of  each  component  can  be  added  together  where  ci  is  the  concentration  or  molarity,  V  is  the  volume,  and  xi  is  the  molarity  of  the  solution  (Note:  ci  and   xi   are   the   same   variable,   but   Post   separates   them   into   two   difference   variables  representing   the   same   value.   We   respectfully   retained   the   equation   exactly   as   reported   in  

 even  though  it  is  misleading.)  

                               (3)  

=-­‐844,253J  

        (4)  

=-­‐112,182J  

                             (5)  

=  -­‐1,697,676  

               

=  741,241J    +0.74MJ  

The   corrected   value   (+0.74MJ)   using   the   same   variables   as   Post   is   half   of   his   reported  calculation   and   has   a   sign   reversal.   The   positive   sign   that   results   from   a   recalculation   using  

system   for   the   reaction   to   occur,   which   is   inaccurate   because   a   high   concentration   will  spontaneously  diffuse  into  a  lower  concentration  to  achieve  equilibrium  without  adding  energy.  The   sign   change   error   appears   to   be   a   simple  mix-­‐up   between   products   and   reactants.   The  standard  free  energy  of  formation  can  be  calculated  as  follows:    

[10]                                (6)  

Following   equation   6,   the   high   and   low   initial   concentrations   are   subtracted   from   the   final  mixed   concentration,   resulting   in   a   negative   free   energy   and   defining   the   reaction   as  spontaneous.  Post   subtracted   the  product   (mixed   solution)   from  the   reactants   (unmixed  high  and   low  concentrations).    Note   that   the  negative/positive   sign   in   front  of   the  energy   (Joules)  refers   to   how   much   energy   must   be   inputted   into   the   system   for   the   reaction   to   occur.   A  negative  sign  means  energy  can  be  extracted  from  a  reaction.  Calculating  the  free  energy  using:  

 [11]                                    (7)  

3.17.2011  Rev.  26   Page  8  

 

=  -­‐741,241J    -­‐0.74MJ  

Changing   the   energy   potential   of   1m3   of   river   water   mixing   with   1m3   of   sea   water   to   the  recalculated  0.74MJ,  the  maximum  theoretical  energy  from  the  San  Lorenzo  River  (retaining  the  1:50   gradient   and   100%   efficiency   assumptions)   is   between   151MW-­‐558MW.   With   1%  efficiency  from  this  re-­‐calculation,  a  1.5MW  power  plant  would  be  reasonably  plausible.    

However,   the   1:50   assumption,   as   assumed  amount   of   energy   potential   in   the   San   Lorenzo   Ri

Water   Street   Bridge   (F   (Fig.  1   label  A)   [8].   The   salinity  of   these  conductivities   is   calculated  to  be:  0.00326M  

and  0.593M  respectively,  which  results  in  a  salinity  gradient  of  1:182.  Applying  these  location-­‐  specific  molarities  and  measured  temperature  of  284K  to  the  Gibbs  Free  Energy  equation  above  (equation   7),   the   San   Lorenzo   River   has   a   theoretical   energy   of   928,763   Joules/m3,   which   is  almost   200,000   Joules   more   than   the   initial   estimate   and   brings   the   maximum   theoretical  power  potential  to  190MW-­‐700MW.  

This  project  focuses  on  harnessing  this  theoretical  energy  by  designing  and  building  a  prototype  stack   of   ten   concentration   cells   to   use   as   a   test   bed   for   collecting   data   regarding   the   saline  energy  potential  at  the  estuary  between  the  San  Lorenzo  River  and  the  Monterey  Bay.  Voltage  sensors   will   output   real-­‐time   data   to   a   website   to   track   cell   production   and   ultimately  determine   the   feasibility   of   using   reverse-­‐electrodialysis   to   supplement   a   small   portion   of  current  energy  sources  in  Santa  Cruz,  CA.    

 

 

 

 

 

 

 

 

 

3.17.2011  Rev.  26   Page  9  

 

 

BACKGROUND:  HOW  DOES  A  CONCENTRATION  CELL  WORK  [10 ,  12]  Two  solutions  containing  the  same  ions  but  in  different  concentrations  yield  a  voltage  potential  if   separated   by   a  membrane   that   only   allows   specific   ions   to   pass   through   it..   The   expected  voltage  for  each  individual  cell  is  calculated  from  the  Nernst  equation[10]:  

                                              (8)  

V  =  cell  potential  [volts]  

R  =  Universal  Gas  Constant:  8.314  [J/molK]  

T=  Universal  Temperature  [K]  

z=  number  of  valence  electrons  per  ion  passed  through  a  membrane  

 

Where  V  is  the  cell  potential  [volts],  R  is  the  universal  gas  constant  =  8.314  J/molK,  T  is  absolute  temperature   [K],   z   is   the   number   of   electrons   transferred   for   each   ion   passing   through   the  

concentrations  are  defined  by  the  molarity  of  each  side  of  the  cell.  Using  these  variables  and  an  expected  concentration  gradient  of  1:182,  as  measured  from  the  San  Lorenzo  River  Watershed  Management   Update   in   2001,   each   concentration   cell   is   calculated   to   produce   127mV   open  circuit.    

This   voltage   is   achieved   by   allowing   specific   high   concentration   ions   to   diffuse   into   the   low  concentration   solution,   which   is   defined   by   the   type   of   membrane.   The   membrane   of   a  concentration  cell  can  be  either  an  anion  exchange  membrane  or  a  cation  exchange  membrane.  The  anion  exchange  membrane  is  slightly  positively  charged  and  allows  negative  ions  (anions)  to   pass   through,   while   repelling   positively   charged   ions   (cations).   The   cation   exchange  membrane   does   the   opposite,   attracting   positive   ions   and   repelling   negative   ions.   In   this  

-­‐   to   flow   through   the  membrane  (Fig.  3A).  

Since   the   anion   exchange  membrane   (AEM)   is   selective   for   Cl-­‐   and   the   high   concentration   is  disposed   to   spontaneously   equilibrate   with   the   low   concentration,   the   Cl-­‐   from   the   high  concentration   will   flow   through   the   membrane   [10,   12].   The   movement   of   Cl-­‐   to   the   low  concentration  unbalances   the  neutral  charge  of   the  two  solutions.  To  achieve  equilibrium,  Ag  

3.17.2011  Rev.  26   Page  10  

 

from  the  Ag/AgCl  electrode  sends  its  electron  across  the  wire  connecting  both  the  anode  (low  concentration   electrode)   and   the   cathode   (high   concentration   electrode).  When   Ag   loses   its  electron,   it   becomes   Ag+   which   bonds   with   Cl-­‐   to   become   AgCl   on   the   anode   (Fig.   3B).   The  electron  that  was  sent  from  the  anode  Ag,  pairs  with  AgCl  to  become  Ag  and  Cl-­‐  (Fig.  3C).    

 

 

 

 

 

 

Figure  3  [10,  12]:  How  a  concentration  cell  works.  (A)  Two  solutions  containing  the  same  ions  are  separated  by  a  semi-­‐permeable  membrane  (green).  The  left  side  is  the  low  concentration;  the  right  side  is  the  high  concentration.  Both  electrodes  are  the  same  material,  Ag/AgCl.  (B)  The  solutions  work  to  achieve  equilibrium.  Our  membrane  only  allows  negative  ions  to  flow  through  since  it  is  an  anion  exchange  membrane,  thus  Cl-­‐  

from  the  cathode  flows  through  the  membrane.  (C)  Ag+  and  Cl-­‐  bond  to  form  AgCl  on  the  anode  sending  an  electron  to  the  cathode,  which  takes  the  electron  to  split  AgCl  into  Ag  and  Cl-­‐.  Slowly,  the  concentrated  side  becomes  more  dilute  and  the  lower  concentration  side  becomes  more  concentrated[14].  The  voltage  is  a  result  of  the  high  concentration  selective-­‐ion  diffusion  to  the  low  concentration.  

3.17.2011  Rev.  26   Page  11  

 

   

3.17.2011  Rev.  26   Page  12  

 

SPECIFIC  AIMS    

Construct   a   concentration   cell   that   generates   energy   to   charge   a   battery   using   the  salinity  gradient  between  the  San  Lorenzo  River  and  the  Monterey  Bay.    

Develop  a  storage  component  (i.e.  battery)  for  the  cell  to  transfer  the  energy  generated.   Output  real-­‐time  voltage  and  current  readings  to  website.   Transfer   sensor   readings   from   client   to   server.   This   will   be   done   in   real-­‐time   and  

autonomously  so  that  the  information  available  for  display  on  the  website  is  as  relevant  as  possible.  

Determine  feasibility  of  reverse  electrodialysis  as  a  realistic  alternative  to  current  energy  sources.    

3.17.2011  Rev.  26   Page  13  

 

APPROACH    

CELL  CONSTRUCTION  A  key  motivation  of  the  project  is  to  keep  the  cost  of  the  total  construction  low  while  still  generating   a   significant   voltage   and   current   from   the   system.   The   setup   consists   of   ten  unions   that   hold   the   membranes   in   place   and   uses   gravity   instead   of   pumps   to   deliver  water  to  the  unions.  Each  union  is  connected  to  two  3-­‐way  tees  which  are  then  connected  to  piping  that  deliver  water  to  each  side  of  the  union.  In  order  to  add  a  level  of  rigidity  in  the  system,  there  are  two  rows  of  five  unions  with  PVC  piping  connecting  each  side  of  the  union  with  river  and  seawater.  The  fresh  water  and  seawater  are  held  in  5  gallon  buckets  and  water   flow   is   controlled  by  a  ball   valve  on  each  bucket.  Vinyl   tubing   connects   to   the  bottom  of  the  3-­‐way  tees  to  allow  for  drainage  of  brackish  water  and  is  plugged  by  20  mL  syringes  which  serve  a  dual  purpose.  

In  order  to  prevent  a  possible  short  circuit  between  all  the  cells  when  water  has  filled  the  system  to  capacity,  20  mL  syringes  were  used  to  plug  the  drainage  piping.  Once  water  has  completely  filled  the  system,  the  syringes  can  be  extended  to  lower  the  total  water  level  in  the  system  by  400  mL.  This  reduction   is  water   level  allows   for  air  gaps   to  exist  between  each  cell  and  eliminating  the  chance  of  a  short  circuit.  This  was  an  important  design  feature  because   the   cells   closest   to   the   two   sources   of  water   fill   up   first   and   there   is   no  way   to  control  how  much  water  enters  each  individual  cell.  By  plugging  the  drainage  tubing  with  the  syringes,  the  threat  of  a  short  circuit  is  eliminated  and  we  have  a  convenient  method  to  drain  the  system  of  water.    

Based  on  our  belief   that  diffusion  drives  our   voltage,  we  wanted  our   electrodes   to  be   as  close  to  the  membrane  as  possible  and  for  a  steady  reading  they  would  need  to  remain  in  the  same  place  throughout  the  experiment.  This  led  us  to  install  mesh  wiring  in  each  side  of  the   union   to  which  we   attached   the   electrodes   using   caulking.   By   having   the   electrodes  secured  in  a  position  very  close  to  the  membrane,  we  ensured  a  steady  reading  and  could  rule  out  the  position  of  the  electrodes  as  a  variable  in  our  experiments.    

The  wiring  of  each  electrode  goes  up  through  the  3-­‐way  tee  through  a  hole  at  the  top  of  the  tubing   providing   water,   which   also   proves   to   be   advantageous.   By   having   the   wires  protruding  from  the  top  of  the  piping,  we  can  wire  the  system  to  be  in  any  combination  to  maximize  the  voltage  generated.  Initially,  we  believed  all  the  cells  in  series  would  provide  us   the  maximum  voltage  but  when   that  proved   to  be   incorrect,   it  was  very   simple   to   re-­‐wire  the  system  to  have  ten  cells  in  parallel.        

3.17.2011  Rev.  26   Page  14  

 

The  original  design  consisted  of  around  50  valves  to  control  the  flow  of  water  into  and  out  of  the  unions  but  this  proved  to  be  extremely  costly  and  not  practical  for  our  vision  of  the  system.  In  place  of  this  design,  Professor  Karplus  helped  us  drastically  reduce  the  number  of  valves  needed  and  the  most  current  design  can  be  seen  in  Figure  4.    

 

 

   Figure  4:  Revised  Cell  Design.  This  design  drastically  reduces  the  number  of  valves  needed  to  control  the  flow  of  water  into  the  3-­‐way  tee.  The  membrane  will  be  placed  in  the  union  and  water  will  be  delivered  to  the  3-­‐way  tee  and  discharged  using  Tygon  tubing.  The  tubing  used  for  discharging  water  will  be  controlled  by  clamps  and  the  main  water  supply  from  the  two  tanks  will  be  controlled  by  quarter-­‐turn  valves.    

3.17.2011  Rev.  26   Page  15  

 

EXPERIMENTATION    The  initial  approach  to  this  project  was  to  stack  ten  cells  in  series  by  alternating  concentrations  and  membranes.   For  example,   the   stack  would  have   the   following   set-­‐up:  ELECTRODE:  High   :  CEM  :  Low  :  AEM  :  High  :  CEM  :  Low  :  AEM  :  High  :  ELECTRODE,  where  AEM  is  an  anion  exchange  membrane   and   CEM   is   a   cation   exchange   membrane.     The   initial   results   from   trying   these  alternating   cells   showed   more   voltage   coming   from   an   individual   cell   than   from   the   whole  stack.   Therefore,   the   prototype   changed   into   a   single   membrane   type   of   cell   that   would  connect  serially  to  other  cells  via  electrodes,  not  membranes.    

Choosing   the  appropriate  membrane   to   separate   the   two  saline   concentrations  was   the  next  experimental   task.   There   were   three   candidate   membranes:   Millipore   VCWP-­‐   Membrane,  Millipore  GNWP-­‐  Membrane,  and  Fumasep  FAD-­‐  Anion  Exchange  Membrane.  To  compare  the  membranes,  a  small  test  cell  (0.5cm  diameter,  0.7cm  depth,  0.196cm2  membrane  surface  area  and  0.137cm3  volume)  was   fabricated  out  of  a  silicon  polymer,  poly-­‐dimethylsiloxane   (PDMS)  (Fig.  5).  

 

 

 

 

 

       

 

This  experiment  was  performed  using  water  from  the  Monterey  Bay  (Fig.  2  label  A)  and  the  San  Lorenzo   River   (Fig.   2   label   B).   A   low   gradient   was   expected   from   these   samples,   since   the  

Figure  5:  Dimensions  of  Test  Cell.  Each  cell  half-­‐cell  has  a  depth  of  0.7cm  and  a  diameter  of  0.5cm.  The  volume  of  the  cell  is  0.137cm3  and  the  surface  area  of  cell:membrane  is  0.196cm2.  The  left  half-­‐cell  is  the  low  concentration.  The  right  half-­‐cell  is  the  high  concentration  and  the  membrane  (grey)  is  sandwiched  between.  Platinum  wire  electrodes  are  placed  on  the  outer  part  (away  from  membrane)  of  the  cell  and  two  glass  slides  (one  on  each  side)  is  pressed  against  the  outer  part  of  the  cell  to  contain  the  solutions  and  electrodes.  A  binder  clip  is  used  to  hold  the  whole  cell  together  during  experiments.    

3.17.2011  Rev.  26   Page  16  

 

Monterey  Bay  reaches  the   low  concentration   location  during  high  tide.  However,  maintaining  the   same   conditions   for   each   experiment,   the   best   of   three   different   membranes   could   be  determined.  Figure  6  shows  the  experimental  set-­‐up.    

 

 

 

 

 

 

 

 

The  results  from  this  experiment  are  shown  in  Figure  7.  The  peaks  at  the  beginning  of  the  graph  are   results   of   noise   from   a   small   salinity   gradient   and   noise   from   removing   the   platinum  electrodes,  quickly  rinsing  and  drying  and  then  placing  into  the  next  cell  for  measurement.  The  Fumasep   FAD  membrane   had   instructions   to   soak   the  membrane   in   NaCl   prior   to   using   the  membrane,   so   data   is   included   for   the   FAD  membrane   from   a   soaked   and   non-­‐soaked   FAD  membrane.    

Figure  6:  Membrane  Experimental  Set-­‐up.  Each  cell  is  independent,  so  there  is  a  total  of  six  individual  cells.  Voltage  was  recorded  for  three  individual  cells;  one  cell  for  the  Fumasep  FAD  membrane,  one  cell  

was  recorded  one  at  a  time  with  the  same  100k  resistor  as  a  load.  Electrodes  were  made  of  platinum,  and  connected  to  copper  wire  attached  to  sensor  leads  from  the  Gamry  Ref.  600  Potentiostat.    Cells  were  completely  set-­‐up  and  solutions  were  injected  via  syringe  after  voltage  reading  script  was  running.  The  FAD  and  VCWP  membranes  are  anion  exchange  membranes  and  the  GNWP  membrane  is  a  cation  exchange  membrane.  Each  cell  was  recorded  for  600  seconds  for  a  simple  peak  voltage  test.    

3.17.2011  Rev.  26   Page  17  

 

The   voltage,   although   negative,   was   notably   higher   for   longer   using   the   Fumasep   FAD  membrane,   soaked.   From   this   experiment,   we   concluded   the   Fumasep   FAD   anion   exchange  membrane  to  be  the  best  membrane  of  the  three.    

 

 

 

 

   Following  these  preliminary  tests,  which  supported  continued  exploration  of  reverse  

11.  An  individual  cell  was  tested  with  water  from  near  the  Water  Street  Bridge  (Figure  2,  label  C)  and  the  Monterey  Bay  (Figure  2,  label  A).  The  open  circuit  voltage,  as  shown  in  figure  8A  was  around  225mV.  The  same  cell  had  a  1M  load  applied  to  measure  the  current;  a  voltage  of  165mV,  as  shown  in  figure  8B,  with  a  1M  law  to  determine  a  current  of  0.165 A.    This  current  was  too  small  for  the  energy  storage  component,  so  a  new  design  of  two  parallel  stacks  of  five  cells  in  series  was  proposed.  

Figure  7:  Results  from  Different  Membrane  Experiment.  Three  different  membranes  were  tested  for  maximum  voltage.  A  100K  resistor  was  placed  in  series  with  a  cell  containing  one  of  three  membranes:  Millipore  anion  exchange  membrane,  Millipore  cation  exchange  membrane  and  Fumasep  FAD  membrane.  The  Fumasep  membrane  came  with  instructions  to  soak  the  membrane  in  a  2-­‐4%  solution  of  NaCl  prior  to  use,  so  a  fourth  cell  was  used  to  test  a  soaked  FAD  membrane.    

3.17.2011  Rev.  26   Page  18  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  8,  which  used  platinum  electrodes,  suggests  that  with  two  parallel  stacks  of  five  cells  in  series,  a  possible  825mV  can  be  generated  with  0.33 A  of  current  for  a  power  output  of  0.272 W.  Ten  individual  cells  were  constructed  with  adaptable  wiring  to  test  both  ten  serial  cells  and  two  parallel  stacks  of  five  serial  cells.  The  results  of  ten  cells  in  series,  in  figure  9,  suggest  that  the  cells  do  not  stack  up  as  expected.  Disregarding  the  spikes,  which  are  due  to  manually  recorded  voltage  interference,  the  average  voltage  is  ~341mV;  15%  of  what  was  expected  for  ten  cells  in  series  (2.25V  =  0.225V  X  10  cells).  The  non-­‐uniformity  amongst  the  cells  suggests  that  these  cells  do  not  stack  up  like  batteries.  This  data  was  recorded  near  the  end  of  the  ten-­‐week  deadline,  so  a  quick  re-­‐wiring  of  the  cells,  to  stack  ten  cells  in  parallel  was  proposed  to  generate  165mV  (10  cells  in  parallel  each  generating  ~165mV  with  load)  and  boost  the  current.  

 

 Figure  8:  Results  from  Individual  Cell.   -­‐way  tees,  ¼  in  mesh  wiring  (to  hold  electrodes  in  place)  and  platinum  electrodes.  (A)  The  Gamry  potentiostat  voltage  recording  script  was  started  prior  to  water  introduction  to  the  cell,  thus  the  voltage  shows  a  steep  peak  at  the  beginning  of  the  graph.  The  voltage  remained  a  constant  ~-­‐225mV  for  36,000  seconds  (10  hours).  (B)  A  1M  load  was  set  in  parallel  to  the  cell  and  the  voltage  was  recorded  across  the  load.  The  voltage  reached  ~-­‐150mV  for  a  constant  30,000  seconds  (8  hours,  20  minutes).  The  script  was  ended  early  due  to  voltage  output  consistency.  A  1M  load  on  a  165mV  source  determines  a  0.165 A  current.    

 

 

 

3.17.2011  Rev.  26   Page  19  

 

 

 

 

 

 

 

Ten  cells  stacked  in  parallel  yielded  results  opposite  of  expectation,  as  shown  in  the  figure  10.  The  voltage  was  unstable  for  the  first  30,000  seconds  at  ~85mV,  then  the  voltage  climbed  

Figure  9:  Ten  Individual  Cells  in  Series.  The  initial  voltage  spikes  are  due  to  noise  induced  by  manual  voltage  measurements.  Once  the  Gamry  script  was  reading  out  voltages  lower  than  the  expected  

 manually  by  a  handheld  multi-­‐meter.  The  manually  gathered  data  is  shown  in  the  chart  below  the  graph  with  the  time  the  voltages  were  recorded  and  the  respective  voltage  for  each  cell.    

3.17.2011  Rev.  26   Page  20  

 

~100mV  to  200mV  from  30,000  seconds  to  40,000  seconds.  At  time  43,140,  a  200k  load  was  put  in  parallel  with  the  cells  to  determine  the  current.  Applying  a  load  made  the  voltage  jump  to  ~550mV  with  sporadic  drops  back  towards  0mV.  The  voltage  lasted  approximately  15,000  

demand  for  using  the  Gamry  potentiostats  prevented  additional  experiments,  but  these  two  experiments  suggest  that  more  experiments  are  needed  to  make  a  conclusion  assessment  of  the  feasibility  of  reverse  electrodialysis  as  an  alternative  source  of  energy.      

 

 

 

 

 

 

 

   

 

Figure  10:  Ten  Individual  Cells  in  Parallel.  The  first  43,000  seconds  were  open  circuit.  At  t=43,140,  a  200,000  load  was  put  in  parallel  with  the  stack.  A  voltage  of  550mV  with  a  200k  load  has  a  2.75 A  current,    which  is  over  eight  times  greater  than  the  cells  in  series.  The  voltage  drops  significantly  15,000  seconds  after  the  load  was  placed  into  the  circuit,  which  may  be  due  to  a  depletion  of  ionic  gradients,  but  further  tests  (conductivity)  would  need  to  confirm  this.    

3.17.2011  Rev.  26   Page  21  

 

DEVELOPING  A  STORAGE  COMPONENT  FOR  THE  CELL    

BATTERY  OPTIONS/CHARGING  METHODS:  The  charging  method  is  dependent  on  the  amount  of  power  available  from  the  concentration  cell.  Because  the  cell  is  predicted  to  generate  very  low  power,  a  low  charge  rate  occurs  and  the  battery  will  need  to  be  trickle  charged.  Trickle  charging  is  a  constant  current  applied  to  the  battery  for  an  indefinite  amount  of  time.  Trickle  charging  does  not  need  any  circuitry  to  detect  charge  termination.  The  battery  type  was  then  chosen  based  on  this  charging  method  because  not  all  battery  chemistries  can  tolerate  specific  charging  methods.  

Nickel  metal  hydride  (NiMH)  batteries  were  chosen  because  NiMH  and  Nickel  cadmium  (NiCd)  are  the  most  popular  batteries  to  use  when  trickle  charging.  Lead  acid  batteries  were  not  considered  because  while  they  can  tolerate  a  short  duration  of  trickle  charging,  extra  circuitry  is  usually  needed  to  prevent  overcharging.  While  NiCd  batteries  are  the  most  robust  type  of  battery  with  respect  to  overcharging  [13],the  recombination  process  that  keeps  the  voltage  at  a  safe  level  when  overcharging  occurs  also  causes  a  shorter  battery  life.  NiCd  batteries  also  suffer  

holds  less  charge  because  it  had  been  repeatedly  charged  after  being  only  partially  discharged.  On  the  other  hand,  technologically  newer  and  more  environmentally  friendly  without  the  toxic  cadmium  found  in  NiCd  batteries.  NiMH  batteries  are  also  more  common  than  and  are  recommended  over  NiCd.  

   

CIRCUIT  DESIGN:  A  voltage  boost  circuit  will  be  implemented  to  increase  the  low  voltage  generated  from  the  cell  to  charge  a  battery  with  a  higher  voltage.  Storage  components,  such  as  capacitors  and  inductors,  are  used  to  step  up  the  voltage.  Once  the  storage  component  reaches  a  certain  voltage,  one  or  more  transistors  turn  on  to  send  power  to  or  from  another  storage  component.  A  simple  voltage  boost  circuit  is  shown  in  figure  11.  At  the  top,  the  switch  is  closed  and  a  current  begins  to  increase  across  the  inductor.  After  a  fixed  amount  of  time  the  switch  opens,  as  seen  in  the  bottom.  When  the  switch  is  open,  the  voltage  across  the  switch  increases  until  it  causes  the  magnetic  field  across  the  inductor  to  collapse  as  it  is  trying  to  maintain  the  current.  The  current  is  then  driven  through  the  diode  and  into  the  capacitor  until  the  inductor  is  

biggest  problem  in  designing  the  circuit.    

3.17.2011  Rev.  26   Page  22  

 

   

             

 

The  current  generated  from  the  cell  is  in  the  microwatts  range,  which  means  that  the  biggest  issue  in  the  circuit  design  is  the  loss  of  current  due  to  the  leakage  in  the  components  involved.  I  picked  the  components  with  the  lowest  leakage  current  so  as  not  to  lose  the  current  generated  from  the  cell  altogether.  The  circuit  shown  in  figure  12  shows  a  more  complicated  boost  circuit.  

The  inductor  requires  a  larger  current  than  is  being  provided.  In  figure  12,  the  cell  charges  the  capacitor  C2  to  provide  bursts  of  voltage  and  current  higher  than  the  cell  initially  provides.  When  C2  contains  a  sufficient  amount  of  voltage  to  turn  on  Q2,  U1a  turns  on.  In  response  to  U1a,  Q3  turns  on  and  transfers  the  energy  stored  in  C2  into  the  inductor.  Because  the  current  is  still  very  small,  the  inductor  chosen  needed  to  be  physically  larger  in  order  to  decrease  the  current  lost  across  the  inductor.  After  a  certain  amount  of  time,  Q3  turns  off.  The  inductor  will  

Figure   11[15]:   Circuit   diagram.   When   the   switch   is   closed   a   current   begins   to   increase  across  the  inductor.  After  a  fixed  amount  of  time  the  switch  opens  and  the  voltage  across  the  switch  increases  until  it  causes  the  magnetic  field  across  the  inductor  to  collapse  as  it  is  trying  to  maintain  the  current.  The  current   is  then  driven  through  the  diode  and  into  the   capacitor   until   the   inductor   is   expended.   This   circuit   generates   pulses   of   a   greater  voltage.  

3.17.2011  Rev.  26   Page  23  

 

then  transfer  the  energy  into  C1,  which  will  then  be  used  to  charge  the  battery.  The  simple  filter  using  R8  and  C5  serve  as  the  smoothing  circuit  required  to  reduce  ripple  caused  by  the  bursts  of  energy,  allowing  a  constant  current  to  charge  the  battery.

 

 

 

RESULTS:  The  circuit  was  tested  in  lab  using  a  power  supply  with  0.3V  and  1mA.  The  first  test  consisted  of  a  battery  pack  of  2  AAA  NiMH  rechargeable  batteries  being  charged  for  40  minutes.  The  voltage  of  the  combined  batteries  (2.4V)  was  too  small  for  the  circuit  to  charge  because  the  circuit  was  designed  to  charge  at  least  3V.  The  second  test  consisted  of  a  battery  pack  of  4  AAA  NiMH  rechargeable  batteries  being  charged  for  40  minutes.  This  yielded  2  partially  charged  batteries.  The  battery  charge  was  detected  by  placing  each  battery  in  a  small  flashlight  and  timing  how  long  the  light  stayed  on.  The  third  test  consisted  of  the  battery  pack  containing  4  AAA  NiMH  rechargeable  batteries  being  charged  overnight  for  12  hours.  This  yielded  the  same  results  as  the  40  minute  charge  time.  

 

Figure  12  [16]:  The  cell  charges  the  capacitor  C2  to  provide  bursts  of  voltage  and  current  higher  than  the  cell  initially  provides.  When  C2  contains  a  sufficient  amount  of  voltage  to  turn  on  Q2,  U1a  turns  on.  In  response  to  U1a,  Q3  turns  on  and  transfers  the  energy  stored  in  C2  into  the  inductor.  After  a  certain  amount  of  time,  Q3  turns  off.  The  inductor  will  then  transfer  the  energy  into  C1,  which  will  then  be  used  to  charge  the  battery.  

3.17.2011  Rev.  26   Page  24  

 

TRANSFER  SENSOR  READINGS  FROM  CLIENT  TO  SERVER    

DEFINING  THE  PROBLEM  OF  DATA  TRANSFER  The  primary  issue  to  be  addressed  is  the  transfer  of  sensor  readings  at  the  Gamry  potentiostat  

potentiostat  will  communicate  with  a  connected   via   USB.   From   the   client   machine,   the   sampled   data   must   be   transmitted   to   the  

emote  database  server.  Figure  13  below  shows  an  outline  of  the  data  transfer  process,  illustrating   how   solving   the   problem   of   data   transfer   requires   the   creation   of   two  communication  interfaces  between  three  components.  

 

 

 

 

 

 

 

 

 

Gamry Potentiostat

(Sensor)

Sensor output data (Raw text)

Client Machine Program

Web

Server

   

SQL insertion statements

Figure  13:  The  data  transfer  process  involves  the  connection  of  three  components  across  two  communication  interfaces.  Our  sensor  device  must  be  able  to  transmit  data  to  a  program  running  on  a  nearby  computer.  From  there,  the  data  will  need  to  be  sent  as  SQL  insertion  commands  to  the  database/web  server.  

3.17.2011  Rev.  26   Page  25  

 

There  are  additional  needs  that  should  be  addressed  while  implementing  these  communication  interfaces.  This  includes  the  need  for  data  to  be  sent  at  a  rate  as  close  as  possible  to  real-­‐time.  The  data  monitoring  process  must  support  a  rapid  sampling  rate  of  one  sample  per  one  to  two  

continued   development   of   this   and   similar   projects,   the   process   should   be   implemented   as  independently  as  possible  from  the  operating  system.  

 

INITIAL  PLANNING  AND  CONSIDERATIONS  To   address   the  need   for   operating   system   independence,   Python  was   chosen   as   the  primary  coding  language  for  the  client  program.  Python  is  fast,  and  is  very  good  for  rapid  text  and  data  

Python  program  will  access  the  sampled  data,  translate  this  data  into  SQL  insertion  statements,  and  send  these  commands  to  the  server  via  a  direct  and  secure  connection  over  Ethernet.  

One   of   the   difficulties   of   this   part   of   the   project   is   that   a   race   condition   exists   within   the  interface   between   the   Gamry   potentiostat   and   the   Python   program.   Controlling   the   Gamry  potentiostat   is   done   through   the   use   of   Explain   scripts,   an   open-­‐source   scripting   language  developed  by  Gamry.  Gamry  has  provided  a  set  of  scripts  which  do  certain  common  tasks,  such  as  monitor  the  voltage  across  two  probes.  The  Explain  script  which  monitors  voltage  creates  a  file  which  contains  the  sampled  data.  The  challenging  aspect  of  this  is  that  the  script  keeps  this  

 data  in  real-­‐time.  To  overcome  this  obstacle,  there  were  a  few  appealing  options.  One  was  to  have   the   Explain   script   call   the   Python   script   directly,   and   to   pass   the   voltage   sample   as   a  parameter  at  the  command  line.  Another  solution  was  to  make  sure  that  the  file  being  written  to  by  the  Explain  script  is  closed  for  a  period  of  time,  during  which  time  the  Python  program  will  open,  read,  and  close  the  same  file.  

The  development  of  the  communication  interface  between  the  Python  program  and  the  server  was   mucestablishing  a  secure  connection  to  a  MySQL  server  within  the  Python  program.  This  approach  is  well-­‐documented  in  online  tutorials,  and  was  not  expected  to  be  a  complex  problem.  

 

 

 

3.17.2011  Rev.  26   Page  26  

 

INTERMEDIATE  AND  FINAL  SOLUTIONS  Communication  between  the  Python  program  and  the  database  server  was  finished  very  fast.  A  proof-­‐of-­‐concept  was   complete  within   the   first   two  weeks,  where   the  Python  program  could  randomly  generate  data  values  and  send  corresponding  SQL  insertion  commands  to  the  server.  

Python   program   quickly   became   the  more   challenging   and   time-­‐consuming   task.   The   Explain  script  language  is  based  on  C,  although  there  is  no  way  to  execute  pure  C  code  from  within  an  Explain   script.   Over   time,   we   discovered   several   other   severe   limitations   of   the   scripting  language.  This  includes  the  fact  that  while  the  potentiostat  is  polling  for  data,  the  script  cannot  execute  any  commands.  This  means  that  if  the  potentiostat  is  continuously  polling  for  data,  as  we  had  planned,  the  script  cannot  execute  commands  except  for  before  and  after  the  data   is  gathered.   This   invalidated   our   original   idea   to   pass   the   sampled   data   value   as   a   launch  parameter  to  the  Python  program,  since  the  program  would  need  to  be  launched  between  each  

the  task  of  properly  formatting  the  string  to  launch  the  Python  program.    

Through   our   correspondence   with   Gamry   technicians,   we   attempted   to   bypass   the   ongoing  issue   of   the   script   becoming   unresponsive   during   data   sampling.   They   offered   various  convoluted  techniques,  none  of  which  completely  solved  the  problem  in  a  way  that  would  allow  for  real-­‐time  data  transfer.  We  eventually  found  a  way  to  repeatedly  signal  the  potentiostat  to  start   and   stop   the   data   polling   process.   This   allowed   us   to   implement   the   full   sequence   of  events   shown   in   Figure   14.   Due   to   the   Explain   script   language   having   such   poor   support   for  string   formatting,   we   decided   to   use   a   file-­‐based   solution   to   pass   the   sampled   data   to   the  Python   program,   rather   than   passing   the   data   as   a   parameter   when   the   Python   program   is  called.  

3.17.2011  Rev.  26   Page  27  

 

 

 

 

 

Figure   14   shows   the   complete   process   that   is   used   within   the   communication   interface  between   the   potentiostat   and   the   Python   program.   This   process   is   fully   implemented   with  

between   samples   is   two   seconds,  while   the  Python  program   takes  only  0.25   seconds   to   fully  execute  from  the  time   it   is  called.  Using  this   looping  Explain  script,  can   be   monitored   indefinitely   at   a   rate   of   one   sample   per   two   seconds,   until   an   operator  manually   stops   the   script.   Although   the   Python   script   is   very   straightforward,   it   has   been  included  in  Figure  15  below  for  completeness  and  reference.  

Signal  potentiostat  active  

Open  file  

Poll  for  voltage  data  

Write  to  file  

Close  file  

Signal  potentiostat  inactive  

Call  Python  Program  

Wait  

Loop  

Figure  14:  The  execution  process  of  the  Explain  script,  which  supports  communication  

avoid  a  race  condition  where  the  Python  program  and  the  Explain  script  compete  for  the  use  of  the  same  data  file.  

3.17.2011  Rev.  26   Page  28  

 

 

 

 

 

 

 

 

 

 

   

Open  file  

Read  data  

Convert  data  from  string  to  float  

Establish  secure  database  server  connection  

Generate  SQL  insertion  command  

Send  SQL  command  to  database  server  

Close  file  

Figure  15:  The  execution  process  of  the  Python  program,  which  supports  communication  between  the  Python  program  and  the  web/database  server.  SQL-­‐related  functionality  is  

 

3.17.2011  Rev.  26   Page  29  

 

DISPLAYING  REAL-­‐TIME  VOLTAGE  AND  CURRENT  READINGS  ON  A  WEBSITE    

OVERVIEW:  Displaying   real-­‐time  data  on  a  website  will   help  monitor   the   concentration   cell   off-­‐site.     This  data   will   also   be   saved   in   the   server   so   that   researchers   can   examine   and   look   at   this   past  history  of  current  and  voltage  readings.  Our  team  has  developed  an  interactive  design  so  that  users  can  specify  specific  options  like  dates  or  style  of  plot  output.  

 SERVER  SETUP:  In  order  to  display  the  real-­‐time  sensor  readings  of  our  project,  a  LAMP  Server  has  been  set  up  and  configured.  A  LAMP  stack  consists  of  Linux,  Apache,  MySQL  and  PHP.  This  is  a  powerful  and  professional  stack  used  by  industry  to  maintain  and  run  powerful  websites.  A  LAMP  server  has  been  chosen  because  it  runs  on  Linux,  which  offers  a  range  variety  of  open  source  software  that  can  be  used  to  complete  and  expand  this  project.  

Apache  is  a  popular  and  open  source  webserver.  Apache  is  running  our  website  which  will  help  to  display  static  and  dynamic  pages  to  the  public  with  useful  project  progress  and  sensor  data.  

the  local  machine  or  through  SSH.    

MySQL   is   open   source   database   software   that   is   used   to   manipulate   and   output   data   in   a  readable  fashion.  MySQL  has  been  configured  so  that  it  can  be  accessible  from  any  public  and  external  ip  address.  MySQL  has  been  set  up  to  work  implicitly  with  SSH,  which  will  allow  users  to   manipulate   the   settings   and   permissions   of   databases.   Databases   in   MySQL   have   been  created   and   set   up   to   receive   and   store   autonomous   data   from   the   client   program.   These  databases  are  also  used  to  simultaneously  display  the  data  to  our  website.  

 WEB  DESIGN:  PHP   is   a   scripting   language   that   is   used   implicitly   with   MySQL   queries   to   recognize   sensor  readings   from   the   client   program   and   to   store   the   data   accordingly.   A   connection   has   been  established  with  the  database  and  webserver  to  retrieve  the  data  into  a  query  and  output  it  to  a  dynamic  page  using  PHP.  

The  website   has   been   created   using   css,   xhtml,   php,  mysql,   jquery,   python   and   javascript.   It  includes   static   and   dynamic   pages.   The   static   pages   provide   an   overview   of   the   project.   The  

3.17.2011  Rev.  26   Page  30  

 

dynamic  content  is  composed  of  real-­‐time  plots  that  have  been  configured  for  outputting  real-­‐time  data   output.   To   provide   the   user  with   this   data   in   a   nice   comprehensible  way  we   have  integrated   ajax(asynchronous   javascript   and   xhtml).   Ajax   allow  us   to   update   specific   areas   of  our  website  without  updating  the  whole  page.  

The  website  has  been  given  a  static  ip  and  a  domain  name  of  red.soe.ucsc.edu.  This  website  can  be  accessible   from  any  web  browser  by  typing   the  domain  name(url).   This  domain  name  can  also  be  used  to  access  the  server  through  ssh.  

 WEBSITE  GRAPHS  AND  TABLE  OUTPUT:  One  of  the  main  purposes  of  the  website  is  to  display  comprehensible  real-­‐time  data.  Our  data  will   be   displayed   on   our   website   via   comprehensible   graphs   and   tables.   To   achieve   a   user-­‐friendly   interface   we   have   made   our   website   versatile   to   the   point   were   it   is   OS   and   web  browser  independent.  Our  website  gives  the  user  two  options  a  flash  or  no  flash  data  view.  This  allows  users/clients  to  view  the  data  even  from  an  iPhone  or  school  computers,  which  usually  

-­‐time  graphs  are  all  located  at  red.soe.ucsc.edu  in  the  results  tab.  

We  use  Jighi  Jcharts  to  display  real-­‐time  flash  graphs  and  charts.  We  fed  in  our  mysql  database  to   Jighi,  with  their  user   interface  we  were  able   to  customize  the  graphs  and  charts  to  display  data  comprehensively  to  the  user.  In  Figure  13  and  14  we  can  see  a  graph  and  chart  from  the  Jcharts  output   that  we  got   from  our   stored  voltage  data.   The  graphs  and   tables  have  display  options,  this  can  allow  the  user  to  view  data  within  a  range  or  even  specify  a  custom  order  for  the  tables.  

For  our  non-­‐flash  version  we  have  a  picture  that  updates  with  an  ajax  call  every  time  there  is  new  data.  This  graph  was  created  via  a  python  library  called  matplotlib,  this  library  works  great  because  it  works  directly  with  mysql.   It  is  set  up  and  configured  to  display  comprehensive  and  readable   incoming  voltage  and  current  readings.   In  Figure  15  we  can  see  this  graph  with  data  samples.   Every   100   samples   a   new   image   is   created   and   the   previous   one   is   archived   in  our  gallery  archive  this  can  be  seen   in  Figure  16.    Our  gallery  archive  allows  users  to  skim  trough  past  sensor  recordings  and  make  decisions  on  how  to  approach  it  differently  to  have  a  greater  output.  

Jquery  was   a  big  help   to  merge  all   of   these   graphs   into   a  nice  user-­‐friendly   interface.   Jquery  gave  us  the  ability  to  create  tabs  that  asynchronously  only  update  the  tab  sections.  This  cleans  up  the  website  and  makes  everything  short  and  concise.    

3.17.2011  Rev.  26   Page  31  

 

 

Figure  13:  Flash  graph,  this  user  interface  was  provided  by  Jighi.  The  graph  shows  Voltage  readings  vs  Timestamps  

3.17.2011  Rev.  26   Page  32  

 

 Figure  14:  Flash  table,  this  user  interface  was  provided  by  Jighi.  The  table  shows  relevant  rows  to  Figure  14,  it  also  allows  you  to  view  columns  by  order  by  clicking  on  them.  

3.17.2011  Rev.  26   Page  33  

 

 

Figure  15:  Non-­‐have  flash  installed  to  still  view  real-­‐time  data.  

3.17.2011  Rev.  26   Page  34  

 

 

Figure  16:  Non-­‐flash  gallery  archive,  this  gallery  archive  allows  users  with  iPhones  or  -­‐time  data.  This  gallery  archive  

allows  us  to  scroll  through  past  data  and  view  previous    recorded  results.  

3.17.2011  Rev.  26   Page  35  

 

REMOTE  CAMERA  MONITORING  SYSTEM:  The  website  also  serves  as  a  Remote  Camera  Monitoring  system,  it  allows  us  to  remotely  control  a  camera  through  the  web  browser.  This  camera  allows  users  and  clients  to  remotely  monitor  their  sensor  readings.  For  any  reason  that  there  is  any  doubt  about  the  sensor  readings  we  can  watch  the  physical  concentration  cell  setup  to  detect  leaks,  wire  disconnections  or  unforeseen  mishaps.    

The  remote  camera  monitoring  system  has  features  that  allow  users  to  specify  different  view  options.  In  Figure  17  we  can  see  the  physical  user  interface  on  our  website,  as  you  can  see  you  are  given  the  option  to  pan  and  tilt  the  camera  to  view  the  concentration  cell(or  what  ever  is  present  in  its  location)  from  different  angles.    

The  camera  supports  real-­‐time  high  quality  video  and  audio  over  the  internet.  The  camera  has  been  location  of  the  camera  and  transfer  voice  across.  The  camera  is  equipped  with  night  vision  and  it  is  also  supports  ftp  uploading  and  email  notification  with  images  triggered  by  motion  detection  or  schedule.  The  motion  detection  is  great  because  if  something  occurs  in  our  setup  like  an  unplugged  wire  or  someone  interrupts  we  will  be  notified.  

Besides  ftp  uploading  you  can  also  have  a  NAS(Network  Address  Storage),  meaning  you  can  have  a  hard  drive  or  usb  connected  to  the  camera  to  record  the  data  via  mpeg4  codec.  

3.17.2011  Rev.  26   Page  36  

 

 

 CLOSURE:  As  we  can  see  this  server  implementation  setup  is  a  great  way  to  monitor  our  offsite  recordings.  It  will  serve  as  a  test  bench  for  our  researchers  to  be  able  to  completely  monitor  their  lab  setup  efficiently.  

 

   

Figure  17:  Remote  Monitoring  Camera  System.  Allows  users  to  pan/tilt  and  view  the  concentration  cell  in  Night  Vision  mode.  

3.17.2011  Rev.  26   Page  37  

 

 

FEASIBILITY  CONCLUSION  OF  REVERSE  ELECTRODIALYSIS      

 power  output  at  maximum  was  1.51 W,  the  actual  amount  of  water  mixing  in  each  cell  was  significantly  less  than  1m3  of  fresh  water  and  salt  water  mixing.  [Note:  the  dimensions  of  the  cell  result  in  the  following  approximated  volumes:  cell  (pvc  union):  0.0062m2  +  two  3-­‐way  tees:  0.0065m2  +  0.0046m2  for  a  total  of  0.0173m2  per  cell.]  The  total  amount  of  water  mixing  for  this  design  was  0.0865m2  of  fresh  water  mixing  with  0.0865m2  of  ocean  water.  

0.08MJ  is  available.  Over  the  course  of  the  15,000  seconds  when  the  ten  cells  were  in  parallel  and  had  a  load  to  draw  a  current,  0.0227J  were  extracted.  This  is  a  0.000028%  recovery,  which  does  not  indicate  strong  alternative  energy  potential.    

Additional  experiments  would  be  needed  to  conclusively  deduce  that  reverse  electrodialysis  is  not  a  practical  alternative  source  of  energy,  however  it  can  be  concluded  that  this  particular  design  will  not  provide  adequate  percent  yield  of  energy.      

 

   

3.17.2011  Rev.  26   Page  38  

 

SYSTEM  BLOCK  DIAGRAM    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Send  measurement  data  

Read  voltage  and    current  (analog)  

Energy  harvesting  

Read  voltage  and    current  (digital)  

Read  voltage  and  current  (analog)  Cell  

(x2  BME)  

Sensors  (x1  BME/EE)  

Client  Program  

(x1  CMPE)  

Storage  (x1  BME/EE)  

Web  Server  

(x1  CMPE)  

Figure  13:  The  block  diagram  shows  how  the  concentration  cell  will  relay  voltage  and  current   information  to  the   sensors   and   transfer   some   of   the   energy   to   a   storage   cell.   The   sensors  will   the   relay   the   information  

website.  This  will  allow  for  the  concentration  cell  to  be  monitored  remotely.  

3.17.2011  Rev.  26   Page  39  

 

BUDGET    

Cell          BME  (x2)  

Components       Costs  

Anode  +  Cathode       $260  ($8.50  ea.)  

Membranes       $20  (8  ½  x  11  sheet)  

PVC       $55  

Tubing       $60  

Valves       $20  

Total   $415  

 

Storage  Component          EE  (x1)  

Components       Costs  

Discrete  Components       $100  

Total   $100  

 

 

 

 

 

 

 

 

3.17.2011  Rev.  26   Page  40  

 

Web  Server          CMPE  (x1)  

Components       Costs  

Domain  Name  Registration       $0  

Data  Hosting       $0  

Remote  Camera  Monitoring  System       $185  

Total   $185  

 

Client  Computer          CMPE  (x1)  

Components       Costs  

Used  Computer       $0  

USB  /  Serial  /  Etc.  Cables       $0  

Total   $0  

 

 

 

 

 

 

 

 

 

 

3.17.2011  Rev.  26   Page  41  

 

PERSONNEL    

ALEXANDRA  EASTES    

Responsibilities:  

Responsible  for  developing  a  storage  component  for  the  energy  generated  from  the  cell.    

 

Summarized  Biography:  

Alex   is   a   bioengineering   major   with   a   concentration   in   bioelectronics   and   an   electrical  engineering   minor.   She   has   a   broad   knowledge   of   classes   from   a   variety   of   engineering  backgrounds.  She  is  currently  working  on  redesigning  the  old  EMG  (electromyography)  system  

-­‐limb  exoskeleton.      

   

Expertise:  

Analog  electronics   Sensors  (biomedical)   Electrochemistry    

 

 

 

 

 

 

 

 

   

3.17.2011  Rev.  26   Page  42  

 

DYLAN  HINGEY    

Responsibilities:  

Responsible   for   facilitating   communication   between   the   sensor   device   and   the   web   server.  Current   and   voltage   data   should   be   continuously   collected   from   the   sensor,   and   must   be  transmitted   to   the   server   accordingly.   This   implies   the   responsibility   of   creating   a   client  program  which  reads  in  the  sensor  data,  and  converts  the  data  into  SQL  queries.  Furthermore,  the  program  will  need  to  maintain  a  secure  connection  with  the  server  so  that  data  is  streamed  in  real-­‐time.    

 

Summarized  Biography:  

A  student  majoring  in  Computer  Engineering:  Networks  and  Information  Systems  Management,  

management.   Skills   gained   through   numerous   programming   courses   and   software-­‐related  internships  witeam-­‐based  projects  through  the  Information  Systems  Management  curriculum  will  be  useful  in  facilitating  collaboration  and  communication  amongst  team  members.  

 

Expertise:  

Database  systems   Software  development   Computer  networks   Hardware  systems   Project  management  

 

 

 

 

   

3.17.2011  Rev.  26   Page  43  

 

ULYSSES  MORALES    

Responsibilities:  

Responsible  for  setting  up  a  web  server  and  completing  the  web  interface  that  displays  voltage  and  current.  The  website  will  feature  dynamic  real-­‐time  content  in  the  form  of  updated  sensor  data.  He  will  need  to  use  data  modeling  to  display  sensor  readings  in  a  comprehensive  way.   If  time  permits,  he  will  also  be  responsible  in  setting  up  a  Remote  Camera  Monitoring  System.  

 

Summarized  Biography:  

A  Computer  Engineering  st  experience  working  with  servers   will   be   a   great   help   in   assuring   that   he   completes   his   duties   in   this   project.   He   has  designed  and  maintained  websites  in  the  past.  He  has  a  great  amount  of  experience  using  Linux,  this   will   help   with   data   modeling   and   server   configuration.   His   skills   will   also   allow   him   to  expand  on  the  project  specifications  if  there  is  sufficient  time.    

   

Expertise:  

Wireless  systems   Software  development   Database  systems   Website  development  and  maintenance   Server  communication  and  development  

 

 

 

 

 

 

 

 

3.17.2011  Rev.  26   Page  44  

 

CHIRAG  SHARMA    

Responsibilities:  

Responsible  for  the  membrane  stack  and  construction  of  the  part  of  the  cell  which  will  hold  the  membrane.   Also,   Chirag   is   responsible   for   conducting   the   tests   to   verify   that   the   expected  energy  values  match  the  experimental.    

 

Summarized  Biography:  

A  Biomolecular  Engineering  student,  Chirag  has  prior  research  experience  with  membranes  and  electrochemistry   from   working   in   the   Akeson   Laboratory.   This   knowledge   will   be   useful   for  making  the  concentration  cell,  choosing  the  membrane  and  conducting  the  experiments  on  the  concentration  cell.    

 

Expertise:  

Electrochemistry   Salinity  gradients  in  biological  systems   Working  with  membranes  

 

 

 

 

 

 

 

 

 

 

3.17.2011  Rev.  26   Page  45  

 

DANNY  TATE    

Responsibilities:  

Calculate   theoretical   voltage,   power   and   energy   from  mixing   the   San   Lorenzo   River  with   the  Monterey  Bay.  Run  experiments   for   initial  prototype  cell   testing.  Combining  these   theoretical  calculations  with  experimental  results,  design  and  build  a  functioning  concentration  cell  stack.    

Summarized  Biography:  

Danny   is   a   Bioengineer   with   a   biomolecular   concentration.   His   work   with   the   Quantum  Electronics   Group,   headed   by   Professor   Ali   Shakouri,   involves   developing   a   self-­‐recharging  battery   powered   by   ions   within   humans   to   provide   energy   to   biomedical   devices.   He   has  worked  on  this  research  for  two  years  and  has  a  strong  background  in  power  generation  form  ionic  gradients.  

   

Expertise:  

Reverse-­‐electrodialysis  o Power  calculations  o Ionic  selection  o Technical  workings  

 

 

 

 

 

 

 

   

3.17.2011  Rev.  26   Page  46  

 

REFERENCES    

(1):  United  States.  U.S.  Energy  Flowchart  2009.  ,  2009.  Web.  31  Jan  2011.  <https://flowcharts.llnl.gov/content/energy/energy_archive/energy_flow_2009/EFC_2009_Annotated.pdf>.  

(2)  United  States.  International  Energy  Outlook.  ,  2007.  Web.  31  Jan  2011.  <http://tonto.eia.doe.gov/ftproot/forecasting/0484(2007).pdf>  

 (3)  Veerman,  J.  "Reverse  Electrodialysis:  Performance  of  a  Stack  with  50  Cells  on  the  Mixing  of  Sea  and  River  Water."  Journal  of  Membrane  Science.  327  (2009):  136-­‐144.  Print.  

(4)  Tao,  Xiao.  "Crystal  Structure  of  the  Eukaryotic  Strong  Inward-­‐Rectifier  K+  Channel  Kir2.2  at  3.1  A  Resolution."  Science.  326.  (2009):  1669-­‐1674.  Print.  

(5)  Xu,  Jian.  "Designing  Artificial  Cells  to  harness  the  Biological  Ion  Concentration  Gradient."  Nature  Nanotechnology:  Letters.  3.  (2008):  666-­‐669.  Print.  

(6)  Post,  Jan.  "Blue  Energy:  Electricity  Production  from  Salinity  Gradients  by  Reverse  Electrodialysis."Thesis  3  Nov  2009:  1-­‐224.  Web.  4  Sep  2010.  

(7)  United  States.  USGS  Surface-­‐  Water  Annual  Statistics  for  California  Grouped  by  Hydrological  Unit.  ,  2010.  Web.  4  Sep  2010.  <http://waterdata.usgs.gov/ca/nwis/annual?referred_module=sw&county_cd=06087&site_tp_cd=OC&site_tp_cd=OC-­‐CO&site_tp_cd=ES&site_tp_cd=LK&site_tp_cd=ST&site_tp_cd=ST-­‐CA&site_tp_cd=ST-­‐DCH&site_tp_cd=ST-­‐TS&index_pmcode_00060=1&format=station_list&sort_key=site_no&group_key=NONE&list_of_search_criteria=county_cd,site_tp_cd,realtime_parameter_selection>.  

(8)  Ricker,  John.  County  of  Santa  Cruz.  Evaluation  of  Urban  Water  Quality:  San  Lorenzo  River  Watershed  Management  Plan  Update.  Santa  Cruz,  2001.  Web.  25  Jan  2011.  

( 9 )   Lewis,  Nate.  "The  Terawatt  Dilemma."  Photovoltaic  Summit  2008.  San  Diego,  CA.  18  Jun  2008.  Lecture.  

(10)  Zumdahl,  Steven.  Chemical  Principles.  5th.  Boston,  MA:  Houghton  Mifflin  Company,  2005.  432-­‐475.  Print.  

3.17.2011  Rev.  26   Page  47  

 

(11)  Salzman,  W.  "Properties  of  ideal  solutions:  Mixtures;  Partial  Molar  Quantities;  Ideal  Solutions.  N.p.,  21  Oct  2004.  Web.  31  Jan  2011.  <http://www.chem.arizona.edu/~salzmanr/480a/480ants/mixpmqis/mixpmqis.html>.  

(12)  "Thermodynamics."  Spark  Notes.  N.p.,  2011.  Web.  1  Feb  2011.  <http://www.sparknotes.com/chemistry/electrochemistry/thermo/section1.rhtml>.  

(13)  Simpson,  Chester.  Battery  Charging.  National  Semiconductor.  http://www.national.com/appinfo/power/files/f7.pdf  

Journal  of  Applied  Electrochemistry.  (2010)  40,  1461-­‐1474

(15)  "Prototypes  Electromagnetic  Pistol."  Coilgun  Systems.  Web.  2  Feb.  2011.  <http://www.coilgun.eclipse.co.uk/electromagnetic_pistol_voltage_converter_design.html>  

Electronic  Design  28  Sept.  2006:  60.