62
Risk Modelling in Insurance Hansj¨orgAlbrecher Radon Institute, Austrian Academy of Sciences and University of Linz, Austria [email protected] Tutorial for the Special Semester on Stochastics with Emphasis on Finance, RICAM, Linz September 3, 2008

Risk Modelling in Insurance - Ricam | Welcome · 2008. 9. 8. · Risk Modelling in Insurance Hansj¨org Albrecher Radon Institute, Austrian Academy of Sciences and University of Linz,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Risk Modelling in Insurance

    Hansjörg Albrecher

    Radon Institute, Austrian Academy of Sciences

    and University of Linz, Austria

    [email protected]

    Tutorial for the Special Semester onStochastics with Emphasis on Finance, RICAM, Linz

    September 3, 2008

  • Typical Questions in Insurance

    ◮ Which risks can be insured?

    ◮ Determination of fair premiums

    ◮ Stability of insurance activity

  • Program

    ◮ Some Generalities

    ◮ Aggregate Claim Distributions

    ◮ Collective Risk Models

    ◮ Extensions (Dividends, Taxes, Dependence)

    ◮ Statistical Issues

    Collection of ideas and approaches, not exhaustive treatment!

  • Insurance Portfolio

    Premium Income P(t)

    Claim Payments X1 + X2 + · · · + XN(t)

    Initial Capital x

    Reserve at time t:

    R(t) = x + P(t) −

    N(t)∑

    i=1

    Xi

    −→ Diversification (in the collective, over time,..)

    Quantitative Approach: Risk Theory(Modelling, Measuring Risk, Control)

  • Risk Y (random variable)

    Examples of Measures of Risk

    ◮ E(Y ), Var (Y )

    ◮ CoV(Y ) =√

    Var YE(Y ) , skewness S(Y ) =

    E((Y−E(Y ))3)(Var(Y ))3/2

    ◮ Value at Risk: VaRα(Y ) = qα = inf{y |FY (y) ≥ α}−→ Capital requirements (Basel II, Solvency II)

    (normal distribution)

    ◮ Coherent Risk Measures (Axioms)◮ Expected Shortfall:

    ESα(Y ) = E[Y |Y > qα] =1

    1−α

    ∫ 1

    αVaRs ds

    (e.g. Swiss Solvency Test)

  • Crucial: Distribution of Aggregate Claims X (t) =∑N(t)

    n=1 Xn

    Individual Model∑n

    i=1 Xi :

    ◮ Single payments Xi ≥ 0 with Fi (x) = P(Xi ≤ x) (policy i)

    ◮ Xi independent, distribution identical or volume-dependent

    ◮ Convolutions!

    P(X1 + X2 + ..+ Xn < x) := F∗n(x) =

    ∫ x

    0

    F ∗(n−1)(x − s)dF1(s)

    P(X1 + X2 < x) =

    ∫ x

    0

    F2(x − s)dF1(s)

    Explicit e.g. for

    ◮ Gamma distribution:

    f (x) =αα

    µαΓ(α)xα−1 exp(−xα/µ), x > 0

    ◮ Inverse Gauss distribution:

    f (x) =

    µα

    2πx3exp

    (

    − α/2(√

    x/µ−√

    µ/x)2)

    , x > 0

  • Aggregate portfolio usually inhomogeneous!What matters: aggregate claim distribution

    ◮ Collective Model∑N(t)

    i=1 Xi ,

    N(t).. claim number,Xi iid (d.f. F , “mixed distribution”, reliable estimate)

    Modelling N(1): e.g.

    ◮ Poisson distribution:

    P(N(1) = n) = e−λλn/n!, n = 0, 1, ..

    ◮ Mixed Poisson, e.g. negative binomial:

    P(N(1) = n) =

    (

    α+ n − 1

    n

    )

    pα(1 − p)n, n = 0, 1, ..

  • Models for Claim Sizes:Heavy Tails: “Few claims determine aggregate claim size”

    Candidates: e.g.

    ◮ (Heavy-Tailed) Weibull:

    f (x) = bxb−1 exp(−xb), x > 0, 0 < b < 1.

    All Moments exist

    ◮ Lognormal: log Xi ∼ N(µ, σ2)

    f (x) = x−1(2πσ2)−1/2 exp(−(log(x)−µ)2/(2σ2)), x > 0, µ ∈ R, σ2 > 0.

    All Moments exist

    ◮ Pareto:

    F (x) = 1 −„

    b

    x

    «α

    , x ≥ b > 0, α > 0

    resp. Shifted Pareto E (Xβ) < ∞ ⇔ β < α

    Subexponential Class F ∈ S : P(X1 + X2 + . . .+ Xn > x) ∼ n(1 − F (x))∀ n ≥ 2 as x → ∞.

  • Aggregate Claims X (t) =∑N(t)

    n=1 Xn, Xi iid, independent of N(t)

    F̂ (s) := E(e−sXn) =∫ ∞0 e

    −sxdF (x),

    Qt(z) := E(zN(t)) =

    ∑∞n=0 pn(t)z

    n with pn(t) = P(N(t) = n)

    Gt(x) := P{X (t) ≤ x} =∑∞

    n=0 pn(t)F∗n(x)

    E [e−sX (t)] =∞

    n=0

    pn(t)F̂n(s) = Qt(F̂ (s))

    → Moments of X (t): E (X (t)) = E (N)E (Xn),Var(X (t)) =

    Var(N(t))E 2(Xn) + E (N(t))Var(Xn), etc.

  • Approximations for X (t)

    ◮ Moment matching

    ◮ Normal Approximation Gt(x) ≈ Φ„

    x−E [X (t)]√Var [X (t)]

    «

    ◮ Shifted Gamma, etc.

    ◮ Edgeworth approximation, orthogonal polynomials

    ◮ Discretization of claim sizes→ recursive methods (Panjer recursions, FFT etc.)

    ◮ Asymptotic approximations◮ Subexponential Claims◮ Superexponential Claims

    Also useful in modelling credit risk, operational risk etc.

  • Asymptotic Approximations of Gt(x) - Subexponential Xn

    If E (zN(t)) < ∞ for some z > 1:

    Gt(x) = P(X1 + . . .+ XN(t) > x) =∞X

    n=0

    P(N(t) = n)F ∗n(x)

    ∼∞X

    n=0

    P(N(t) = n)n F (x) = E(N(t)) F (x)

    ◮ Simple! Useful for relevant range of x?

    F (x) = x−3.3, N ∼Poisson(2),

    10 15 20 25

    -4.0

    -3.5

    -3.0

    -2.5

    -2.0

    a3

    a2

    a1

    lower bound

    upper bound

    10 15 20 25

    0.2

    0.4

    0.6

    0.8

    1.0

    a3

    a2

    a1

    lower bound

    upper bound

    Higher-order ApproximationsUnder suitable conditions ak (x) = a1(x) +

    Pkj=1 Aj f

    (j)(x),

    Improvement in certain parameter ranges.

  • Asymptotic Approximations of Gt(x) - Superexponential Xn

    Saddlepoint approximations

    t κt(α) := log E(eαSt )

    Consider the tilted probability measure

    Pα(St ∈ dx) = E(eαSt−tκt(α) 1{St∈dx}),

    Choice of α = α(x): Eα(St ) = tκ′t (α) = x ,

    As x → ∞, α approaches right abscissa of convergence α0 = sup{α : κt (α) < ∞}, given thatlimα→α0 κ

    ′t (α) = ∞.

    Var α(St ) = tκ′′t (α)

    St−xq

    t κ′′t (α)< y

    !

    → Φ(y)

    =⇒ 1 − Gt(x) ∼e−α(x)x+κt (α(x))

    α(x)√

    2π κ′′t (α(x))as x → ∞.

  • Asymptotic Approximations of Gt(x) - Superexponential Xn II

    1−Gt(x) = |θ| e−|θ|xZ ∞

    0

    e−|θ|v {Mθ(x + v) − Mθ(x)} dv

    −σF < θ < 0

    with Mθ(x) :=P∞

    n=0 an F∗nθ (x) and an := F̂

    n(θ) pn(t)

    s

    1

    If a(x) := a[x] ∈ R as x ↑ ∞:

    1 − Gt(x) ∼ e−|θ|xa (x , θ)

    Appropriate choice of θ!

    Example: Pascal process: pn(t) =

    α+ n − 1n

    «

    `

    bt+b

    ´α ` tt+b

    ´n.

    F̂ (θ) = 1 +b

    t⇒ 1 − Gt(x) ∼

    b

    |tF̂ ′(θ)|

    !α1

    |θ|Γ(α)e−|θ|x

    xα−1 .

  • A “Robust” View: Classical Collective Risk Model

    t

    reserve R

    premiums

    ruin

    time

    t

    claims ~ F(y)

    x

    Rt = x + c t −

    N(t)∑

    n=1

    Xn

    N(t). . . homogeneous Poisson process (λ)Xn. . . iid random variables (d.f. F )c . . . premium density

    Ruin Probability ψ(x ,T ) = P ( inf0≤t≤T

    Rt < 0 |R0 = x)

  • A “Robust” View: Classical Collective Risk Model

    t

    reserve R

    premiums

    ruin

    time

    claims ~ F(y)

    u

    t

    Rt = u + c t −

    N(t)∑

    n=1

    Xn

    Generalizations:

    ◮ more general point processes

    ◮ inflation, interest on the surplus, dividend and tax payments

    ◮ investment in financial market, reinsurance

    ◮ delay in claim settlement, dependency

  • Solution Methods

    ◮ Exact Solutions ((P)IDE)

    Infinite time horizon: CP

    c∂ψ

    ∂x− λψ + λ

    ∫ x

    0

    ψ(x − y) dF (y) + λ(1 − F (x)) = 0

    with limx→∞

    ψ(x) = 0.

    ψ(x) =

    (

    1 −λµ

    c

    ) ∞∑

    n=1

    (

    λµ

    c

    )n

    (1 − F n∗I (x)),

    with FI (x) =1µ

    ∫ x

    0 (1 − FX (y)) dy , x ≥ 0.

    Examples:

    ◮ Xi ∼ Exp(1/µ): ψ(x) =λµc

    e−c−λµ

    cµ x

    ◮ Xi ∼ Phase-Type

  • Solution Methods

    ◮ Exact Solutions ((P)IDE)

    Finite time horizon: CP

    c∂ψ

    ∂x−∂ψ

    ∂T− λψ + λ

    ∫ x

    0

    ψ(x − y ,T ) dF (y) + λ(1 − F (x)) = 0

    with limx→∞

    ψ(x,T ) = 0 (T ≥ 0) and ψ(x, 0) = 0 (x ≥ 0)

  • Solution Methods

    ◮ Exact Solutions ((P)IDE)

    Finite time horizon with positive interest rate: CP

    (c + i x)∂ψ

    ∂x− ∂ψ∂T

    − λψ + λZ x

    0

    ψ(x − y ,T ) dF (y) + λ(1 − F (x)) = 0

    with limx→∞

    ψ(x,T ) = 0 (T ≥ 0) and ψ(x, 0) = 0 (x ≥ 0) i ..real interest force

    E.g. λ = k i , X ∼ Exp(α): Gamma Series Expansion ψ(x, t) = a0(t) +Pk

    n=1 an (t)Γ(x ;α, n)

    with Γ(x ;α, n) =αn

    Γ(n)

    Z

    u

    0yn−1

    e−αy

    dy (α > 0, n > 0)

    n ∈ N : Γ(x ;α, n) = 1 − e−αx

    n−1X

    j=0

    (αx)j

    j!,

    ∂Γ(x ;α, n)

    ∂x= α

    Γ(x ;α, n − 1) − Γ(x ;α, n)”

    Recurrence equation

    an+1(t) =1

    αc

    (λ + αc − i n)an(t) + a′n(t) + (i (n − 1) − λ) an−1(t)

    a1(t) =1

    αc

    `

    a′0(t) + λ a0(t)´

    , a0(t) = U(0, t)

  • ◮ Inclusion of (non-linear) dividend barriers

    ����������������������������������������������������������������������

    ���������������������������������������������������������������������� t

    t

    ��������������������������������������������������������������������������������������������������������������

    ��������������������������������������������������������������������������������������������������������������

    time

    t

    ruin

    claims ~ F(y)premiums = ct

    b

    dividends dividend barrier breserve R

    u

    Integro-differential equation approach: Markovian property!bt = f (b, t) . . . monotone increasing in t and satisfying

    f (b, t) = f(

    f (b, t1), t − t1

    )

    ∀ b > 0 and ∀ t > t1 > 0.

    ⇒ Functional equation!Translation equation: among functions that are mon. incr. in b and t and continuous in b, general solution:

    f (b, t) = h(

    h−1(b) + t)

    ,

    where h(t) = f (b0, t) is a given initial function.

  • Example:

    bt =(

    bm +t

    α

    )1/m

    (α, b > 0,m ≥ 1)

    (c + i x)∂φ

    ∂x+

    1

    αm bm−1∂φ

    ∂b− λφ+ λ

    Z x

    0

    φ(x − z , b)dF (z) = 0,

    ∂φ

    ∂x

    ˛

    ˛

    ˛

    x=b= 0, lim

    b→∞φ(x , b) = φ(x).

    W (x, b).. expected present value of future dividend payments

    (c + δ x)∂W

    ∂x+

    1

    αm bm−1∂W

    ∂b− (δ + λ)W + λ

    Z x

    0

    W (x − z , b)dF (z) = 0,

    with ∂W∂x

    ˛

    ˛

    ˛

    x=b= 1.

    → Numerical solution

  • Define integral operator

    Ag(x, b) =

    t∗Z

    0

    λe−(λ+δ)t

    (c′+x)eδt−c′Z

    0

    g

    (c′

    + x)eδt

    − c′− z,

    bm

    +t

    α

    «1/m!

    dF (z)dt

    +

    ∞Z

    t∗

    λe−(λ+δ)t

    bm+ tα

    ”1/m

    Z

    0

    g

    bm

    +t

    α

    «1/m

    − z,

    bm

    +t

    α

    «1/m!

    dF (z)dt

    +

    ∞Z

    t∗

    λe−λt

    tZ

    t∗

    e−δs

    0

    B

    @(c + δ x)e

    δs−

    1

    mα“

    bm + sα

    ”1−1/m

    1

    C

    Ads dt,

    with c′ = cδ

    and (c′ + x)eδt∗

    − c′ =“

    bm + t∗

    α

    ”1/m.

    ⇒ W (x, b) is a fixed point of A

    For g1, g2 ∈ L∞(µ) and ∀ 0 ≤ x ≤ b < ∞

    ||Ag1(x, b) − Ag2(x, b)|| ≤ ||g1 − g2||

    ∞Z

    0

    λe−(λ+δ)t

    dt

    ≤λ

    λ + δ||g1 − g2||

    contracting operator ⇒ fixed point of A is unique by Banach’s theorem.

    Iterate operator −→ high-dimensional integral! Quasi-Monte Carlo methods

  • Solution Methods (contd.)

    ◮ Numerical Techniques (PIDE, Laplace-Transform inversion)

    ◮ Approximations

    ◮ Diffusion-/Lévy-Approximation

    ◮ Discretizations

    ◮ Cramér-Lundberg-Approximation

    ∃R > 0 with E(eR X ) = 1 + R c/λ⇒ (constant!)

    ψ(x) ∼c − λµ

    λE(XeRX ) − ce−R x

    ◮ Heavy-Tail-Approximation: FI (x) ∈ S ⇔ limx→∞1−F∗2

    I(x)

    1−FI (x)= 2,

    ψ(x) =“

    1 − λµc

    P∞n=1

    λµc

    ”n(1 − Fn∗I (x))

    ⇒ ψ(x) ∼λµ

    c − λµ(1 − FI (x)) convergence rate!

  • Solution Methods (contd.)

    ◮ Inequalities (martingales)(e.g. Lundberg inequality)

    ◮ Duality with other models

    ◮ Simulation◮ Rare event sampling◮ Quasi-Monte Carlo techniques

  • Discounted penalty function(Gerber & Shiu (1998))

    mδ(x) := E(

    w(R(T−x ), |R(Tx)|) e−δTx 1{Tx

  • Optimal Control of the Risk Process

    ◮ Safety Criteria:Minimize ruin probability by dynamic reinsurance and/orinvestmentSchmidli (2001), Hipp & Vogt (2003), Browne (1995), Hipp & Plum (2000), Gaier & Grandits (2004)

    ◮ Profitability Criteria:Measure insurance portfolio by the value of future profits paidout as dividends to shareholdersde Finetti (1957)

  • Dividend Strategies

    ◮ Optimality results: max E(Dx) (Dx ..discounted dividends)

    HJB approach

    ◮ Compound Poisson: Gerber (1969), Azcue & Muler (2005), Schmidli (2008)

    Optimal solution for exponential claims:

    Horizontal barrier bt ≡ bPaulsen & Gjessing (1997),

    Gerber, Lin & Yang (2006)

    mδ(x , b) = mδ(x) − E(Dx,b) m′δ(b) ������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    ������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    ������������

    ������������

    ������������������������������

    ������������������������������

    ������������

    ������������

    treserve R

    u

    b

    dividends

    ruin time

    time

    For other claim sizes: Band strategies

    Extension: Lévy models, not for renewal models!

  • Problem: Under horizontal barrier strategy: ψ(u) = 1!

    Compound Poisson model:

    ◮ Ruin constraints◮ Stochastic control problem very difficult!

    ◮ Consideration of the time value of ruin

    V (u) = supL

    V (u, L) = supL

    E

    „Z τ

    0

    e−βt

    dLt +

    Z τ

    0

    e−βtΛ dt

    ˛

    ˛

    ˛R

    L0 = u

    «

    HJB equation

    max

    Λ + cV ′(u) + λ

    Z u

    0

    V (u − y)dFY (y) − (β + λ)V (u), 1 − V ′(u)ff

    = 0.

  • Optimal solution for exponential claim sizes:

    0 ≤ l(u) ≤ M : l∗(u) =

    {

    0 u < u0,M u ≥ u0.

    Threshold/Barrier type

    −→ nonlinear equation for u0

    Xi ∼Exp(2), λ = 3, β = 0.03, c = 1.75

    2 4 6 8 10L

    8

    10

    12

    14

    16

    x0HLL

    2 4 6 8 10x

    2

    4

    6

    8

    10

    12

    V *HxL

    2 4 6 8 10x

    100

    200

    300

    400

    500

    EHΤx L

    Λ = 0, 1, 2

  • Alternative approach: Explicit strategies

    ◮ E.g. Threshold Strategy

    ������������������������������������������

    ������������������������������������������

    ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    �����������������������������������������������������������������������������������������������������������������������������������������������

    �����������������������������������������������������������������������������������������������������������������������������������������������

    t

    claimspremiums

    dividendsreserve R

    time t

    ruin time

    dividend threshold b

    b

    u

    ~ F(y)= ct

  • Threshold strategy in the Sparre Andersen model

    MGF of Du,b . . .M(u, y , b) = M1(u, y , b)I{u

  • Wm(u, b) := E(Dmx ,b) :

    M(u, y , b) = 1 +∑∞

    m=1ym

    m!Wm(u, b)

    System of IDEs:0

    @

    nY

    j=1

    −c ∂∂u

    + λj + δ∆̄

    λj

    1

    A Wm,1(u, b) −

    Z

    u

    0Wm,1(u − z, b) dFY (z) = 0,

    0

    @

    nY

    j=1

    −(c − a) ∂∂u

    + (λj − a∆) + δ∆̄

    λj

    1

    A Wm,2(u, b) −

    Z

    u

    0Wm(u − z, b) dFY (z) = 0,

    with operators ∆Wm := mWm−1, ∆̄Wm := mWm (W0 = 1,W−i = 0 (i ∈ N)).

    limb→∞

    Wm,1(u, y, b) = 0,

    limu→∞

    Wm,2(u, y, b) =

    a

    δ

    «m

    .

    By continuity

    c∂−

    ∂u

    !j−1

    Wm,1

    ˛

    ˛

    ˛

    ˛

    ˛

    ˛

    u=b

    =

    (c − a)∂+

    ∂u+ a∆

    !j−1

    Wm,2

    ˛

    ˛

    ˛

    ˛

    ˛

    u=b

    , (j = 1, . . . , n).

  • c2W

    ′′1,1(u, b) − 2c(δ + λ)W

    ′1,1(u, b) + (δ + λ)

    2W1,1(u, b) − λ

    2α e

    −αuZ

    u

    0W1,1(v, b) e

    αvdv = 0

    and

    (c − a)2W

    ′′1,2(u, b) − 2(c − a)(δ + λ)W

    ′1,2(u, b) + (δ + λ)

    2W1,2(u, b) − a(2λ + δ)

    − λ2α e

    −αuZ

    u

    0W1(v, b) e

    αvdv = 0

    together with W1,1(b−, b) = W1,2(b+, b) and c∂−W1,1

    ∂u(u, b)

    ˛

    ˛

    ˛

    u=b= (c − a)

    ∂+W1,2∂u

    (u, b) + a˛

    ˛

    ˛

    u=b.

    W1,1(u, b) =P3

    i=1 A(i)1 (b)e

    R(i)1

    uand W1,2(u, b) =

    + A(1)2 (b) e

    R(1)2

    u

    (δ + λ− (c−a) R)2(R + α) − αλ2 = 0.

    0

    B

    B

    B

    B

    B

    B

    B

    B

    B

    @

    0 1

    R(1)1

    1

    R(2)1

    1

    R(3)1

    − α

    R(1)2

    +αeR

    (1)2

    b α

    R(1)1

    +αeR

    (1)1

    b α

    R(2)1

    +αeR

    (2)1

    b α

    R(3)1

    +αeR

    (3)1

    b

    −eR

    (1)2

    beR

    (1)1

    beR

    (2)1

    beR

    (3)1

    b

    −(c − a)R(1)2 e

    R(1)2

    bcR

    (1)1 e

    R(1)1

    bcR

    (2)1 e

    R(2)1

    bcR

    (3)1 e

    R(3)1

    b

    1

    C

    C

    C

    C

    C

    C

    C

    C

    C

    A

    0

    B

    B

    B

    B

    B

    B

    @

    A(1)2

    A(1)1

    A(2)1

    A(3)1

    1

    C

    C

    C

    C

    C

    C

    A

    =

    0

    B

    B

    B

    B

    @

    0

    aδaδ

    a

    1

    C

    C

    C

    C

    A

    .

    - Analogous solution for ψ(u)

  • How do tax payments change the ruin probability?

    Definition of “profit” of insurance company?

    (equalization reserves, claims reserves (IBNR, RBNS,...)) In practice: Tax privileges were reduced recently!

    Model: Tax rate 0 ≤ γ ≤ 1 in “profitable” times:

    ����������������������������������������������������������������������������������������������������������������������������������������������������������������

    ����������������������������������������������������������������������������������������������������������������������������������������������������������������

    ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    ����������������������������������������������������������������������

    ����������������������������������������������������������������������

    time t

    sruin

    tax payments

    claims ~ F(y)

    premia

    W1

    M1

    M2

    reserve Rγ (t)

    W2σ2σ1

    φγ(s) = 1 − ψγ(s) . . .survival probability with tax rate γ

    → Simple power relation φγ(u) = (φ0(u))1

    1−γ

  • A Simple Proof via a Queueing Approach

    Rescale time: R∗t = u + t −∑N∗t

    i=1 Xi (with N∗t ...hom. Poisson process (λ/c))

    time t

    claims ~ F(y)

    premia

    u

    W1

    reserve R0(t)

    M1

    M2

    σ2σ1

    W2

    time t

    ◮ Link between φ0(u) and Vmax . . .maximum workload during busy period of M/G/1 queue

    ◮ Net profit condition c > λE(Xi) ⇔ traffic intensity ρ < 1◮ Cut out excursions from running maximum that “survive” (u ↔ t)

  • A Simple Proof via a Queueing Approach

    Rescale time: R∗t = u + t −∑N∗t

    i=1 Xi (with N∗t ...hom. Poisson process (λ/c))

    time t

    claims ~ F(y)

    premia

    u

    W1

    reserve R0(t)

    M1

    M2

    W2

    time t

    ◮ Link between φ0(u) and Vmax . . .maximum workload during busy period of M/G/1 queue

    ◮ Net profit condition c > λE(Xi) ⇔ traffic intensity ρ < 1◮ Cut out excursions from running maximum that “survive” (u ↔ t)

  • A Simple Proof via a Queueing Approach

    Rescale time: R∗t = u + t −∑N∗t

    i=1 Xi (with N∗t ...hom. Poisson process (λ/c))

    time t

    claims ~ F(y)

    premia

    u

    W1

    reserve R0(t)

    M1

    M2

    W2

    time t

    Interpretation: φ0(u) = P(no events during ”time” interval [u,∞) of an inhom.Poisson process with time-dependent rate α(t) = λ

    cP(Vmax ≥ t)

    φ0(u) = exp“

    −Z ∞

    u

    α(t) dt”

    = exp“

    − λc

    Z ∞

    u

    P(Vmax > t) dt”

    ⇒ P(Vmax > u) = cλ

    d

    dulog φ0(u) ∀ u > 0.

  • time t

    claims ~ F(y)

    premia

    u

    W1

    reserve R0(t)

    M1

    M2

    W2

    Interpretation: φγ(u) = P(no events during ”time” interval [u,∞) of an inhom.Poisson process with time-dependent rate αγ(t) =

    λc (1−γ)

    P(Vmax ≥ t)

    φγ(u) = exp“

    −Z ∞

    u

    αγ(t) dt”

    =

    "

    exp“

    Z ∞

    u

    α0(t) dt”

    # 11−γ

    = (φ0(u))1/1−γ

    ◮ Extension to surplus-dependent tax rate

    ◮ Extension to spectrally negative Levy process

  • Challenges

    ◮ Dependence between and within portfolios

    ◮ How to detect dependence in data?

    ◮ How to model dependence?

    ◮ How to deal with dependence in risk management?

    ◮ Classical insurance principles are not necessarily valid anymore!

    ◮ Law of large numbers, Central limit theorem, Diversificationproperties

    Exact Results, Asymptotic Results, Stochastic Ordering

  • Exact solutions for specific dependence structures

    Example: Causal dependence Xi ↔ Ti+1

    Model:

    Xi Xi+1

    T i+1

    Di . . . threshold variable

    ◮ If Xi > Di , then Ti+1 ∼ Exp (λ1)

    ◮ If Xi ≤ Di , then Ti+1 ∼ Exp (λ2)

    ◮ net profit condition: µX < ch

    P(Xi>D)λ1

    + P(Xi≤D)λ2

    i

    .

    ◮ limx→∞

    φi(x) = 1 − ψi(x) = 1 (i = 1, 2)

    Motivation: earthquakes, volcano eruptions

  • Generalization: A Semi-Markov Model

    - {Zn, n ≥ 0} . . . irreducible Markov chain on

    {1, . . . ,M},

    - P = ((pij ), 1 ≤ i, j ≤ M)

    - claim Fj

    - intensity λj

    t

    reserve R

    premiums

    ruin

    time

    t

    claims ~ F(y)

    x

    Janssen & Reinhard (1985), Adan & Kulkarni (2003)

    P(Wn+1 ≤ x,Xn+1 ≤ y, Zn+1 = j |Zn = i, (Wr ,Xr , Zr ), 0 ≤ r ≤ n)

    = P(W1 ≤ x,X1 ≤ y, Z1 = j |Z0 = i) = (1 − e−λi x )pij Bj (y),

    Causal dependence model from before is embedded here (M = 2):

    ◮ If Xi > Di , then Ti+1 ∼ Exp (λ1)

    ◮ If Xi ≤ Di , then Ti+1 ∼ Exp (λ2)

    ◮ p11 = p21 = P(X > D), p12 = p22 = P(X < D)

    ◮ F1 = X |X > D, F2 = X |X < D

    net profit conditionPM

    i=1 πiµX ,i < cPM

    i=1 πiλ−1i ,

    (π1, . . . , πM ) . . . stationary distribution of {Zn}, µX,i = E(Xi ).

  • For Re s ≥ 0 and i = 1, . . . ,M:

    m̃i (s) :=

    Z ∞

    0e−sx

    mi (x) dx,

    b̃i (s) :=

    Z ∞

    x=0e−sx

    dBi (x),

    ω̃i (s) :=

    Z

    x=0e−sx

    Z

    xw(x, y − x) dBi (y) dx.

    Linear system of equation:

    Aδ(s) ~̃mδ(s) = c ~mδ(0) − Λ P ~̃ω(s)

    withAδ(s) := (cs − δ) I − Λ + Λ P B̃(s)

    I . . .identity matrix,

    Λ = diag(λ1, . . . , λM),

    B̃(s) = diag(b̃1(s), . . . , b̃M(s)),

    ~̃mδ(s) = (m̃δ,1(s), . . . , m̃δ,M(s)),

    ~̃ω(s) = (ω̃1(s), . . . , ω̃M(s)).

  • Aδ(s) ~̃mδ(s) = c ~mδ(0) − Λ P ~̃ω(s)

    det(Aδ(s)) = 0 . . . generalized Lundberg fundamental equation

    ◮ M zeroes s1, . . . , sM with Re(si ) > 0 for δ > 0

    Determine (non-trivial) ~ki with AT (si )~ki = ~0.

    0 = ~̃mδ(si )T

    ATδ (si )~ki = (c ~mδ(0) − Λ P ~̃ω(si ))T ~ki ,

    ⇒ M linear equations for mδ,1(0), . . . ,mδ,M(0).

    ◮ Explicit solution for ~mδ(0)

    ◮ For any fixed δ, zeroes s1, . . . , sM can be obtained numerically.

    ◮ For claim size distributions with rational Laplace transform, mδ(x)can then be derived explicitly.

  • Illustration: D ∼ Exp(2),F ∼ Exp(1), c = 2, λ1 = 3, λ2 = 1.

    detA0(s) = 3 − 8s + 4s2 +6s − 31 + s

    − 4s3 + s

    (s1 = −3.161, s2 = −0.065, s3 = 0, s4 = 1.226)

    Ruin probabilities:

    ~ψ(x) =

    (

    0.0070.003

    )

    e−3.161 x +

    (

    0.9380.867

    )

    e−0.065 x .

  • Illustration: D ∼ Exp(2),F ∼ Exp(1), c = 2, λ1 = 3, λ2 = 1.

    detA0(s) = 3 − 8s + 4s2 +6s − 31 + s

    − 4s3 + s

    (s1 = −3.161, s2 = −0.065, s3 = 0, s4 = 1.226)

    Density of surplus before ruin:

    ~f (y1|x) = 1{x≤y1}

    99

    «

    e−y1 + e

    −3.161x

    0.1060.045

    «

    e−2.226y1 +

    0.061−0.026

    «

    e−y1

    !

    + e−0.065x

    −0.574−0.531

    «

    e−2.226y1 +

    −8.446−7.802

    «

    e−y1

    !

    + 1{x≤y1}e1.226x−2.226y1

    1.476−0.186

    «

    + 1{x≥y1}

    9.0208.333

    «

    e−0.0645x−0.935y1 −

    0.0450.019

    «

    e−3.161x+2.161y1

    !

    1 2 3 4 5 6y1

    0.2

    0.4

    0.6

    0.8

    1

    1 2 3 4 5 6y1

    0.1

    0.2

    0.3

    0.4

    ◮ limx→∞

    fi (y1|x)/ψi (x)

  • Asymptotic Results: A general criterion

    Ui = Xi − c Ti , Sn =∑n

    i=1 Un with E(Ui ) < 0

    N

    SN

    n

    Sn Ruin

    x

    Light-Tail Claims:

    limx→∞

    1

    xlogψ(x) = −R

    if ∃κ and R , ε > 0 with

    ◮ n−1 log EeαSn → κ(α) for |α− R | < ε, Glynn & Whitt (1994)

    ◮ κ(R) = 0, κ′(R) > 0, Nyrhinen (1998)

    ◮ EeRSn

  • Asymptotic Results: A general criterion

    Ui = Xi − c Ti , Sn =∑n

    i=1 Un with E(Ui ) < 0

    N

    SN

    n

    Sn Ruin

    x

    R

    κ(α)

    α

    Light-Tail Claims:

    limx→∞

    1

    xlogψ(x) = −R

    if ∃κ and R , ε > 0 with

    ◮ n−1 log EeαSn → κ(α) for |α− R | < ε, Glynn & Whitt (1994)

    ◮ κ(R) = 0, κ′(R) > 0, Nyrhinen (1998)

    ◮ EeRSn

  • Some Examples:

    1. Random Walk (Sparre Andersen model):

    n−1 log EeαSn = n−1 logn

    i=1

    EeαUi = log EeαUi = κ(α)

    (Lundberg equation)

    2. Ornstein-Uhlenbeck processes: Ui jointly normal distributed,E(Ui ) = µ < 0, Var(Ui )=1, Cov(Ui ,Uj) = e

    −α |i−j|

    ⇒ R = −2µ1 − e−α

    1 + e−α

    Alternative Interpretation: Ui yearly increment!

    3. Autoregressive AR(1) processes:Ui+1 = a Ui + Zi+1, i ≥ 0, Zi ∼ Z (iid), |a| < 1

    ⇒ R = RZ · (1 − a)

    Extension: ARMA(p,q) processes:

    Ui = a1 Ui−1 + . . .+ ap Ui−p + Zi + b1 Zi−1 + . . .+ bq Zi−q,

  • 4. Adaptive Premium Rule: Fix security loading η and consider

    c(t) = (1 + η)

    PNti=1 Xi

    t.

    (Asmussen (1999))

    Use past claim experience to determine premium rate!

    NtX

    i=1

    Xi/t −

    Z

    t

    0c(s) ds =

    NtX

    j=1

    Xj − (1 + η)

    Z

    t

    0

    PNsj=1

    Xj

    sds =

    NtX

    j=1

    Xj

    1 − (1 + η) logt

    Ti

    !

    ,

    → Reinterpret as compound Poisson process with time-dependent claims

    ⇒ κ(α) = λZ 1

    0

    MX`

    α`

    1 + (1 + η) log u´´

    du − λ = 0

    discrete skeleton {Snh}n≥0

    Comparison with constant premium rule: Radap ≥ Rconst

  • 5. A shot-noise intensity process A. & Asmussen (2006)

    1 2 3 4 5

    0.5

    1

    1.5

    2

    2.5

    Catastrophies, External Events

    Stochastic process λt = λ+∑

    n∈N h(t − Wn,Yn)

    {Wn}n∈N . . . epochs of a hom. Poisson process (ρ), {Yn}n∈N i.i.d. (ind. of PP),

    h(t, x) ≥ 0 with h(t, x) = 0 for t < 0.

    ◮ Specific case: h(t, x) = g(t) x g(t) = e−δt : PDMP

    ◮ Model is also used for delayed claim settlement itself

  • Light Tail Asymptotics:

    discrete skeleton {Snh}n∈N: κnh(α)/n → h κ(α)

    κ(α) = λ(MX (α) − 1) − α c + ρ(

    EY (e(MX (α)−1)H(∞,Y )) − 1

    )

    .

    κ(R) = 0, ∃ α > 0 : MX (α) < ∞, E(exp(αH(∞,Y ))) < ∞:

    =⇒ limu→∞1u

    log P(maxn Snh > u) = −R

    maxt

    St ≥ maxn

    Snh ≥ maxt

    St − c h

    limu→∞

    1

    ulogψ(u) = −R .

    1 2 3 4 5

    0.5

    1

    1.5

    2

    2.5

    R

    κ(α)

    α

    Strengthening: C1e−Ru ≤ ψ(u) ≤ e−Ru (C1 > 0)

  • Finite time horizon:

    κ(α) convex, α ∈ R+ and αa solution of κ′(α) = 1

    a.

    limx→∞

    1

    xlogψ(x , a x) = −Ra

    with Ra =

    {

    αa − a κ(αa), a <1

    κ′(R) ,

    R , a ≥ 1κ′(R) .

    κ(α)

    α

    R θaRa

    κ′ = 1/a

    ◮ Accuracy

  • Up to now: Crucial criterion: n−1 log EeαSn → κ(α)

    ◮ light claim tails

    ◮ short-range dependence

    Generalization: Duffield/O’Connell (1995)If ∃ functions at , vt : R

    + → R+ with at , vt ր ∞ s.t.

    limt→∞

    1

    vtlog E(eαvtSt/at ) := κ(α)

    exists and ∃ increasing function h(t) s.t.

    g(d) := limt→∞

    v(a−1(t/d))h(t)

    exists ∀d > 0

    (plus some technical conditions)

    ⇒ limx→∞

    1

    h(x)logψ(x) = const. = − inf

    d>0

    [

    g(d) supα∈R

    (αd − κ(α))]

    ⇒ light tails, but possibly long-range dependence

  • Example: Fractional Brownian Motion (Index 0 < H < 1)

    Definition: Stochastic Process X : R → R with

    ◮ Xt continuous, X0 = 0 a.s.

    ◮ Increment Xt+h − Xt ∼ N(0, h2H ) ∀t ≥ 0, h > 0

    Properties:

    ◮ H=0.5: Brownian Motion

    ◮ H 6= 0.5: stationary, but NOT independent increments:E(Xs Xs+h) =

    12

    (s + h)2H + s2H − h2H”

    ◮ H > 0.5: long-range dependence, i.e.P∞

    n=1 Cov(X1,Xn+1 − Xn) = ∞◮ Covariance between future and past increments positive for H > 0.5

    and negative for H < 0.5

    ◮ Self-Similarity: Xt ∼ γ−HXγt ∀γ > 0

  • Sample Path of FBM (H=0.7) Sample Path of FBM (H=0.3)

    limx→∞

    1

    x2−2Hlogψ(x) = − inf

    d>0

    [

    d−2+2H (d + µ)2/2]

    = const.

    Weibull-type tail (cf. also Michna (1998))

  • Heavy-tailed claims

    Subexponential class: F ∈ S ⇔ limx→∞

    1−F∗2(x)1−F (x) = 2,

    i.e. P(X1 + . . . + Xn > x) ∼ P(max(X1, . . . ,Xn) > x).

    Renewal Model (independence!): FI (x) ∈ S:

    ψ(x) ∼µ

    cE(T ) − µ(1 − FI (x)),

    where FI (x) =1µ

    R x0 (1 − FX (y)) dy, x ≥ 0

    Note: Only E(T ) matters, not its distribution! (in the geom. bounded case)

    Heuristic: ruin is caused by one large claim ⇒

    Expect: above formula insensitive to “weak” dependence in the tail!

  • General Criteria for Insensitivity I

    Dependency among interclaim times

    Vn = T1 + · · · + Tn (time of n-th claim occurrence)

    Xi are i.i.d., E(Ti ) = λ−1

    FI ∈ S and for all ε > 0 sufficiently small:

    limx→∞

    P(supn≥1{n(λ−1 − ε) − Vn} ≥ x)

    1 − FI (x)= 0,

    ψ(x) ∼µ

    cE(T ) − µ(1 − FI (x))

    Examples:

    ◮ Super-position of renewal processes

    ◮ all T1, . . . ,Tn s.t. P(supn≥1{n(λ−1 − ε) − Vn} ≥ x) is exponentially bounded(cf. LD-criterion!)

    e.g. stationary autoregressive, Markov modulation etc. (Asmussen, Schmidli & Schmidt (1999))

  • General Criteria for Insensitivity II

    Regenerative processes:

    claim surplus process St s.t. ∃ renewal process with epochs M0 = 0 ≤ M1 < M2 · · · such that

    {ST0+t− ST0

    }0≤t

  • References I

    H. Albrecher and S. Asmussen.

    Ruin probabilities and aggregate claims distributions for shot noise Cox processes.Scand. Actuar. J., (2):86–110, 2006.

    H. Albrecher, S. Borst, O. Boxma, and J. Resing.

    The tax identity in risk theory - a simple proof and an extension.Insurance Math. Econom., 2008.to appear.

    H. Albrecher and O. J. Boxma.

    On the discounted penalty function in a Markov-dependent risk model.Insurance Math. Econom., 37(3):650–672, 2005.

    H. Albrecher and C. Hipp.

    Lundberg’s risk process with tax.Bl. DGVFM, 28(1):13–28, 2007.

    H. Albrecher, J. Teugels, and R. Tichy.

    On a gamma series expansion for the time-dependent probability of collective ruin.Insurance: Mathematics and Economics, 29(3):345–355, 2001.

    P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath.

    Coherent measures of risk.Math. Finance, 9(3):203–228, 1999.

    S. Asmussen.

    On the ruin problem for some adapted premium rules.In Probabilistic Analysis of Rare Events: Theory and Problems of Safety, Insurance and Ruin, pages 1–15.Riga Aviations University, 1999.

  • References IIS. Asmussen.

    Ruin probabilities.World Scientific, Singapore, 2000.

    S. Asmussen, H. Schmidli, and V. Schmidt.

    Tail probabilities for non-standard risk and queueing processes with subexponential jumps.Adv. in Appl. Probab., 31(2):422–447, 1999.

    P. Azcue and N. Muler.

    Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model.Math. Finance, 15(2):261–308, 2005.

    P. Barbe and W. McCormick.

    Asymptotic expansions for infinite weighted convolutions of rapidly varying subexponential distributions.Prob.Theory Relat. Fields, 141:155–180, 2008.

    P. Barbe and W. P. McCormick.

    Asymptotic expansions of convolutions of regularly varying distributions.J. Aust. Math. Soc., 78(3):339–371, 2005.

    J. Beirlant, Y. Goegebeur, J. Teugels, and J. Segers.

    Statistics of extremes.Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester, 2004.Theory and applications, With contributions from Daniel De Waal and Chris Ferro.

    B. de Finetti.

    Su un’impostazione alternativa della teoria collettiva del rischio.Transactions of the 15th Int. Congress of Actuaries, 2:433–443, 1957.

    M. Denuit, J. Dhaene, M. Goovaerts, and R. Kaas.

    Actuarial Theory for Dependent Risks.Wiley, Chichester, 2005.

  • References IIIN. G. Duffield and N. O’Connell.

    Large deviations and overflow probabilities for the general single-server queue, with applications.Math. Proc. Cambridge Philos. Soc., 118(2):363–374, 1995.

    P. Embrechts and M. Frei.

    Panjer recursion versus fft for compound distributions.Math.Meth.Oper.Research, 2008.to appear.

    P. Embrechts, C. Klüppelberg, and T. Mikosch.

    Modelling Extremal Events.Springer, New York, Berlin, Heidelberg, Tokyo, 1997.

    P. Embrechts, M. Maejima, and J. Teugels.

    Asymptotic behaviour of compound distributions.Astin Bull., 15:45–48, 1985.

    H. Gerber.

    Entscheidungskriterien fuer den zusammengesetzten Poisson-prozess.Mitt. Schweiz. Aktuarvereinigung, (1):185–227, 1969.

    H. U. Gerber, S. Lin, and H. Yang.

    A note on the dividends-penalty identity and the optimal dividend barrier.ASTIN Bulletin, 36(2):489–503, 2006.

    H. U. Gerber and E. Shiu.

    On the time value of ruin.North American Actuarial Journal, 2(1):48–72, 1998.

    P. W. Glynn and W. Whitt.

    Logarithmic asymptotics for steady-state tail probabilities in a single-server queue.J. Appl. Probab., 31A:131–156, 1994.

  • References IV

    X. S. Lin, G. E. Willmot, and S. Drekic.

    The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penaltyfunction.Insurance Math. Econom., 33(3):551–566, 2003.

    Z. Michna.

    Ruin probabilities and first passage times for self-similar processes.PhD Thesis, Lund University, 1998.

    T. Mikosch and G. Samorodnitsky.

    Ruin probability with claims modeled by a stationary ergodic stable process.Ann. Probab., 28(4):1814–1851, 2000.

    T. Mikosch and G. Samorodnitsky.

    The supremum of a negative drift random walk with dependent heavy-tailed steps.Ann. Appl. Probab., 10(3):1025–1064, 2000.

    A. Müller and G. Pflug.

    Asymptotic ruin probabilities for dependent claims.Insurance Math. Econom., 28(3):381–392, 2001.

    A. Müller and D. Stoyan.

    Comparison Methods for Stochastic Models and Risks.Wiley, Chichester, 2002.

    H. Nyrhinen.

    Rough descriptions of ruin for a general class of surplus processes.Adv. in Appl. Probab., 30(4):1008–1026, 1998.

  • References V

    E. Omey and E. Willekens.

    Second order behaviour of the tail of a subordinated probability distribution.Stochastic Process. Appl., 21(2):339–353, 1986.

    J. Paulsen and H. Gjessing.

    Optimal choice of dividend barriers for a risk process with stochastic return on investments.Insurance Math. Econom., 20:215–223, 1997.

    T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels.

    Stochastic processes for insurance and finance.Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester, 1999.

    H. Schmidli.

    Optimal proportional reinsurance policies in a dynamic setting.Scand. Actuar. J., (1):55–68, 2001.

    H. Schmidli.

    Stochastic control in insurance.Probability and its Applications (New York). Springer-Verlag London Ltd., London, 2008.

    S. Thonhauser and H. Albrecher.

    Dividend maximization under consideration of the time value of ruin.Insurance Math. Econom., 41(1):163–184, 2007.