39
Review of Recent Work at Review of Recent Work at ENEA ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*, E. Santoro*, F. Tanzella*** , V. Violante* (*) ENEA Frascati Research Center, V. le E. Fermi 45 00044 Frascati (Roma) Italy (**) La Sapienza University, Via Scarpa, 14 00100 (Roma) Italy (***) SRI International 333 Ravenswood Ave, Menlo Park CA 94025 USA Topics 1)Materal Science & Reproducibility 2)Calorimetry 3) Laser Triggering of Excess Power 4) 4 He Measurements ICCF -11 Marseille 1-5/11/04

Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Embed Size (px)

Citation preview

Page 1: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Review of Recent Work at Review of Recent Work at ENEAENEA

M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*, E. Santoro*, F. Tanzella*** , V. Violante*

(*) ENEA Frascati Research Center, V. le E. Fermi 45 00044 Frascati (Roma) Italy(**) La Sapienza University, Via Scarpa, 14 00100 (Roma) Italy(***) SRI International 333 Ravenswood Ave, Menlo Park CA 94025 USA

Topics

1)Materal Science & Reproducibility

2)Calorimetry

3) Laser Triggering of Excess Power

4) 4He Measurements

ICCF -11 Marseille 1-5/11/04

Page 2: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Excess powerVs. D concentration

Excess Power is a Threshold Effect

Excess power vs. D concentration: milestone in the history of CMNS.1992: McKubre (SRI, USA), Kunimatzu (IMRA, Japan).

Excess power reproducibility requires reproducibility of high loading of deuterium.

Page 3: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

High Loading Reproducibility and then Excess Power Production within Deuterated Metals are Controlled by Equilibrium and not Equilibrium Phenomena

Absorption of hydrogen isotopes inside a metal lattice is also a not - equilibrium problem because of the diffusive process produced by a chemical potential gradient. In presence of stress mass transfer is described by:

Chemical potential of hydrogen in the metal lattice is strongly affected by the force fields that modify the free energy of the system like stress:

22

1HH Equilibrium condition

hHH trV *

(=% of relaxed stress)

x

cc

xRT

EVb

x

cc

RT

EVb

x

c

RT

EVb

x

cc 2

22

2

2

)1()1(

Page 4: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Calculations Results

Pd foil Young mod. 1E+11

Space coordinate (arb. units)

Equilibrium stress profile for low H solubility in Pd.

A

rbit

rary

un

its

Pd foil Young mod. 1E+10Pa

Space coordinate (arb. units)

Equilibrium stress profile for high H solubility in Pd.

A

rbit

rary

un

itsEquilib. Concentration Profile

Pd foil Young module 1E+10 Pa

Space coordinate (arb.units)

Equilibrium conc. profile for high H solubility in Pd.

H/Pd

Equil. Concentration Profile

Pd foil Young mod. 1E+11

Space coordinate (arb. units)

Equilibrium conc. profile for low H solubility in Pd.

H/Pd

Page 5: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Metallurgy and Loading

Theory showed that self induced stress, created by concentration gradients, reduce hydrogen solubility in metals.

Metallurgical treatments have been studied to reduce the above mentioned effects.

Cold worked Pd foil.

200 micron

Cold worked and annealed at 1100 C for 5 hr Pd foil.

Cold worked and annealed at 850 °C for 1 hr.

Page 6: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Normalized Pd electrical resistance

Baranowsky curves.

D/H Concentration Measurement as Resistance Measurement

Loading evolution into a treated Pd sample.

Hi-Lo current mode

Page 7: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Temperature °C

Annealing temperature effect on H loading in Pd.

A Proper microstructure of Pd due to metallurgical treatment allows high D loading.

Self induced stress, created by very steep concentration gradients, makes impossible to achieve the concentration threshold D/Pd > 0.95 giving excess power production.

Page 8: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

A. Adrover, V. Violante et Al. Stress induced diffusion of hydrogen in metallic membranes, Cylindrical vs. planar formulations I, J. Of Alloys and Compounds I(2003).

A. Adrover, V. Violante et Al. Stress induced diffusion of hydrogen in metallic membranes, Cylindrical vs. planar formulations II, J. Of Alloys and Compounds I(2003).

A. Adrover V. Violante et Al. Effects of self-stress on hydrogen diffusion in Pd membranesin the coexistence of and phases. J. of Alloys and Compounds II (2003).

A.De Ninno, V. Violante et Al., Consequences of Lattice Expansive Strain Gradients on Hydrogen Loading in Palladium. Phys. Rev. B, Vol. 56, N. 5 (1997) 2417-2420.

References

Page 9: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Flow Calorimetry on Closed Cells with Recombiner

IVPIn

InOutpOut TTWcP

W = coolant mass flow rate

Page 10: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

ENEA Flow Calorimeter

Memmert Calorimetric box (±0.05°C) + Haake thermostatic bath +Bronkhorst high precision mass flow meter + HP-4263 LCR Meter. Measure limit: 50 15 mW

Insulation

Page 11: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Flow Calorimeter FEM Analysis

Finite element modelling has applied to design the calorimetric system

Page 12: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Symmetric eelectrochemical cell :Pt-foil/Pd-foil/Pt-foil (20x10mmx50m Pd).

Current = 5 - 300 mA

Voltage = 2 – 12 V

He leakage test ≤ 1x10-10 mbar l/s

Page 13: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Reference Experiments with Hydrogen at ENEA

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

0 20000 40000 60000 80000 100000

Pin (mW)

Pout (mW)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 20000 40000 60000 80000 100000

Pin (mW)

Pout (mW)

Input and output of power during electrochemical loadingof hydrogen into Pd foils. Calorimeter efficiency = 97.5%.

Page 14: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Time s

0

20000 40000 60000 80000 100000

Pow

er -

mW

-

0

20000000

40000000

60000000

80000000

100000000

C ALIBRATION ENERGY (LiOH)E

nerg

y -m

J-

0

2000

4000

6000

8000

10000

Input Energy

Output Energy

Output Power

Input Power

Calorimeter Efficiency = 97.5%

Plot of energy & power (input and output) for calibration with H2O 0.1 M LiOH.

Energy & power (input and output) during calibration with H2O 0.1 M LiOH

Page 15: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Flow Calorimeter Calibration Curve

mW

In principle flow calorimetry doesn't require calibration

Page 16: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Excess PowerExcess Power

0

20

40

60

80

100

120

140

160

180

200

0 20000 40000 60000

Pin (mW)

Pout (mW)

Experiment C3: excess power vs time

Experiment C1: excess power vs time (45 KJ of produced energy = 35 MJ/mol Pd)

Time (s)

300000 320000 340000 360000 380000 400000 420000 440000

Exc

ess

of P

ower

(m

W)

0

100

200

300

400

500

600

700Excess of Power Experiment C1

Time –s-

C1 and C3 Experiments

Page 17: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Excess Power and Excess Energy in C3 Experiment

C3 experiment: plot of energy & power (input and output)

Page 18: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Excess Power at SRI

SRI results by using a treated Pd foil.

Excess Power mW

Similar and enhanced results have been obtained by Dr. T. Zilov (Energetics Technology) by using the same materials.

Page 19: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Two excesses of power have been observed over 9 experiments although the achieved D concentration in Pd (atomic fraction) has always been largerthan 0.9.

Why a trigger ?

The loading threshold D/Pd > 0.9 is clearly only a necessary condition.

Remarks

Page 20: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Surface plasmons are quantum of plasma oscillations created by the collective oscillation of electrons on a solid surface.

Surface plasmons may be generated by mechanisms able to producecharge separation between Fermi level electrons and a background of positive charges (i.e. lattice atoms):

1) Electrons beam. 2) Laser stimulation. 3) Lattice vibrations. 4) Charged particles interacting with a surface.

Plasmons-Polaritons Laser Triggering

According to the idea that collective electron oscillations have a key role inLENR processes a proper trigger has been introduced to create surface plasmons (polaritons).

Page 21: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Coupling by Coupling by RoughnessRoughness

spxx KKc

K sin

Where:

ag

ngKx2

a is the surface corrugationlattice parameter.0

1.5x1016

3.0x1016

4.5x1016

0 0.5x108 1.0x108 1.5x108 2.0x108

=45°

Kx

sp,a

p

Kx

I (m

-1)

(r

ad

/s)

Shift of the incident radiation wave vector produces plasmons excitation:a proper corrugation of the surface creates the required shift.

n=1,2…..

Page 22: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Isoperibolic Calorimetry under Laser Triggering

Pd foil (20x10 mm x 50 m) cathode, spiral Pt wire anode. Current = 5 - 400 mA

Voltage = 2 – 15 V

Laser Beam

Thermostat.box

Electrolitic cell

Heater Cooling circuit

Calorimetric system for laser triggeringexperiments (T Box = Set p. ± 0.15 °C)

5-30 mW

PT100 PT100

Teflon cell

Electrodes rotating support

Glasswindow

SS cap & ring

High vacuum cap with electric connections

Electrochemical cell for laser triggeringExperiments. He leakage ≤ 10-10 mbar l/s.

for laserbeam

Page 23: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Electrochemical Cell FEM Analysis to Design the Calorimetric System

Calculated temperature profiles.

Page 24: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Electrochemical Cell FEM Analysis to Design and Optimize the Isoperibolic Calorimetric System for Laser Triggered Experiments

Simulated cell and experimental cell (closed cell with recombiner)

He leakage test < 1x10-10 mbar l/s

Page 25: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Isoperibolic Calorimetry for Laser TriggeredExperiments.

Calibration is mandatory

Calibration 25-05-2004

y = 4,4232x + 24,923

R2 = 0,996820

25

30

35

40

45

50

55

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6

P in (W)

T (°

C)

T (average)

Calibration 25-5-2004y = -0,1649x2 + 5,3626x + 24,337

R2 = 1

0

10

20

30

40

50

60

0 1 2 3 4 5 6

P In -W-

T(°C

)

T (Average)

Poli. (T (Average))

Calibration of the isoperibolic calorimeter

Calibration based on the average of the 2 PT-100 temperature values obtained by means of electrolysis in LiOD.

Page 26: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Laser2 Laser2 ExperimentExperiment

23.5 kJ of produced energy: 17.3 MJ/ mol Pd

Evolution of the input and output power, last 300 hr under laser irradiation (P-polarization),632 nm, 5 mW. 4He production estimate 6.12E+15.

312 336 360

Evolution of loading (normalized resistance).

R/Ro corretta, 1-06-2004

1,551,561,571,581,591,6

1,611,621,631,641,651,661,671,681,691,7

1,711,721,731,741,751,761,771,781,791,8

1,811,821,83

600 624 648 672 696 720 744 768 792 816 840 864 888

Time (h)

R\R

o

R/Ro corretta

312 336 360

Hi-Low current mode

Page 27: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Laser3 Experiment: Calorimetric Laser3 Experiment: Calorimetric ResultsResults

III Esp LiOD, 5-07-2004

1

1,1

1,21,3

1,4

1,5

1,6

1,71,8

1,9

2

2,1

2,22,3

2,4

2,5

2,6

2,72,8

2,9

3

60 66 72 78

Time (h)

I cell(A)

P in (W)

Pres (bar)

R\Ro corretta

Pout

Laser On (pol. P)

pol.S pol p

Excess power under laser triggering (Pand S polarization effect). 632 nm, 33 mWHi-Lo current mode.

Loading evolution (normalized resistance)

R\Ro corretta

1,75

1,755

1,76

1,765

1,77

60 66 72 78

Time (h)

R\Ro corretta

3.4 kJ of produced energy: 2.5 MJ/ mol Pd

Page 28: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Laser3 Experiment: Calorimetric Laser3 Experiment: Calorimetric ResultsResults

III Esp LiOD, 5-07-2004

2,5

2,6

2,7

2,8

2,9

3

3,1

3,2

3,3

3,4

3,5

93 98 103 108

Time (h)

I cell(A)P in (W)Pres (bar)R\Ro correttaPout

Laser Off

Excess power under laser triggering (laseroff effect). Hi-Lo current mode.

Laser off

P pol.

3.4 kJ of produced energy: 2.5 MJ/ mol Pd

Loading evolution (normalized resistance)

R\Ro corretta

1,75

1,755

1,76

1,765

1,77

93 98 103 108

Time (h)

R\Ro corretta

Page 29: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Excess energy and excess power in Laser4 experiment.

Laser4 Experiment: Calorimetric Laser4 Experiment: Calorimetric ResultsResults

Time s

200000 400000 600000

Pin

an

d P

out

-W

-

150000

350000

550000

750000

Excess of Energy and Power in Laser4 ExperimentE

ner

gy I

n a

nd

En

ergy

Ou

t -J

-

0.70

1.20

1.70

2.20

2.70

3.20

Input Energy

Output Energy

Output Power

Input Power

E=30 kJ

Page 30: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Time -s-

0

Pin

and

Pou

t -W

-

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Power and R/Ro Laser 4 Experiment

R/R

o

1.60

1.65

1.70

1.75

1.80

400000 500000 600000

Input power

Output power

Pd resistance

Laser4 Experiment: Calorimetric Laser4 Experiment: Calorimetric ResultsResults

30.3 kJ of produced energy: 19.4 MJ/ mol Pd

Excess power and loading evolution.

Page 31: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Mass Spectrometer: JEOL GC Mate

JEOL mass spectrometer and inlet system.

Page 32: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

MS

V1

Cell

Cell

V2

V3V6

V7

V8

V10

V11

V12

V13

PI

V4V5

VS1

PI

VS2

V14

MS - Inlet Line

PI

Getter

V16

V9

Turbo

PI

8.25 cc

4.175 cc

V15

MKS Baratron

MKS Baratron

All VCR fitting, He leakage of the line ≤ 10-10 mbar l/s

Penning

Multi Gauge

Rotary pump

Page 33: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

JEOL GC-Mate Resolution and Sensitivity

GC-Mate resolution up to 0.0001 AMU, sensitivity in SIM mode up to some Fg.

Sensitivity in SIM Mode is up to some fm-gr

M=0.0256 AMU

M=0.00579 AMU

3-He

HD

M=0.00154 AMU

D H2+

JEOL GC-MATEPeak Profile for Mass 2

Page 34: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Laser Triggered Experiments: 4He Results

The expected amount of increasing of 4He is in accordance with the energy gain by assuming a D+D = 4He +24 MeV reaction.

Experiments

4-H

e A

tom

s

4-He Mass Spectrometry for Laser Triggered Experiments

1.40E+16

1.00E+16

0.40E+16

Laser-2 Laser-4Laser-3

Expected values

23.5 kJ

3.40 kJ

30.0 kJ1.20E+16

0.80E+16

0.60E+16

0.20E+16

Background

Page 35: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

ConclusionConclusionss

- Heat effects are observed with D, but not with H, under similar (or more severe) conditions.

- Heat bursts exhibit an integrated energy at least 10 x greater - Heat bursts exhibit an integrated energy at least 10 x greater than the sum of all possible chemical reactions within a closed than the sum of all possible chemical reactions within a closed cell.cell.

1) Loading threshold D/Pd > 0.9 (necessary condition).

- Conditions are required to have a reproducible excess power:

2) Suitable material to have a reproducible loading above the threshold.

4) Suitable status of the material to have coupling with trigger.

3) Trigger

Three excess power over three effective experiments have been achieved by respecting these conditions!

The accordance between revealed 4He and produced energy seems to be a clear signature of a nuclear process occurring in condensed matter.

- Experiments reproducibility was significantly improved as a result of material science study.

Page 36: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Acknowledgments

The authors thank:

Energetics Technology for the support given to the development of these activities.

Sued Chemie for the help received in all the aspects of the research concerning the catalysts.

JEOL for the assistance in preparing the GC-Mate mass spectrometer.

Page 37: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,
Page 38: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,

Different surface different Different surface different behaviorbehavior

Palladium giving excess,before electrolysis.

Palladium giving excess,(after) with Pd deposition during electrolysis.

Not working palladium

Page 39: Review of Recent Work at ENEA M.Apicella*, E. Castagna*, L. Capobianco*, L. D’Aulerio*, G. Mazzitelli*, M. McKubre***, F.Sarto*, C. Sibilia**, A. Rosada*,