40
Risk Assessment of Loss of Mains Protection 18 March 2013 Dr. Adam Dyśko University of Strathclyde Glasgow, UK e-mail: [email protected]

Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: [email protected]

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Risk Assessment of Loss of Mains Protection

18 March 2013

Dr. Adam DyśkoUniversity of StrathclydeGlasgow, UKe-mail: [email protected]

Page 2: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Outline

Revised work plan and methodology

Initial DNO data

Additional questions and data requirements

Progress so far and completion date

Other generation technologies (Phase II)

Page 3: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Phase I – Scope of work

Page 4: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

WP1 - Simulation based assessment of Non Detection Zone (NDZ)

RTDS real-time model of 30MVA machine connected to

33kV level (3MVA also machine considered for ‘spot’ checks)

Laboratory hardware testing using a commercial relay with 8

setting options

Load modelling as fixed

impedance and fixed power

Generator control

considered as P/pf and P/V

Setting Option

ROCOF[Hz/s]

Time Delay

[s]

Dead Band

applied1 0.5 0.0 No2 0.5 0.5 No3 1.0 0.0 No4 1.0 0.5 No5 0.5 0.0 Yes6 0.5 0.5 Yes7 1.0 0.0 Yes8 1.0 0.5 Yes

Page 5: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

RTDS Model – network diagram

Adjustable loads Generator with controllers

Grid infeed

SB to simulate LOM

Page 6: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

RTDS Model – control panel

Page 7: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

WP2 – Risk level calculation at varying NDZ

Generation range considered 5MW – 50MW

UK data

DG Generation statistics

Load profiles acquired from the utilities

Island formation configuration and statistics

Overall risk of undetected islanding condition

persisting longer than acceptable limit (e.g. 3s) will

be established.

Page 8: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Phase I – Methodology

Page 9: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Methodology

WP1: ROCOF NDZ assessment under proposed new settings (lab testing, simulation,

literature review)Setting Option

ROCOF[Hz/s]

Time Delay[s]

Dead Band applied

1 0.5 0.0 No

2 0.5 0.5 No

3 1.0 0.0 No

4 1.0 0.5 No

5 0.5 0.0 Yes

6 0.5 0.5 Yes

7 1.0 0.0 Yes

8 1.0 0.5 Yes

NDZknowledge

base

WP2: Risk assessment based on probability tree

Assume network configuration, load

profile, and generation technology

Individual risk.

Page 10: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Network model for the probability tree

G

Interconnected system

PgenQgen

PloadQload

ROCOF

~

CB Open Measured load profile

Assumed generation profile (const. P and Q)

Any network losses not included in the monitoring

data (network type and length, including

transformers if appropriate)

Page 11: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Network model for the probability tree

G

Interconnected system

PgenQgen

PloadQload

ROCOF

~

CB OpenMeasured load profile

Assumed generation profile (const. P and Q)

Any network losses not included in the monitoring

data (network type and length, including

transformers if appropriate)

Page 12: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Network model for the probability tree

G

Interconnected system

PgenQgen

PloadQload

ROCOF

~

CB OpenMeasured load profile

Assumed generation profile (const. P and Q)

Any network losses not included in the monitoring

data (network type and length, including

transformers if appropriate)

Page 13: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Island formation options

Page 14: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Island formation options

Page 15: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Island formation options

Page 16: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Island formation options

Page 17: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

} non-detection zone

Time [h] 24

P [MW]

10

20

30

load profile

generation profile

Risk of undetected island

∆t1 ∆t2 ∆t3 ∆t4

Probability of Load/Generation matching

Measured load profile + all network

losses (P & Q)

Assumed generation profile

(P & Q)

NDZ (from WP1)

Page 18: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

0

0.5

1

1.5

2

2.5

0 5 10 15 20

P [M

W]

time [h]

Probability of Load/Generation matching

Load profile

Generation profile

Low undetected island probability

Page 19: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

0

0.5

1

1.5

2

2.5

0 5 10 15 20

P [M

W]

time [h]

Probability of Load/Generation matching

Load profile

Generation profile

Increased undetected island probability

Page 20: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

0

0.5

1

1.5

2

2.5

0 5 10 15 20

P [M

W]

time [h]

Probability of Load/Generation matching

Load profile

Generation profile

Low undetected island probability

Page 21: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Randomising generator size

Marginal probability principle is used for calculating overall probability

Generator sizes from 5MVA to 50MVA

Using UK DG statistics to establish DG size distribution 260 280 300 320 340 360 380

10-5

10-4

10-3

10-2

10-1

Pgen [kW]

Pro

babi

lity

P2(i)

P2(i+1)P2(i+2)

P2(i+3)

P2(i+4)

P2(i+5)

∆P

Non-detection zone probability at varying levels of generator output

Page 22: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

DG Statistics (5MW-50MW)

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Freq

uenc

y

Bin (MW)

Total DG Capacity – 4354MW

Number of sites – 272

Page 23: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

SM based DG (5MW-50MW)

SM DG Capacity – 3236MW (74.3%)

Number of sites – 189 (69.5%)

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Freq

uenc

y

Bin (MW)

Page 24: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Wind generation (5MW-50MW)

Wind Capacity – 1118MW (25.7%)

Number of sites – 83 (30.5%)

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Freq

uenc

y

Bin (MW)

Page 25: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

LOM Safety Hazard Probability Tree

Loss-Of-Gridconnection (e.g. loss of primary substation)

Load/Generation in close balance (both P and Q within NDZ)

Non-detection zone duration longer than the acceptable limit, e.g. 3s

AND

AND

AND

Persons in the vicinity, out of synch reclose, other hazardous circumstances

Safety hazard

AND

AND

Page 26: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Phase I – DNO data

Page 27: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Requested data Examples of load profiles (both P and Q) recorded

at a primary substation over a period of minimum 1 day with sampling period of 5s or less. – some examples received

Total number of DGs and amount of installed DG capacity in the range between 5MW and 50MW, as well as the envisaged DG numbers and capacity in 5 years’ time. – extracted from DCRP_12_02_04

Typical DG connections for sizes between 5MW and 50MW (choose from the four types as shown below) – continues

Typical (or average or min/max) size of network fed from a primary substation (i.e. potentially islanded) in terms of overall length of lines (cables and OHLs) at 33kV and 11kV, and number of transformers (33/11kV). – not crucial

Current LOM practice for generators between 5MW and 50MW (ROCOF, VS or Intertripping) and estimated amount of DG with ROCOF protection. –continues

Total number of substations and frequency of occurrence of losing a primary substation, i.e. frequency of potential islanding conditions. – continues

Page 28: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Western Power Grid Data

DG9.21MW

Page 29: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Western Power Grid Data

Page 30: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Western Power Grid Data

Potential export (?)

1 year data Sampling period 0.5h Current only

Page 31: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

SSE Load Data Mixed residential industrial load – 6 days over 1 year Sampling period 5s

Page 32: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

SPM Load Data 3 rural primes – 1 day Sampling period 5s

Page 33: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

SPM Load Data 3 rural primes – 1 day Sampling period 5s

Page 34: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

SPM Load Data 3 rural primes – 1 day Sampling period 5s

Page 35: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

System frequency

12 July 2012 - Thursday fmean = 49.9941 Hz

49.75 49.8 49.85 49.9 49.95 50 50.05 50.1 50.15 50.2 50.250

1

2

3

4

5

6

7

8

9

10

f [Hz]

prob

abili

ty d

ensi

ty

Page 36: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

2 February 2013 - Saturday fmean = 50.0001 Hz

System frequency

49.75 49.8 49.85 49.9 49.95 50 50.05 50.1 50.15 50.2 50.250

1

2

3

4

5

6

7

8

9

10

f [Hz]

prob

abili

ty d

ensi

ty

Page 37: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

14 March 2013 - Thursday fmean = 49.9970 Hz

System frequency

49.75 49.8 49.85 49.9 49.95 50 50.05 50.1 50.15 50.2 50.250

1

2

3

4

5

6

7

8

9

10

f [Hz]

prob

abili

ty d

ensi

ty

Page 38: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Questions

Load model (fixed impedance or fixed power)?

Generation profile (loading at 90% rating and pf=0.98

leading)?

Generator control regime (P/pf, P/V)?

Possible island formation scenarios?

Page 39: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Progress to date

Samples of load profiles and DG statistics have been obtained

RTDS modelling has been commenced; base model has been setup

UK frequency analysis has been undertaken to assess the effectiveness of the proposed frequency dead band.

Phase I completion by end of May. Phase II – wind and PV generation stability

assessment

Page 40: Risk Assessment of Loss of Mains Protection · Risk Assessment of Loss of Mains Protection 18 March 2013. Dr. Adam Dy. śko. University of Strathclyde. Glasgow, UK. e-mail: a.dysko@strath.ac.uk

Thank you!