36
RF SOI: A Deeper Insight for a Faster Time-to-Market Mostafa Emam [email protected] Beyond Computing' Innovative Technologies Symposium Tuesday 17 March 2015

RF SOI: A Deeper Insight for a we innovatively Faster Time-to … · 2019. 6. 20. · RF SOI: A Deeper Insight for a Faster Time-to-Market Mostafa Emam [email protected] Tuesday

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • we innovatively characterize

    RF SOI: A Deeper Insight for a Faster Time-to-Market

    Mostafa Emam [email protected]

    Beyond Computing' Innovative Technologies Symposium

    Tuesday 17 March 2015

  • Since 2011

    Technology Enablement

    Radiation Hardness

    Self-Heating Thermal Noise

  • C L I E N T S

    Wafer producers

    Foundries

    MEMS fabless

    Imaging Industry

  • RadioFrequency

    RF as a tool for the enhancement of many technologies

  • 22.000.000 /mm2

    1948

    Bell Labs

    [wikipedia]

  • Frank Schwierz Nature Nanotechnology 5, 487–496 (2010)

  • High Resistivity Substrate

    SiO2

    System-on-Chip

    Mixed Signal

    RF

    DSP

    Processor

    Memory

    Base Band MEMS

    WLAN

    PMU

    Si

    Logic CPU/DDR SRAM GPU/Interface

    RF WiFi/Bluettoth/FM tuner GSM/3G Baseband Processor

    Power Amp/Power Management Accelerometer/Gyroscope

    Mixed Signal

  • High Resistivity SOI substrates: how high should we go?

    -  STD SOI: 20 Ω.cm ⇒ high losses

    -  HR SOI of 10 kΩ.cm would correspond to a lossless Si substrate

    Si substrate

    signal

    Conductor losses (αcond) Substrate losses (αsub)

  • q  Compatible with CMOS technology

    Substrate technology

    q  Low parasitic conductance/capacitance q  Low RF losses (ρ > 3 kΩ-cm) q  Low crosstalk q  Linearity ( 1 kΩ-cm) q  Availability (mainstream production, size) q  Low cost

  • q  Compatible with CMOS technology q  Low parasitic conductance/capacitance q  Low RF losses (ρ > 3 kΩ-cm) q  Low crosstalk q  Linearity ( 1 kΩ-cm) q  Availability (mainstream production, size) q  Low cost

    Substrate technology Substrate technology Substrate technology

    [D. Lederer et al., SOI 2003], [C. Roda Neve et al., TED’12]

  • q  Compatible with CMOS technology q  Low parasitic conductance/capacitance q  Low RF losses (ρ > 3 kΩ-cm) q  Low crosstalk q  Linearity ( 1 kΩ-cm) q  Availability (mainstream production, size) q  Low cost

    HR-SOI (as HR-Si) suffers from parasitic substrate effects

    Substrate technology

    [D. Lederer et al., SOI 2003], [C. Roda Neve et al., TED’12]

  • HR-SOI suffers from Parasitic Surface Conduction (PSC) effect at the SiO2/Si interface.

    Parasitic Surface Conduction (PSC)

    n-type

    Mobile & Interface trapped

    charges

    Accumulation layer

    Fixed charges

    Highly conductive layer

    10 kΩ.cm [C. Roda Neve et al., TED’12]

    SiO2

    HR-Si

    System-on-Chip RF

    DSP

    Processor

    Memory Mixed Signal

    Base Band MEMS

    WLAN

    PMU Si

    + PSC ≅ 200 Ω.cm

  •  

    Trap  rich  layer  

    n-type

    Mobile & Interface trapped

    charges

    Accumulation layer

    Fixed charges

    Highly conductive layer

    High  Resis0vity  SI  Base  

    SiO2  (BOX)  Trap rich layer

     

    SiO2  (BOX)  

    Mono-‐crystal  Top  Silicon  

    Trap Rich layer freezes the highly conductive layer at BOX – Handle interface

  •  

    Trap  rich  layer  

    High  Resis0vity  SI  Base  

    SiO2  (BOX)    

    SiO2  (BOX)  

    Mono-‐crystal  Top  Silicon  

    Trap-rich Fabrication •  Proton implantation

    [Wu et al., EDL’00] •  Silicon etching

    [Roda Neve et al., EUMC’07] •  Ar implantation

    [Posada et al., EuMIC’06] •  Oxygen-doped polycrystalline Si

    [Rong et al., EDL’04] •  Amorphous Si

    [Lederer et al., EDL’95] •  Polycrystalline Si

    [Gamble et al., MGWL’99] •  RTA-crystallized Polysilicon

    [Lederer et al., EDL’05] •  Nanocrystalline Si

    [Chen et al., EDL’11]

  • q  Compatible with CMOS technology q  Low parasitic conductance/capacitance q  Low RF losses (ρ > 3 kΩ-cm) q  Low crosstalk q  Linearity ( 1 kΩ-cm) q  Availability (mainstream production, size) q  Low cost

    Substrate technology

    trap-rich HR-SOI

    Substrate technology

  • Spreading Resistance Profiling (SRP)

    RF Non-Destructive Characterization

    Destructive. Difficult to get detailed wafer

    mapping.

    Does not capture interface

    conduction.

    Difficult to relate to final processed RF

    and Non-linear wafer behavior.

    Expensive

    DUT

    Port 1 Port 4 Port 2

    Calibratedpower

    HarmonicMeas.

    Fund. ToneMeas.

    Harmonicgeneration

    Fund. Tone

    Aprobe Aprobe Aharm

    Afund

    DUT

    Port 1 Port 4 Port 2

    Calibratedpower

    HarmonicMeas.

    Fund. ToneMeas.

    Harmonicgeneration

    Fund. Tone

    Aprobe Aprobe Aharm

    Afund

    DUT

    Port 1 Port 4 Port 2

    Calibratedpower

    HarmonicMeas.

    Fund. ToneMeas.

    Harmonicgeneration

    Fund. Tone

    Aprobe Aprobe Aharm

    Afund

    DUT

    Port 1 Port 4 Port 2

    Calibratedpower

    HarmonicMeas.

    Fund. ToneMeas.

    Harmonicgeneration

    Fund. Tone

    Aprobe Aprobe Aharm

    Afund

    DUT

    Port 1 Port 4 Port 2

    Calibratedpower

    HarmonicMeas.

    Fund. ToneMeas.

    Harmonicgeneration

    Fund. Tone

    Aprobe Aprobe Aharm

    Afund

    DUT

    Port 1 Port 4 Port 2

    Calibratedpower

    HarmonicMeas.

    Fund. ToneMeas.

    Harmonicgeneration

    Fund. Tone

    Aprobe Aprobe Aharm

    Afund

    Harmonic Distortion

    S-Parameters

    Cross Talk

    Digital Noise

  • Measurement Setup

    è S-parameters & cross-talk from 5 Hz to 26 GHz è THD (H2 & H3) from -25 to 40 dBm

    (900 MHz, 1.8 GHz, 3.6 GHz -> 5 GHz) HD > -145 dBm (noisefloor) Dynamic range of 165 dBc (140 dBc at 40 dBm of input power)

  • Harmonic Distortions (Large Signal)

    Effective Resistivity, Substrate Losses

    (Small Signal)

    Line

    Through Open

    LRF Pad

    RF Pad RF Pad

    RF Pad

    RF PadRF Pad

    WS

    Wg

    S

    L

    W

    Cross Talk through the substrate (Small Signal)

    Incize provides its customers with tailored libraries of test structures adapted to their technology for optimized characterization results.

    SiO2

    Si

    (b)

    SiO2

    Si

    (a)

    trap-rich layer

    (BOX) (BOX)toxtp

    tSi

    Wg S W

  • Harmonic Distortions (Large Signal)

    Effective Resistivity, Substrate Losses

    (Small Signal)

    Line

    Through Open

    LRF Pad

    RF Pad RF Pad

    RF Pad

    RF PadRF Pad

    WS

    Wg

    S

    L

    W

    Cross Talk through the substrate (Small Signal)

    Incize is developing the first defacto Standard for substrate characterization.

    Harmonized FoM Optimized Geometries Enhanced Efficiency

    SiO2

    Si

    (b)

    SiO2

    Si

    (a)

    trap-rich layer

    (BOX) (BOX)toxtp

    tSi

    Wg S W

  • SiO2

    Si

    (b)

    SiO2

    Si

    (a)

    trap-rich layer

    (BOX) (BOX)toxtp

    tSi

    Wg S W

    ρSi à from 10 Ω to 10 kΩ-cm

    tox à from 50 to 1000 nm

    HR-Si trap-rich HR-Si

    Lossless linear reference

    Quartz

    48 substrates

  • 5 10 15 20 25101

    102

    103

    104

    105

    Freq. [GHz]

    α [d

    B/m

    m]

    std-SiHR-Sitrap-rich HR-SiQuartz

    3 kΩ-cm

    ρ eff [Ω

    -cm

    ]

    5 10 15 20 250

    0.5

    1

    1.5

    2

    Freq. [GHz]

    α [d

    B/m

    m]

    std-SiHR-Sitrap-rich HR-SiQuartz

    Error in ρeff extraction due to VNA accuracy (freq. dependent)

    std-Si HR-Si Quartz trap-rich HR-Si

    10 > 5 k

    - > 5 k

    33 64

    > 5 k > 5 k

    ρnom [Ω-cm]

    ρeff [Ω-cm] Qf ~ 3x1011

    Small Signal Characterization

    [Roda Neve et al., EUMIC’08]

  • TR HR-SOI substrate meets harmonic distortion switches specifications.

    .

    900 MHz

    CPW 2146 µm-long

    [K. Ben Ali, SiRF 2014]

    Large Signal Characterization

    -25 -20 -15 -10 -5 0 5 10 15 20 25-120

    -100

    -80

    -60

    -40

    -20

    0

    Pin [dBm]

    P out

    2nd

    Har

    m. [

    dBm

    ]

    Std-SOIHR-SOITR-SOIQuartz

    -30 dB

    Specs -35 dB

  • .

    900 MHz

    CPW 2146 µm-long

    Large Signal Characterization

    -100 -50 0 50 100

    -120

    -100

    -80

    -60

    -40

    -20

    0

    Vbias

    (V)

    HD2,

    (dB

    m)

    -100 -50 0 50 100

    -120

    -100

    -80

    -60

    -40

    -20

    Vbias

    (V)

    HD3

    (dB

    m)

    StdSOIHR-SOITR-SOIQuartz

    StdSOIHR-SOITR-SOIQuartz

  • 1k 10 k 100k 1 M 10M 100 M 1 G 10G-160

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    Frequency [Hz]

    S21

    [dB]

    d= 50 µm

    Low Frequency

    HR-SOITR-SOISOS

    Test structure

    d = 50µm 150 x 50 µm

    PAD PAD

    CROSSTALK

    SiO2

    Si

    [K. Ben Ali et al., TED’11]

    d

    Crosstalk on HR and TR-SOI

  • CROSSTALK HR-Si

    Trap-rich layer

    PAD PAD

    SiO2

    1k 10 k 100k 1 M 10M 100 M 1 G 10G-160

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    Frequency [Hz]

    S21

    [dB]

    d= 50 µm

    Low Frequency

    HR-SOITR-SOISOS

    Test structure

    d = 50µm 150 x 50 µm

    -35 dB 20 dB/dec

    [K. Ben Ali et al., TED’11]

    Crosstalk on HR and TR-SOI

  • NOISE SOURCE (digital) VICTIM (analog)

    SUBSTRATE COUPLING

    Bulk Si / SOI HR-Si

    Digital Substrate Noise

    BULK HRSOI

    Limited DSN reduction due to PSC

    [D. Bol et al., SOI’07]

    UCL’s SOI FD MOSFET NP2N L = 2 µm W = 20 µm Nf = 20

    RF in

    900 MHz

    Mixed

    Output

    900 MHz

    Noise

    HR -‐ Si  (n -‐ type)

    Trap -‐ rich layer BOX Source

    N + N + Drain Gate Si

  • Noise: square signal @ 500 kHz

    HR SOI

    TR SOI

    Almost 25 dB reduction of the coupled noise.

    Digital Substrate Noise

    Without Noise

    [K. Ben Ali, SOI Conf. 2012] TR-SOI reduces Digital Substrate Noise

  • 0 2 4 6 80

    20

    40

    60

    80

    100  

     

    Quality  Fac

    tor

    F requenc y  (G Hz )

     IND2  on  HR -‐4k  IND2  on  HR -‐10k  IND2  on  TR -‐4k  IND2  on  TR -‐10k

    -20 -10 0 10-120

    -110

    -100

    -90

    -80

    -70

    -60

    Pin [dBm]

    P out

    2nd

    Har

    m. [

    dBm

    ]

    HR 4 kΩ.cmHR 10 kΩ.cmTR 4 kΩ.cmTR 10 kΩ.cm

    HD2 @ 900 MHz

    -20 -10 0 10-120

    -110

    -100

    -90

    -80

    -70

    -60

    Pin [dBm]

    P out

    2nd

    Har

    m. [

    dBm

    ]

    HR 4 kΩ.cmHR 10 kΩ.cmTR 4 kΩ.cmTR 10 kΩ.cm

    HD2 @ 2 GHz

    -20 -10 0 10-120

    -110

    -100

    -90

    -80

    -70

    -60

    Pin [dBm]

    P out

    2nd

    Har

    m. [

    dBm

    ]

    HR 4 kΩ.cmHR 10 kΩ.cmTR 4 kΩ.cmTR 10 kΩ.cm

    HD2 @ 4 GHz

    Inductors on TR HR-SOI wafer show •  Improved Q •  Reduced substrate harmonic distortions

    [K. Ben Ali, SiRF 2014]

    Integrated Inductors on TR-SOI Measured results of 35 µm-thick 2 nH spiral

    inductors on HR-Si and Trap-Rich HR-Si

  • q  Displacement Damage + secondary ionizing effects (h+-e- pairs)

    SiO2

    HR-Si

    Induced interface traps

    depleted region

    Induced fixed charges

    p-type

    HIGH-ENERGY NEUTRONS

    Doping variation &

    Carrier mobility degradation

    Impact of neutron irradiation

    [C. Roda Neve, RADECS 2009]

  • 2 4 6 8 10 12 140

    0.2

    0.4

    0.6

    0.8

    1

    Frequency [GHz]

    α [d

    B/m

    m]

    beforeafter50 nm SiO2

    500 nm SiO2

    500 nm SiO2 + PSi

    50 nm SiO2 + PSi

    ü  Fast neutron beam ü  High neutron flux and mean energy of 20 MeV ü  Ambient temperature ü  Neutron fluence up to 2.2x1014 neutrons/cm2 ü  Passive regime à devices are not biased

    Loss reduction after irradiation (no PSi)

    0.4 dB/mm à 50 nm 0.5 dB/mm à 500 nm

    Final attenuation after irradiation (no Psi)

    α500 nm > α50 nm

    Almost no variation for substrates with PSi

    Impact of neutron irradiation

    [C. Roda Neve, RADECS 2009]

  • FD SOI MOSFETs 400 nm BOX 80 nm SOI 25 nm gate oxide

    Gate Length (L): 2 µm # fingers: 20 Finger width (W): 20 µm Chanel doping: NP2N - Boron implantation

    (4 x 1016 at/cm3)

    Academic process UCL SOI CMOS technology

    [K. Ben Ali, SOI Conf. 2012]

    Impact of TR-SOI on Active Devices

  • Commercial PD SOI MOSFET Foundry technology 5-metal layers, Lg< 0.3 µm

    50 100 150 200 250 300 350

    2

    4

    6

    8

    10

    12

    14

    16

    18

    ID (mA/mm)

    f t (G

    Hz)

    TR-SOIHR-SOI

    -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

    50

    100

    150

    200

    250

    300

    350

    VGT (V)

    g m (m

    S/m

    m)

    TR-SOIHR-SOI

    -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

    50

    100

    150

    200

    250

    300

    350

    VGT (V)

    I D (m

    A/m

    m)

    TR-SOIHR-SOI

    [K. Ben Ali, SOI Conf. 2014]

    Impact of TR-SOI on Active Devices

    TR HR-SOI shows no impact on Active Devices performance

  • Compatibility with CMOS technology

    Low RF losses (ρ > 3 kΩ-cm)

    Low crosstalk (f < 10 GHz)

    Linearity ( 1 kΩ-cm)

    Availability (mainstream production, wafer size)

    Low cost

    HR-SOI SOS SOQ

    trap-rich HR-SOI SOI

    So …

    TR-SOI substrate is the most promising solution for RF SoC, and future LTE, 5 G generations.

  • Take AwayRF is not only for high frequency operation, it is

    a powerful tool to enable many technologies.

    Incize is developing the first standard to optimize the substrate characterization

    Trap-Rich HR SOI is THE technology for next generations of HF applications

  • Acknowledgments

    Incize Team: Dr. Khaled Ben Ali and Dr. Sergej Makovejev

    Dr. Cesar Roda Neve from IMEC (ex-UCL).

    UCL: Prof. Jean-Pierre Raskin and his group. Winfab and WELCOME teams.

  • thank you!