Rods and Beams 3

  • Upload
    msnti

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 7/26/2019 Rods and Beams 3

    1/12

    1

    1

    3 Rod and beam elements

    How to analyze structures shown in pictures using

    FEM:

    2

    3 Rod and beam elements

    Rod (spar, truss element) and beam, definitions:

    Rod elements can only extend or compress

    axially (two-force system!)

    Beam elements can carry bending moments

    and (and torsion in 3D) in additio to axial

    loads

    rod

    rod

    beam

  • 7/26/2019 Rods and Beams 3

    2/12

    2

    3

    3.1 Rod

    The stiffness matrix of a rod element has already been

    defined (spring!):

    Thus the basic equation is

    General definition: columns of stiffness matrix are

    nodal loads imposed on the elements resulting unit

    displacement in corresponding degree of freedom

    and kee in other de rees of freedom zero.

    1 1 11

    1 1 2

    ,k k U

    K uk k U

    N1 N2

    A,E

    L

    U1 U2

    2

    1

    2

    1

    11

    11

    F

    F

    u

    u

    L

    AE

    ,i

    i ekv

    i

    A Ek

    l

    4

    3.1 Rod

    More formal definition comes from integral

    where B is strain-displacement matrix, E on

    material matrix or constitutive matrix. Matrix B is

    obtained by defining the displacement field in the

    rod using linear interpolation

    where N is so-called shape function matrix.

    N1 N2

    A,E

    L

    u1 u2

    Nd

    u

    u

    u

    L

    x

    L

    xLxu or)(

    2

    1

    V

    dVk EBBT

  • 7/26/2019 Rods and Beams 3

    3/12

    3

    5

    3.1 Rod

    Strain is the gradient of axial displacement, i.e.

    Notice that strain-displacement matrix is derivative of

    the shape function vector.

    Thus the stiffness matrix can be derived as

    2

    1,

    11,

    u

    u

    LLdx

    d

    dx

    dux

    dBBdN

    111111

    /1/1

    0 L

    AEAdxLL

    EL

    LdVkL

    V

    EBBT

    6

    3.2 2D Beam

    2 dimensional Beam element has for degrees of

    freedom, i.e. rotations at the end of the beam as

    well as transverse displacements:

    In the development of the stiffness matrix the

    assumption is a prismatic and materially

    homogenous beam.

    Notice that axial deformations are excluded from

    the definition but they can be readily incorporated

    in stiffness matrix from rod element previously

    defined.

    2

    2

    1

    1

    v

    v

    d

  • 7/26/2019 Rods and Beams 3

    4/12

    4

    7

    3.2 2D Beam

    The stiffness matrix of a two-dimensional prismatic

    beam made of homogenous material can be

    derived using integral

    in which the strain-displacement matrix B is

    obtained from curvatured2v/dx2 using third order

    polynomial, which describes the displacement field

    as:

    V

    dVEIk BBT

    3

    4

    2

    321 xxxv

    8

    3.2 2D Beam

    Using four shape functions, i.e. each for

    corresponding dof, leads to formulation

    and strain-displacement function B is obtained

    from curvature d2v/dx2

    2

    2

    1

    1

    4321)(

    v

    v

    NNNNxv

    BdN

    2

    2

    2

    2

    dx

    d

    dx

    vd

    EI

    M

    dx

    d

    2

    2Engineering beam theory:

  • 7/26/2019 Rods and Beams 3

    5/12

    5

    9

    3.2 2D Beam

    The shape functions are obtained from beam theory:

    jossa

    10

    3.2 2D beam

    Thus the derivatives of the shape functions shown in

    the previous slide result the strain-displacement matrix

    And the integration

    results

    22

    22

    3

    4626

    612612

    2646

    612612

    LLLL

    LL

    LLLL

    LL

    L

    EIdVEIk

    V

    BBT

    T2211

    vvd

    232232

    6212664126

    L

    x

    LL

    x

    LL

    x

    LL

    x

    LB

    BdN

    2

    2

    2

    2

    dx

    d

    dx

    vd

  • 7/26/2019 Rods and Beams 3

    6/12

    6

    11

    3.3 Transformation

    Stiffness matrix of a rod in local coordinate system (a)

    Transformation from local to global system (b)

    3.3 Transformation

    The global stiffness matrix of a rod can be derived as

    where

    cos,sin,

    22

    22

    22

    22

    cs

    scsscs

    csccsc

    scsscs

    csccsc

    L

    AETk'Tk

    T

    sincos00

    00sincosT

    11

    11

    L

    AEk'

  • 7/26/2019 Rods and Beams 3

    7/12

    7

    13

    3.3 Transformation

    Example: calculate the displacements and stresses of

    the structure shown in figure, whenA = 300 mm2 for all

    rods and E = 200 GPa.

    14

    3.3 Transformation

    Element numbering, directions of local coordinates,

    stiffness matrices and degrees of freedom:

    1:C->B

    2:B->A

    3:C->A

    uC vC uB vB

    uB vB uA vA

    uC vC uA vA

    uCvCuBvB

    uBvBuAvA

    uCvCuAvA

    cos,sin,

    22

    22

    22

    22

    cs

    scsscs

    csccsc

    scsscs

    csccsc

    L

    AETk'Tk

    T

  • 7/26/2019 Rods and Beams 3

    8/12

    8

    15

    3.3 Transformation

    Global stiffness matrix and force vector when loading

    and boundary conditions are taken into account:

    1:C->B

    2:B->A

    3:C->A

    uC vC uB vB uA vA

    A

    A

    B

    B

    C

    C

    v

    u

    v

    u

    vu

    U

    16

    3.3 Transformation

    Solution and results [mm]:

    uB =-1,50 mm

    vB =-11,3 mm

    vA= - 4,00 mm

  • 7/26/2019 Rods and Beams 3

    9/12

    9

    17

    3.3 Transformation

    Formulate the stiffness matrix of the structure shown in

    figure.E = 210 GPa and cross-section is RHS 100x100x4.

    Axial stiffness of beamBC =

    The stiffnes matrix of beamAB in global coordinate

    system is

    and of beamsBD and DC:

    B

    B

    A

    A

    AB

    v

    u

    v

    u

    scsscs

    csccsc

    scsscs

    csccsc

    L

    AE1

    22

    22

    22

    22

    1 , uk

    D

    D

    B

    B

    BDBDBDBD

    DBBD

    BDBDBDBD

    BDBD

    BDv

    v

    LLLL

    LL

    LLLL

    LL

    L

    EI

    2

    22

    22

    32 ,

    4626

    612612

    2646

    612612

    uk

    C

    C

    D

    D

    DCDCDCDC

    DCDC

    DCBCDCDC

    DCDC

    DCv

    v

    LLLL

    LL

    LLLL

    LL

    L

    EI

    3

    22

    22

    33 ,

    4626

    612612

    2646

    612612

    uk

    D

    D

    D

    B

    B

    v

    v

    D

    D

    B

    B

    v

    v

    B

    B

    A

    A

    v

    u

    v

    u

    1u

    18

    3.3 Transformation

    Taking into account the boundary conditions and the axial

    stiffness of beamBC (infinite!) results

    22

    22

    22

    22

    31

    scsscs

    csccsc

    scsscs

    csccsc

    L

    AE

    AB

    k

    22

    22

    32

    4626

    612612

    2646

    612612

    BDBDBDBD

    BDBD

    BDBDBDBD

    BDBD

    Bd

    LLLL

    LL

    LLLL

    LL

    L

    EIk

    D

    22

    22

    33

    4626

    612612

    2646

    612612

    DCDCDCDC

    DCDC

    DCDCDCDC

    DCDC

    DC

    LLLL

    LL

    LLLL

    LL

    L

    EIk

  • 7/26/2019 Rods and Beams 3

    10/12

    10

    19

    3.3 Transformation

    Global stiffness matrix is then

    C

    D

    D

    B

    B

    DCDCDC

    DCDCBDDCBDBDBD

    DCDCBDDCBDBDBD

    BDBDBDBD

    BDBDBDBDAB

    Gv

    v

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EI

    L

    EIs

    L

    AE

    dk ,

    42600

    2446626

    6661212612

    02646

    0612612

    2

    222

    2223323

    22

    2323

    2

    D

    20

    3.3 Transformation

    The solution results

    Backsubstitution gives element forces, example is

    elementBD:

    D

    Displacementvector

  • 7/26/2019 Rods and Beams 3

    11/12

    11

    21

    3.3 Transformation of 2D beam element

    Global stiffness matrix of a 2D beam element, when also

    axial stiffness is taken into account is

    Tk'Tk T

    2

    2

    2

    1

    1

    1

    v

    u

    v

    u

    U

    100000

    0cossin000

    0sincos000

    000100

    0000cossin

    0000sincos

    T

    v1

    1

    u1

    v2 u22

    Y

    X

    22

    3.2 2D beam: example

    Calculate the maximum displacement and maximum

    normal stress in the frame shown in picture. Crane beam

    is IPE 300 and column is HEA200. Neglect self-weight.

  • 7/26/2019 Rods and Beams 3

    12/12

    12

    23

    3.2 2D beam: exampleElementmodel and degrees of freedom (notice assumptions of model!):

    E = 210 GPa

    AIPE300 = 5380 mm2

    IIPE300 = 83,6E6 mm4

    AHEA20 = 5380 mm2

    IHEA200 = 36,9E6 mm2

    1 2

    3

    1 2 3

    4

    mmmmmm

    mmmmmm

    mmmmmm

    mmmmlmlmllll

    mmmmlmlmllll

    mmmmlmlmllll

    llllklklkkkk

    llllklklkkkk

    llllklklkkkk

    kkkkkk

    kkkkkk

    kkkkkk

    G

    000000

    000000

    000000

    000

    000

    000

    000

    000

    000

    000000

    000000

    000000

    k

    4

    4

    4

    3

    3

    3

    2

    2

    2

    1

    1

    1

    v

    u

    v

    u

    v

    u

    v

    u

    U

    u

    v

    24

    3.2 2D beam: example

    Distributed loading, e.g. self-weght in a

    beam element

    is changed to nodal loads and moments at

    nodes:

    2

    wL

    2

    wL

    12

    2wL

    12

    2wL

    w