36
3GPP U-ETRA/LTE Technology Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde-schwarz.com Seunggeun.yoo@rohde-schwarz.com

Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

3GPP U-ETRA/LTE Technology

Rohde-schwarz Korea

Seung-geun Yoo

[email protected]@rohde-schwarz.com

Page 2: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

2009/2010

Today's technology evolution path

GSM/

GPRS

UMTS

EDGE, 200 kHzDL: 473 kbpsUL: 473 kbps

E-EDGE, 200 kHzDL: 1.9 MbpsUL: 947 kbps

HSDPA, 5 MHzDL: 14.4 MbpsUL: 2.0 Mbps

HSPA, 5 MHzDL: 14.4 MbpsUL: 5.76 Mbps

HSPA+, Rel. 7DL: 21.0 MbpsUL: 11.5 Mbps

2003/2004 2005/2006 2007/2008 2011/2012

LTE (2x2), Rel. 8, 20 MHzDL: 173 MbpsUL: 58 Mbps

LTE (4x4), 20 MHzDL: 326 MbpsUL: 86 Mbps

HSPA+, Rel. 8DL: 42.0 MbpsUL: 11.5 Mbps

OFDMA+

MIMO

2011.04.21 | Title of presentation | 2

cdma

2000

1xEV-DO, Rev. 0

1.25 MHzDL: 2.4 MbpsUL: 153 kbps

1xEV-DO, Rev. A

1.25 MHzDL: 3.1 MbpsUL: 1.8 Mbps

1xEV-DO, Rev. B

5.0 MHzDL: 14.7 MbpsUL: 4.9 Mbps

1xEV-DO, Rev. D

(= UMB 4x4) 20 MHzDL: 280 MbpsUL: 68 Mbps

Mobile WiMAX

scalable bandwidth1.25 … 28 MHzup to 15 Mbps

Mobile WiMAX, 802.16e

10 MHz DL: 64 Mbps (2x2)UL: 28 Mbps (1x2)

Mobile WiMAX, 802.16m

20 MHzDL: >130 Mbps (4x4)UL: 56 Mbps (2x4)

IEEE 802.11a/b/g IEEE 802.11n

1xEV-DO, Rev. C

(= UMB 2x2) 20 MHzDL: 140 MbpsUL: 34 Mbps

MIMO

Page 3: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

LTE Key Parameter

Frequency Range UMTS FDD bands and UMTS TDD bands

Channel bandwidth 1 Resource Block (RB)=180 kHz

1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

6 RB 15 RB 25 RB 50 RB 75 RB 100 RB

Modulation Schemes

Downlink QPSK, 16QAM, 64QAM

Uplink QPSK, 16QAM, 64QAM (� optional for handset)

Multiple AccessDownlink OFDMA (Orthogonal Frequency Division Multiple Access)

Uplink SC-FDMA (Single Carrier Frequency Division Multiple Access)

2011.04.21 | Title of presentation | 3

Uplink SC-FDMA (Single Carrier Frequency Division Multiple Access)

MIMO technologyDownlink

Wide choice of MIMO configuration options for transmit diversity, spatial multiplexing, and cyclic delay diversity (max. 4 antennas at base station and handset)

Uplink Multi-user collaborative MIMO

Peak Data RateDownlink

150 Mbps (UE category 4, 2x2 MIMO, 20 MHz)300 Mbps (UE category 5, 4x4 MIMO, 20 MHz)

Uplink 75 Mbps (20 MHz)

Page 4: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

OFDM vs OFDMA

l OFDM allocates user just in

time domain,

l OFDMA allocates user in time

and frequency domain,

Fre

qu

en

cy d

om

ain

Fre

qu

en

cy d

om

ain

User 2

User 1

User 1

2011.04.21 | Title of presentation | 4

Time domain Time domain

Fre

qu

en

cy d

om

ain

Fre

qu

en

cy d

om

ain

User 3User 3 User 2

Page 5: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

frequency

1 resource block =

180 kHz = 12 subcarriers

1 slot = 0.5 ms =

OFDMA time-frequency multiplexing

Subcarrier spacing = 15 kHz

UE1UE1 UE3UE3UE2UE2

2011.04.21 | Title of presentation | 5

time

1 slot = 0.5 ms =

7 OFDM symbols**

1 subframe =

1 ms= 1 TTI*=

1 resource block pair

*TTI = transmission time interval

** For normal cyclic prefix duration

QPSK, 16QAM or 64QAM modulationQPSK, 16QAM or 64QAM modulation

UE1UE1

UE4UE4

UE3UE3UE2UE2

UE5UE5 UE6UE6

Page 6: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

Spectrum flexibility

TransmissionBandwidth [RB]

Transmission Bandwidth Configuration [RB]

Channel Bandwidth [MHz]

Re

so

urc

e b

loc

k

Ch

an

nel e

dg

e

Ch

an

ne

l ed

ge

• Sub-carrier Spacing : 15kHz

• 1RB = 12carrier

= 12 x15kHz = 180kHz

•Tx Bandwidth

ex) 180kHz * 50RB = 9MHz

2011.04.21 | Title of presentation | 6

DC carrier (downlink only)Active Resource Blocks

Channel bandwidth BWChannel [MHz] 1.4 3 5 10 15 20

Number of resource blocks 6 15 25 50 75 100

Page 7: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

1 Subframe = 1 ms(Minimum TTI)

1 Slot, TSlot = 15360xTSample = 0.5 ms

#0

Downlink frame structure

#1 #2 #3 #19

1 Radio Frame, TFrame = 307200xTSample1) = 10 ms

#0 #1 #2 #3 #4 #5 #6 Usage of normal cyclic prefix is assumed

2011.04.21 | Title of presentation | 7

TSYMBOL ≈ 66.7 µs

CPf0 f1 f2

1/TSYMBOL=15 kHz

ff0 f1 f2

TCP ≈ 5.2, 4.7 µs

Example of 3 subcarrier within one OFDM symbol

1) Sampling Rate = 30.72 MHz � TSample = 1/(15000x2048) = 32.522 ns

Page 8: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

Resource Allocation

l RE( Resource Element), 1symbol / 1 subcarrier

l RB(Resource Block), 최소 전송 단위l 1 RB=12 sub-carriers

12*15 kHz = 180 kHz @ Freq Domain

1 Time Slot (= 0.5 ms) @ time domain,

10 MHz (50RB) ���� 50 RB*180 kHz = 9.0 MHz + 1 unused DC subcarrier (= fCarrier) = 9.015 MHz

2011.04.21 | Title of presentation | 8

Page 9: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

Reference signals (DL)

l 안테나별 reference signal pattern

l 2 antennas 경우 예시– Frequency domain 축 간격 = 6 subcarrier

– Time domain 축 간격 = 4 OFDM symbols � 4 RS / RB

Resource Block

2011.04.21 | Title of presentation | 9

Resource Block

Page 10: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

DL Reference signal antennas

2011.04.21 | Title of presentation | 10

Page 11: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

3GPP U-ETRA/LTE AdvancedRelease 10

Carrier

aggregationeSC- FDMA

4x4 MIMO (UL)

8x8 MIMO (DL)

Page 12: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

The Road to LTE-AdvancedMain physical layer features

LTE Release 8

Rel-10

Carrier

aggregation

4x4 MIMO (UL)

Rel-9

MBSFN

Positioning

Dual Layer

BF

8x8 MIMO (DL)

eSC-FDMA

UL + DL PHY

enhancements

2011.04.21 | Title of presentation | 12

LTE Release 8

MIMO OFDMA /SC-FDMA

1.4 MHz, …20 MHz QPSK, 16QAM

64QAM

DL PHYenhancements

R&S signal generator solutions available

-K55/-K255

-K84/-K284

-K85/-K285

Page 13: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

LTE Release 10 features Physical layer

DL feature

Status

UL feature

l PUSCH/PUCCH synchronous transmission released

l Clustered PUSCH released

l PUCCH format 3 released

l Aperiodic SRS Q2/2012

l UL 2x2 MIMO Q2/2012

l Carrier Aggregation Q2/2012

Rel-10

2011.04.21 | Title of presentation | 13

DL feature

l Carrier Aggregation (up to 5x 20 MHz) released

l Cross-carrier scheduling for carrier aggregation released

l eICIC: general ABS support released

l DL 4x4 MIMO: generation of 4 TX-antennas released

(including FEC chain, layer mapping and precoding)

l Tx mode 9 Q2/2012

l CSI-RS Q2/2012

General features

l 2x2 and 4x2 MIMO fading simulation released

Page 14: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

LTE Release 10 – eSC-FDMAWhat is it?

l eSC-FDMA = enhanced Single Carrier FDMA

l The uplink transmission

scheme remains

SC-FDMA

l The transmission of the

physical uplink shared

Rel-10

2011.04.21 | Title of presentation | 14

physical uplink shared

channel (PUSCH) uses

DFT precoding

l Two enhancements:

l PUCCH and PUSCH in the same subframe

l Non - contiguousdata transmission

Page 15: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

LTE Release 10 – eSC-FDMAImpact on PHY layer

l Simultaneous transmission of PUSCH and PUCCHor a clustered PUSCH qualitatively causes multiple carriers in the frequency spectrum

l This leads to:

l Higher crest factor of the LTE-Advanced signal

Rel-10

2011.04.21 | Title of presentation | 15

l Higher crest factor of the LTE-Advanced signal

l Intermodulation products which might violate frequency masks

l Higher complexity of the base station receiver

Page 16: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

LTE Release 10 – eSC-FDMA LTE settings in R&S®SMU200A

clustered PUSCH

simultaneous PUCCH/ PUSCH

Rel-10

PUCCH Format 3

2011.04.21 | Title of presentation | 16

clustered PUSCH

simultaneous PUCCH

Page 17: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

LTE Release 10 – eSC-FDMAApplication example – intermodulation test

l LTE release 8

Rel-8

2011.04.21 | Title of presentation | 17

l PUSCH and PUCCH are not present at the same time

Page 18: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

LTE Release 10 – eSC-FDMAApplication example – intermodulation test

l LTE release 10

simultaneousPUSCH/PUCCH

Rel-10

2011.04.21 | Title of presentation | 18

l Intermodulation occurs!

Page 19: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

l Two or more component carrier are aggregated in order to support wider

transmission bandwidths up to 100MHz (=5 carriers with 20 MHz).

LTE Release 10 – Carrier AggregationWhat is it?

Rel-10

2011.04.21 | Title of presentation | 19

l Currently, due to non-availability of free frequency bands, most operators

are not able to implement more than 2 component carriers.

Page 20: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

LTE Release 10 – Carrier Aggregation Impact on PHY layer

Time

Fre

qu

en

cy

PD

CC

H

PD

CC

H

1 subframe = 1 ms

1 slot = 0.5 ms

up to 3 (4) symbols per subframe

PDSCH PDSCH

l Variant I:

� PDCCH on a component carrier assigns PDSCH resources on the same component carrier (and PUSCH resources on a single linked UL component carrier)

–No carrier indicator field

l Cross-carrier scheduling

Rel-10

2011.04.21 | Title of presentation | 20

Variant (I) Variant (II)

PD

CC

H

PD

CC

H

PD

CC

H

PD

CC

HPDSCH

PDSCH

PDSCH

PDSCH

l Variant II:

� PDCCH on a component carrier can assign PDSCH or PUSCH resources in one of multiple component carriers using the carrier indicator field

–Rel-8 DCI formats extended with 1 to 3 bit carrier indicator field

l In both cases, limiting the number of blind decoding is desirable

Page 21: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

SMx-K85 – LTE-Advanced / Release 10DL CA – Non-cross-carrier scheduling

Rel-10

2011.04.21 | Title of presentation | 21

Page 22: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

SMx-K85 – LTE-Advanced / Release 10DL CA – Cross-carrier scheduling

Rel-10

2011.04.21 | Title of presentation | 22

Page 23: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

LTE Base Station Test set up

according to TS36.141

Page 24: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

Transmitter Characteristics

▌ 기지국 측정 항목 소개TX 측정 항목 (TS36.141 Chapter 6)

- Chapter 6.2 : Base Station Output Power

- Chapter 6.3 : Output power dynamic range

- Chapter 6.5.1 : Frequency error

- Chapter 6.5.2 : Error vector magnitude (EVM)

- Chapter 6.5.3 : Time alignment between transmitter branches

- Chapter 6.5.4 : Down link RS power

2011.04.21 | Title of presentation | 24

- Chapter 6.5.4 : Down link RS power

- Chapter 6.6.1 : Occupied bandwidth

- Chapter 6.6.2 : Adjacent channel leakage ratio (ACLR)

- Chapter 6.6.3 : Operating band unwanted emissions

- Chapter 6.6.4 : Transmitter spurious emission

Page 25: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

E-UTRA Test Modelsfor thansmitter Characteristics test

l General parameters used by E-UTRA test modell Duration is 10 subframes (10ms)

l Normal CP

l UE-specific reference signals are not used

l Virtual resource blocks of localized type, no intra-subframe hopping for

PDSCH

l Type of Test models

2011.04.21 | Title of presentation | 25

l Type of Test modelsl E-TM1.1/ 1.2/ 2/ 3.1/ 3.2/ 3.3

l Transmitter tests shall be according to one for the E-UTRA models

Page 26: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter CharacteristicsChapter 6.2 Base Station Output Power

Title Minimum Requirement in TS 36.141

Output

power

In normal conditions

within ±2 dB of manufacturer’s rated

output power

In extreme conditions

within ±2,5 dB of manufacturer’s rated

output power

▌Propose

-기지국 Maximum Output Power 가 Spec 에만족하는지측정▌Specification

2011.04.21 | Title of presentation | 26

.

▌Test Signal - E-TM 1.1

LTE Signal

▌Test set-up

Attenuator

Page 27: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter Characteristics Chapter 6.3.2 Total power Dynamic range

▌Propose

-기지국에서전송되는 OFDM symbol 의 Max. 값과 Min. 값의차이를측정 (Only PDSCH)

▌Specification

E-UTRA channel bandwidth (MHz) Total power dynamic range (dB)

1.4 7.7

3 11.7

5 13.9

10 16.9

15 18.7

20 20

2011.04.21 | Title of presentation | 27

.

20 20

▌Test Signal - E-TM 3.1(at Max Power), E-TM 2 (at Min power)

LTE Signal

▌Test set-up

Attenuator

Page 28: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter Characteristics Chapter 6.5.1 Frequency error

▌Propose-기지국에할당된주파수와실제로전송되는주파수간의차이

(Data clock generation- key point)

▌Specification

BS class Accuracy

Wide Area BS ± 0.05 ppm

Local Area BS ± 0.1 ppm

Home BS ± 0.25 ppm

▌Test Signal

2011.04.21 | Title of presentation | 28

▌Test Signal - E-TM2, E-TM 3.1, E-TM3.2, E-TM3.3

LTE Signal

▌Test set-up

Attenuator

Page 29: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter Characteristics Chapter 6.5.2 : Error vector magnitude (EVM)

▌Propose

-기지국에서전송되는 LTE Signal 의 Quality 측정 (전송 Data Quality)

▌Specification

Modulation scheme for PDSCH Required EVM [%]

QPSK 17.5 %

16QAM 12.5 %

64QAM 8 %

▌Test Signal

2011.04.21 | Title of presentation | 29

▌Test Signal - E-TM 3.1(64QAM), E-TM 3.2(16QAM) , E-TM 3.3(QPSK), E-TM2(64QAM)

LTE Signal

▌Test set-up

Attenuator

Page 30: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter Characteristics Chapter 6.5.3 : Time alignment between transmitter branches

▌Propose-기지국전송 antenna간의 delay 를측정( Tx diversity, MIMO transmission, Carrier Aggregation)

▌Specification

- Two transmit antennas shall not exceed 65ns to 1.3us

▌Test Signal - E-TM 1.1

2011.04.21 | Title of presentation | 30

▌Test set-up

TX1Attenuator

Attenuator

LTE Signal

TX2 LTE Signal

Page 31: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter Characteristics Chapter 6.5.4 Downlink RS Power

▌Propose- Downlink Reference Symbol의 resource element power 측정

▌Specification- DL RS power shall be within ±±±± 2.1 dB of the DL RS power indicated on the DL-SCH

▌Test Signal - E-TM 1-1

▌Test set-up

2011.04.21 | Title of presentation | 31

Note that a repeater is a bi-directional device. The signal generator may need protection.

LTE Signal

▌Test set-up

Attenuator

Page 32: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter Characteristics Chapter 6.6.1 Occupied bandwidth

▌Propose-기지국 TX 신호의 Bandwidth 가기준 Bandwidth 를초과여부측정

▌Specification- The occupied bandwidth shall be less than the channel bandwidth

Channel bandwidth BWChannel [MHz] 1.4 3 5 10 15 20

Transmission bandwidth configuration NRB 6 15 25 50 75 100

▌Test Signal

2011.04.21 | Title of presentation | 32

▌Test Signal - E-TM 1.1

LTE Signal

▌Test set-up

Attenuator

Page 33: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter Characteristics Chapter 6.6.2 : Adjacent channel rejection ratio (ACLR)

▌Propose- Pass-band 에있는기지국 center 주파수의 mean power 와바깥쪽에있는인접채널 mean power 의비율측정

▌Specification

E-UTRA transmitted signal channel bandwidth BWChannel

[MHz]

BS adjacent channel centre frequency offset below the first or above the last carrier centr

e frequency transmitted

Assumed adjacent channel carrier (informative)

Filter on the adjacent channel

frequency and corresponding

filter bandwidth

ACLR limit

1.4, 3.0, 5, 10, 15, 20 BWChannel E-UTRA of same BW Square (BWConfig) 45 dB2 x BWChannel E-UTRA of same BW Square (BWConfig) 45 dB

BWChannel /2 + 2.5 MHz 3.84 Mcps UTRA RRC (3.84 Mcps) 45 dBBWChannel /2 + 7.5 MHz 3.84 Mcps UTRA RRC (3.84 Mcps) 45 dB

NOTE 1: BWChannel and BWConfig are the channel bandwidth and transmission bandwidth configuration of the E-UTRA transmitted signal on the assigned channel frequency.

2011.04.21 | Title of presentation | 33

channel frequency.NOTE 2: The RRC filter shall be equivalent to the transmit pulse shape filter defined in TS 25.104 [6], with a chip rate as defined in this table.

▌Test Signal - E-TM 1.1/ E-TM1.2

LTE Signal

▌Test set-up

Attenuator

Page 34: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter Characteristics Chapter 6.6.3 Operating band unwanted emission

▌Propose-기지국의 DL operating band의최저주파수보다 10MHz 낮고, 최고주파수보다 10MHz 높은주파수범위에서기지국불요파측정

▌Specification

Frequency offset of measurement filter -3dB point, ∆∆∆∆f

Frequency offset of measurement filter centre frequency, f_offset

Minimum requirementMeasurement ban

dwidth (Note 1)

0 MHz ≤ ∆f < 5 MHz 0.05 MHz ≤ f_offset < 5.05 MHz 100 kHz

5 MHz ≤ ∆f < min(10 MHz, ∆fmax)

5.05 MHz ≤ f_offset < min(10.05 MHz, f_offsetmax)

-14 dBm 100 kHz

10 MHz ≤ ∆f ≤ ∆fmax 10.05 MHz ≤ f_offset < f_offsetmax -13 dBm (Note 5) 100 kHz

2011.04.21 | Title of presentation | 34

▌Test Signal - E-TM 1.1 / 1.2

LTE Signal

▌Test set-up

Attenuator

Page 35: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

TS36.141 Transmitter Characteristics Chapter 6.6.4 Transmitter spurious emission

▌Propose- 9kHz 부터 12.75GHz 사이에서기지국의 Operating band unwanted emission 를제외한주파수주파수대역의기지국 TX 신호의불요파측정

▌Specification ( Category A)

Frequency range Maximum levelMeasurement Bandwi

dthNote

9kHz - 150kHz

-13 dBm

1 kHz Note 1150kHz - 30MHz 10 kHz Note 130MHz - 1GHz 100 kHz Note 1

1GHz - 12.75 GHz 1 MHz Note 2NOTE 1: Bandwidth as in ITU-R SM.329 [2] , s4.1

NOTE 2: Bandwidth as in ITU-R SM.329 [2] , s4.1. Upper frequency as in ITU-R SM.329 [2] , s2.5 table 1

2011.04.21 | Title of presentation | 35

NOTE 2: Bandwidth as in ITU-R SM.329 [2] , s4.1. Upper frequency as in ITU-R SM.329 [2] , s2.5 table 1

▌Test Signal - E-TM 1.1 / 1.2

LTE Signal

▌Test set-up

Attenuator

Page 36: Rohde-schwarz Korea Seung-geun Yoo Seunggeun.yoo@rohde

Thank you !!!