32
P. Rodríguez-Ayerbe, S. Olaru, A. Nguyen, R. Koduri L2S, CentraleSupélec – CNRS – UPS Université Paris-Saclay 29 June 2016 European Control Conference Robustness margins and robustification of nominal explicit MPC

Robustness margins and robustification of nominal …folk.ntnu.no/torarnj/Rodriguez-Ayerbe ECC 2016.pdf · XXNN ... Robustness margins and robustification of nominal explicit MPC

Embed Size (px)

Citation preview

P. Rodríguez-Ayerbe, S. Olaru, A. Nguyen, R. Koduri

L2S, CentraleSupélec – CNRS – UPSUniversité Paris-Saclay

29 June 2016

European Control Conference

Robustness margins and robustification of nominal explicit MPC

ECC – 29 June 2016 2

Robustness margins and robustification of nominal explicit MPC

Outline

Problem statement

Robustness margins• Polytopic uncertainty

• Gain margin

• Neglected dynamics

Robustification of explicit solutions

ECC – 29 June 2016 3

Robustness margins and robustification of nominal explicit MPC

Problem statement

A nominal discrete time linear systems( 1) ( ) ( )( ) ( )

x k Ax k Bu ky k Cx k

A function defined over a polyhedral partition

: ppwau X

N

ni I iX X

1

( )pwa i i i

p n pi i

u x G x g for x X

G g

Is a piecewise affine control law over the partition X

ECC – 29 June 2016 4

Robustness margins and robustification of nominal explicit MPC

Polyhedral state partition

2

2

1) ,

2) is polyhedral

3) int( ) int( ) with , ( , )

4) ( , ) are neighbours if ( , ) ,

and dim( ) 1

Ni I i

i N

i j N

i j N

i j

X X N N

X i I

X X i j i j I

X X i j I

i j X X n

A polyhedral partition of a compact set is defined as follows: nX

Problem statement

ECC – 29 June 2016 5

Robustness margins and robustification of nominal explicit MPC

Problem statement• Several popular techniques lead to such a problem formulation,

among which we can mention for example the Model Predictive Control in its explicit form (Bemporad et al, Seronet al, Tondel et al., Olaru and Dumur).

ECC – 29 June 2016 6

Robustness margins and robustification of nominal explicit MPCPr

ésen

tatio

n

Goals:

• To analyse the inherent robustness of PWA control towards model uncertainties → robustness margin problems.

• To further tune the original controller to improve robustness margin.

• Synthesize explicit solution with good robustness margin.

Problem statement

ECC – 29 June 2016 7

Robustness margins and robustification of nominal explicit MPC

Outline

Problem statement

Robustness margins• Polytopic uncertainty

• Gain margin

• Neglected dynamics

Robustification of explicit solutions

ECC – 29 June 2016 8

Robustness margins and robustification of nominal explicit MPCPr

ésen

tatio

n

Robustness margins• Nominal closed loop

The nominal closed loop dynamics represent a PWA system:

0 0 0( 1) ( ) ( ) for ( )pwa i i ix k f x k A B G x k B g x k X

• Positive invariance

0

A set is posive invariant with respect to the system ( 1) ( ), if for any ( ) ,

( )

n

pwa

Xx k f x k w x k X

x k X k

ECC – 29 June 2016 9

Robustness margins and robustification of nominal explicit MPCPr

ésen

tatio

n

Robustness margins• Assumptions

• The set X is a polytope

• The set X is positive invariant with respect to the nominal model

• The control is continuous

• The origin is the only fixed point of the nominal dynamics

• The origin is asymptotically stable with X as basin of attraction

: n mpwau

ECC – 29 June 2016 10

Robustness margins and robustification of nominal explicit MPCPr

ésen

tatio

n

Robustness margins• Robust invariance for polytopic uncertainty

( 1) ( ) ( ) ( ) ( )( ) ( )

x k A k x k B k u ky k Cx k

1 1[ ( ) ( )] ([A , B ], [A ,B ])L LA k B k conv

[ ( ) ( )] robA k B k

[ ( ) ( )] robA k B k

ECC – 29 June 2016 11

Robustness margins and robustification of nominal explicit MPCPr

ésen

tatio

n

Robustness margins• Robust invariance for polytopic uncertainty

rob is polytopic

can be computed using vertex or half-space representation ofrob,

Ni I iX X N N

rob

1, , 1

LL T

j j j i i j j i i Nj

A B G X B g X I

1

ECC – 29 June 2016 12

Robustness margins and robustification of nominal explicit MPCPr

ésen

tatio

n

Robustness margins• For half-space representation:

Lrob =Proj P

11

1

,, ,

,

L

j j j i i ij

N NL

i i j j ij

F A B G M FP M M i I

M h h F B g

nX x Fx h ni i iX x F x h

ECC – 29 June 2016 13

Robustness margins and robustification of nominal explicit MPC

i iF x h

2P x Fx h

1 2

1 2

1 2

. .( ) 0,

P P M s tvec MMF FMh h

1 ( ) ( )( )i i i iP x F A k B k G x g h

Positive Invariance if : 1 2P P

Robustness margins

ECC – 29 June 2016 14

Robustness margins and robustification of nominal explicit MPCPr

ojet

de

rech

erch

e

Robustness margins• Numerical example

1 2 3

1 2 3

1 1 2 1 1.5 10.9 0.5 1.5 1.5 3.8 1

11

A A A

B B B

In presence of constraints on the control variable and the output variable

0.2 0.20.5 0.5

k

k

uy

With the nominal model chosen to synthesize a PWA controller law

0 1 2 3

0 1

0.5 0.3 0.2A A A AB B

ECC – 29 June 2016 15

Robustness margins and robustification of nominal explicit MPCPr

ojet

de

rech

erch

e

Robustness margins• Numerical example

The partition of the obtained PWA control law

ECC – 29 June 2016 16

Robustness margins and robustification of nominal explicit MPCPr

ojet

de

rech

erch

e

Robustness margins• Numerical example

Ψrob projected on the plane [α1,α2]. Note that α3 = 1-α1-α2

1

2

Nominal model

ECC – 29 June 2016 17

Robustness margins and robustification of nominal explicit MPCPr

ojet

de

rech

erch

e

Robustness margins• Gain margin

The gain margin is represented by the set , such that:

( 1) ( ) ( ) ( ) , ( )m K pwa Kx k Ax k B I diag u x k X x k X and K

mK

1

,

p

qq

mq q

K K

K z u U Mz u

Proj

( ), ,

( )

q U q

m rq

pwa

U H

x kH u and A B B u W

u x k

W stores the vertices of X : 1, [ , ]n rrW W w w

ECC – 29 June 2016 18

Robustness margins and robustification of nominal explicit MPCPr

ojet

de

rech

erch

e

Robustness margins• Gain margin: numerical example

ECC – 29 June 2016 19

Robustness margins and robustification of nominal explicit MPCPr

ojet

de

rech

erch

e

Robustness margins• Gain margin: numerical example

2

1

ECC – 29 June 2016 20

Robustness margins and robustification of nominal explicit MPCPr

ojet

de

rech

erch

e

Robustness margins

• Neglected dynamics

The augmented model is:(1 )

( 1) ( ) ( )0e e

A B Bx k x k u k

( ) ( ) 0 ( ) for ( )e i e i iu k x k G x k g x k X

ECC – 29 June 2016 21

Robustness margins and robustification of nominal explicit MPCPr

ojet

de

rech

erch

e

Robustness margins

• Neglected dynamics

1 1 2 2

Proj

, (1 )r pe e e e

T

T AV BU A V B U W

W stores the vertices of X, Ve stores de vertices of Xi :

(1 )( 1) ( ) ( )

0e e

A B Bx k x k u k

Polytopic description of extended model

1 1 2 1

1 1 2 2

0 00 0 1 0 1 0

[ ] (1 )[ ] [ ]e e

A B A BA B A B

A B A B A B

ECC – 29 June 2016 22

Robustness margins and robustification of nominal explicit MPCPr

ojet

de

rech

erch

e

Robustness margins

• Neglected dynamics : numerical example

ECC – 29 June 2016 23

Robustness margins and robustification of nominal explicit MPC

Outline

Problem statement

Robustness margins• Polytopic uncertainty

• Gain margin

• Neglected dynamics

Robustification of explicit solutions

ECC – 29 June 2016 24

Robustness margins and robustification of nominal explicit MPC

Robustification of linear control law

Youla-Kučera parameterisation

Para

mét

risa

tion

de Y

oula

-Kuč

era

Robustification of explicit solutions

Stable transferts

Stabilizing controllers

Youla-Kučera parametrisation

Linear time invariant transfers set

Linear time invariant transfers set

ECC – 29 June 2016 25

Robustness margins and robustification of nominal explicit MPC

Q2(z-1) modifies tracking performance

Q1(z-1) modifies regulation dynamics

Processu

G

Observer

y

xCyy ˆ~

Q1

yref

u~

d

Fr

Q2

Para

mét

risa

tion

de Y

oula

-Kuč

era

Youla-Kučera parameterisationRobustification of explicit solutions

ECC – 29 June 2016 26

Robustness margins and robustification of nominal explicit MPC

• Youla-Kučera parametrisation can not be directly used to robustify a PWA controller because the continuity of the control law is lost

• The following approach is follow:

1. Robustification of unconstrained controller2. Find the perturbance/noise model associated to the obtained

controller3. Use the new model to modify or the initial PWA controller

- This modification conserves the initial tracking behaviour- The number of partitions is kept, as depends on the constraints

Loi

s exp

licite

s

Robustification of explicit solutions

ECC – 29 June 2016 27

Robustness margins and robustification of nominal explicit MPC

With white noise

Initial model

Cost function minimization without constraints

Q Parameter

ttt

tttt

eCxyKeBuAxx

1

1

1

* minargN

k ptktptktptNtu uRQxxPuk

k

tt

ttt

xLuKyxBLKCAx

ˆˆ)(ˆ 1

Initial unconstrained

controller

tQtQ

tQQt

tQ

Q

tQ

t

QQ

QQ

tQ

t

yDXx

CCDLu

yB

BDKXx

ACBBCCBDBLKCA

Xx

ˆ

ˆˆ

1

1

Robustified controller

1

1

* minargN

k ptktptktptNtu uRQxxPuk

k

ttv

t

C

vt

t

K

vt

B

tv

t

A

v

v

x

tv

t

exx

CCy

eBK

uB

xx

AKCA

xx

e

eeete

1

11

1

001

teet

teteeeeeete

xLuyKxLBCKAx

ˆˆ)(ˆ 1

Find Av, Bv, Cv to obtain

With white noise

teAugmented model

te

(C1)

(C2)

)()( 21 CC

Loi

s exp

licite

s

Robustification of explicit solutions

Cost function minimization without constraints

Unconstrained controller

ECC – 29 June 2016 28

Robustness margins and robustification of nominal explicit MPC

),(

0

0

0

1

2

vvvv

vQvQ

vvvQ

eQ

CAFHL

CDLC

CBAA

KLD

Non-linear equations :• depends on cost function• Optimisation techniques can be used to solve the non-linear equation system• The existence of the solution haven't been proved yet

Two controllers are equivalents if the following equations are verified :

),( vvv CAF

Loi

s exp

licite

s

Robustification of explicit solutions

ECC – 29 June 2016 29

Robustness margins and robustification of nominal explicit MPC

Buck converter example

102

103

104

105

-50

-45

-40

-35

-30

-25

-20

-15M

agni

tude

(dB

)

Pulsation (rad/s)

InitialRobustified

Unconstrained controller robustification towards additive disturbances

Loi

s exp

licite

s

Robustification of explicit solutions

ECC – 29 June 2016 30

Robustness margins and robustification of nominal explicit MPC

-40-20

020

40

-40-20

020

40-10

-5

0

5

10

x3x4

x 6

Active region

Initial controller Robustified controller

iL il iL il 1 76,0014,0093,006100 , 0 0139,0074,076,0014,0093,006100 , 0

2 00001 4,0 0000001 4,0

3 839,1007,0123,00890005,1 , 4,0 024,0093,0839,1007,0123,00890005,1 , 4,0

4 00001 4,0 0000001 4,0

5 839,1007,0123,00890005,1 , 4,0 024,0093,0839,1007,0123,00890005,1 , 4,0

6 00001 4,0 0000001 4,0

7 00001 4,0 0000001 4,0

8 00001 4,0 0000001 4,0

9 00001 4,0 0000001 4,0

-25 -20 -15 -10 -5 0 5 10 15 20 25-25

-20

-15

-10

-5

0

5

10

15

20

25Regions du correcteur pwa

courant I

tens

ion

V c

Robustified PWA controller, x1=0, x2=0, x5=0, x7=0Initial PWA controller,

x1=0, x2=0, x5=0

Loi

s exp

licite

s

Buck converter example

Robustification of explicit solutions

ECC – 29 June 2016 31

Robustness margins and robustification of nominal explicit MPC

4 5 6 7 8 9 10

x 10-3

5

10

15

20Tension de sortie sans filtre de mesure

InitialRobustifié

4 5 6 7 8 9 10

x 10-3

-0.2

0

0.2

0.4

0.6Rapport cyclique.

temps (s)

4 5 6 7 8 9 10

x 10-3

5

10

15

20Tension de sortie avec filtre de mesure.

InitialRobustifié

4 5 6 7 8 9 10

x 10-3

-0.2

0

0.2

0.4

0.6Rapport cyclique.

temps (s)

Output voltage step response

Perturbed processNominal process

Loi

s exp

licite

s

Buck converter exampleRobustification of explicit solutions

ECC – 29 June 2016 32

Robustness margins and robustification of nominal explicit MPC

References

Loi

s exp

licite

s

N. A. Nguyen, S. Olaru, P. Rodriguez-Ayerbe, “Explicit robustness and fragilitymargins for linear discrete systems with piecewise affine control law”,Automatica, 2016, Vol. 68, pp. 334–343.

P. Rodriguez-Ayerbe and S. Olaru, “On the disturbance model in therobustification of explicit predictive control”, International Journal ofSystems Science, 2013, Vol. 44(5), pp. 853–864.