15
1 Morteza Mardani and Georgios Giannakis ECE Department, University of Minnesota Acknowledgments: MURI (AFOSR FA9550-10-1-0567) grant Vancouver, Canada May 31, 2013 Robust Network Traffic Estimation via Sparsity and Low Rank

Robust Network Traffic Estimation via Sparsity and Low Rank

  • Upload
    honey

  • View
    30

  • Download
    0

Embed Size (px)

DESCRIPTION

Morteza Mardani and Georgios Giannakis ECE Department, University of Minnesota Acknowledgments : MURI (AFOSR FA9550-10-1-0567) grant. Robust Network Traffic Estimation via Sparsity and Low Rank. Vancouver, Canada May 31, 2013. 1. T raffic monitoring. Backbone of IP networks. - PowerPoint PPT Presentation

Citation preview

Page 1: Robust Network Traffic Estimation via  Sparsity  and Low Rank

1

Morteza Mardani and Georgios Giannakis

ECE Department, University of Minnesota

Acknowledgments: MURI (AFOSR FA9550-10-1-0567) grant

Vancouver, CanadaMay 31, 2013

Robust Network Traffic Estimation via Sparsity and Low Rank

Page 2: Robust Network Traffic Estimation via  Sparsity  and Low Rank

2

Traffic monitoring Backbone of IP networks

Traffic anomalies: changes in origin-destination (OD) flows

Failures, transient congestions, DoS attacks, intrusions, flooding

The vision: atlas of anomalies and nominal traffic for network management

The means: leverage sparsity and low rank Complexity control through parsimonious modeling Robustness to anomalies

Page 3: Robust Network Traffic Estimation via  Sparsity  and Low Rank

3

Model Graph G (N, L) with N nodes, L links, and F flows (F >> L)

(as) Single-path per OD flow zf,t

є {0,1}

Anomaly

Packet counts per link l and time slot t

Matrix model across T time slots:

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

l

LxT LxFfat

Page 4: Robust Network Traffic Estimation via  Sparsity  and Low Rank

4

Low rank of traffic matrix

Z: traffic matrix has low rank, e.g., [Lakhina et al‘04]

Data: http://math.bu.edu/people/kolaczyk/datasets.html

Page 5: Robust Network Traffic Estimation via  Sparsity  and Low Rank

5

Sparsity of anomaly matrix

A: anomaly matrix is sparse across both time and flows

0 200 400 600 800 10000

2

4x 10

8

Time index(t)

|af,t

|

0 50 1000

2

4x 10

8

Flow index(f)

|af,t

|

Time

Flows

Page 6: Robust Network Traffic Estimation via  Sparsity  and Low Rank

6

Robust tomography Goal: Find a map of nominal traffic Z and anomalies A

useful for network management tasks

Challenge: impractical to directly measure zf,t Huge number of OD pairs ( ≈ N2 ) Potential anomalies

Transportation networks

Computer networks

Prior art Least-squares and Gaussian models [Cascetta’84], [Zhao et al ’06] Poisson models [Vardi’96]; and entropy minimization [Zuylen’80]

Available data: link counts Y plus priori knowledge on Z

Page 7: Robust Network Traffic Estimation via  Sparsity  and Low Rank

7

Problem statement Recovery from link counts

Seriously ill-posed FT + FT >> LT Nullspace of R includes low-rank matrices

SNMP

Partial NetFlow measurements

Goal: Given and find sparse A and low-rank Z

(P2)

Page 8: Robust Network Traffic Estimation via  Sparsity  and Low Rank

8

Recovery guarantees Noise-free model and estimator

(P3)

Theorem: Given {Y,Pп(U),R,п} if every column of A0 has at most k nonzero entries, and I)-II) hold, then Ǝ λ ϵ [λmin, λmax] for which (P3) exactly recovers {Z0,A0}.

Page 9: Robust Network Traffic Estimation via  Sparsity  and Low Rank

9

Practical implications Accurate estimation possible if

Anomalies sporadic across time and flows

Nominal traffic sufficiently low dimensional

NetFlow samples sufficiently many distinct OD flows

OD node pairs distant and routing paths sufficiently spread out

Page 10: Robust Network Traffic Estimation via  Sparsity  and Low Rank

10

Exact recovery validation

Setup L=105, F=210, T = 420 R ~ Bernoulli(1/2) Z0 = PQ’, P, Q ~ N(0, 1/√FT)

aij ϵ {-1,0,1} w.p. {ρ/2, 1- ρ, ρ /2} Πij ϵ {0,1} w.p. {1-π, π}

π=0.05 π=0.1

Percentage of nonzero entries ( 100)

Ran

k (r

)

0.0010.0030.01 0.03 0.1 0.3 1 3.1 10

1 3

5 7

9 11

1315

1719

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Percentage of nonzero entries ( 100)

Ran

k (r

)

0.0010.0030.01 0.03 0.1 0.3 1 3.1 10

1

3

5

7

9

11

13

15

17

19

0.1

0.2

0.3

0.4

0.5

Page 11: Robust Network Traffic Estimation via  Sparsity  and Low Rank

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

0.1

0.2

0.3

0.4

Rel

ativ

e es

timat

ion

erro

r

TotalAnomalyTraffic

0 100 200 300 400 5000

1

2x 10

7 CHIN -- LOSA

0 100 200 300 400 5000

1

2x 10

7 CHIN -- ATLA

Tra

ffic

leve

l

0 100 200 300 400 5000

2

4x 10

7 CHIN -- IPLS

Time index (t)

0 200 400 600 800 10000

2

4x 10

8 WASH -- STLL

0 1000 2000 30000

2

4x 10

8

Ano

mal

y am

plitu

deWASH -- WASH

0 2000 4000 60000

1

2x 10

8

Time index (t)

HSTN -- HSTN

Internet2 data Real network data

Dec. 8-28, 2008 N=11, L=41, F=121, T=504

10% of flow counts 45% gain for nominal traffic 18% gain for anomalous traffic

---- estimated---- real

Data: http://www.cs.bu.edu/~crovella/links.html

Page 12: Robust Network Traffic Estimation via  Sparsity  and Low Rank

1212

Conclusions

Ongoing research Tradeoff between OD flow and link counts Finding simpler conditions for random ensembles

Spatiotemporal correlation of traffic and sporadic nature of anomalies Estimated map of nominal traffic and anomalies

Thank You!

Exact recovery of unknown low-rank and sparse matrices Deterministic sufficient conditions Angle between certain subspaces

Page 13: Robust Network Traffic Estimation via  Sparsity  and Low Rank

1313

Ongoing research (Satisfiability) Random ensembles

Uniform sparse A Random orthogonal model for Z Row orthonormal compression matrix R Uniformly random sampling for PΠ(.)

How to find a fairly tight probabilistic bound for

Tradeoff between required OD flow count and link count

Page 14: Robust Network Traffic Estimation via  Sparsity  and Low Rank

14

Identifiability issues

Misidentification if low rank and sparse Perturbation in the nullspace

Rank preserving

Sparsity preserving

Subspaces ( )

Nullspaces

Page 15: Robust Network Traffic Estimation via  Sparsity  and Low Rank

15

Incoherence measures Lemma: [Local identifiability] Given and , is unique if and only if

Incoherence parameter

Non-spiky singular values

Intersection between nullspaces

C1) C2) S1

θ=cos-1(μ)

S2

and