34
Remark: foils with „black background“ could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013 General information about CFD course, prerequisities (tenzor calculus) Computer Fluid Dynamics E181107 CFD1

Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Embed Size (px)

DESCRIPTION

Computer Fluid Dynamics E181107. CFD1. General information about CFD course, prerequisities (tenzor calculus). Remark : fo i l s with „ black background “ could be skipped, they are aimed to the more advanced courses. Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013. - PowerPoint PPT Presentation

Citation preview

Page 1: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Remark: foils with „black background“ could be skipped, they are aimed to the more advanced courses

Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

General information about CFD course,prerequisities (tenzor calculus)

Computer Fluid Dynamics E181107CFD1

Page 2: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

• Lectures Prof.Ing.Rudolf Žitný, CSc.• Tutorials ing.Karel Petera, PhD.• Evaluation

A B C D E F

90+ 80+ 70+ 60+ 50+ ..49

Summary: Lectures are oriented upon fundamentals of CFD and first of all to control volume methods (application using Fluent)

1. Applications. Aerodynamics. Drag coefficient. Hydraulic systems, Turbomachinery. Chemical engineering reactors, combustion.2. Implementation CFD in standard software packages Fluent Ansys Gambit. Problem classification: compressible/incompressible. Types of PDE (hyperbolic, eliptic, parabolic) - examples.3.Weighted residual Methods (steady state methods, transport equations). Finite differences, finite element, control volume and meshless methods.4. Mathematical and physical requirements of good numerical methods: stability, boundedness, transportiveness. Order of accuracy. Stability analysis of selected schemes.5. Balancing (mass, momentum, energy). Fluid element and fluid particle. Transport equations.6. Navier Stokes equations. Turbulence. Transition laminar-turbulent. RANS models: gradient diffusion (Boussinesque). Prandtl, Spalart Alamaras, k-epsilon, RNG, RSM. LES, DNS.7. Navier Stokes equations solvers. Problems: checkerboard pattern. Control volume methods: SIMPLE, and related techniques for solution of pressure linked equations. Approximation of convective terms (upwind, QUICK). Techniques implemented in Fluent.8. Applications: Combustion (PDF models), multiphase flows.

Comp.Fluid Dynamics 181107 2+2

(Lectures+Tutorials), Exam, 4 credits

CFD1

Room 436, first lecture 8.10.2015, 9:00-10:45

excellent very good good satisfactory sufficient failed

Change! The regular term 1.10. was cancelled

Page 3: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD KOSCFD1

For more information about the CFD course look at my web pages http://users.fs.cvut.cz/rudolf.zitny/

Page 4: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD 2015/2016CFD1

Page 5: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

LITERATURE• Books: Versteeg H.K., Malalasekera W.:An introduction to CFD, Prentice Hall,1995Date A.W.:Introduction to CFD. Cambridge Univ.Press, 2005Anderson J.: CFD the basics and applications, McGraw Hill 1995

Database of scientific articles: You (students of CTU) have direct access to full texts of thousands of papers,

available at

knihovny.cvut.cz

Jméno DUPS

CFD1

Page 6: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

DATABASE selection CFD1

You can find out qualification of your teacher (the things he is really doing and what he knows)

The most important journals for technology (full texts if pdf format)

Page 7: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

SCIENCE DIRECT CFD1

Specify topic by keywords (in a similar way like in google)

Title of paper is usually sufficient guide for selection.

Page 8: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Aerodynamics. Keywords “Drag coefficient CFD” (126 matches 2011 , 6464 2012, 7526 2013, 8900 2015 )

Keywords:“Racing car” (87 matches 2011), October 2015 172 articles for (Racing car CFD)

CFD Applications selected papers from Science Direct CFD1

LES modelling

Page 9: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Hydraulic systems (fuel pumps, injectors) Keyword “Automotive magnetorheological brake design” gives 36 matches (2010), 51 matches (2011,October). 63 matches (2012,October), 74 (2013) , 88 (2015) Example

CFD Applications selected papers from Science Direct CFD1

Page 10: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Turbomachinery (gas turbines, turbocompressors)

Chemical engineering (reactors, combustion. Elsevier Direct, keywords “CFD combustion engine” 3951 papers in 2015. “CFD combustion engine spray injection droplets emission zone” 162 papers (2010), 262 articles (2011 October), 364 (October 2013). Examples of matches:

LES, non-premix, mixture fraction, Smagorinski subgrid scale turbulence model, laminar flamelets. These topics will be discussed in more details in this course.

.

kinetic mechanism for iso-octane oxidation including 38 species and 69 elementary reactions was used for the chemistry simulation, which could predict satisfactorily ignition timing, burn rate and the emissions of HC, CO and NOx for HCCI engine (Homogeneous Charge and Compression Ignition)

CFD Applications selected papers from Science Direct CFD1

Keywords “two-zone combustion model piston engine” 2100 matches (October 2012), 2,385 (October 2013)

Page 11: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Environmental AGCM (atmospheric Global Circulation) finite differences and spectral methods, mesh 100 x 100 km, p (surface), 18 vertical layers for horizontal velocities, T, cH2O,CH4,CO2, radiation modules (short wave-solar, long wave – terrestrial), model of clouds. AGCM must be combined with OGCM (oceanic, typically 20 vertical layers). FD models have problems with converging grid at poles - this is avoided by spectral methods. IPCC Intergovernmental Panel Climate Changes established by WMO World Meteorological Association.

Biomechanics, blood flow in arteries (structural + fluid problem)

CFD Applications selected papers from Science Direct CFD1

Page 12: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Sport

CFD Applications selected papers from Science Direct CFD1

Benneton F1

Page 13: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD Commertial softwareCFD1

Tutorials: ANSYS FLUENT

Bailey

Page 14: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD ANSYS Fluent (CVM), CFX, Polyflow (FEM)CFD1

FLUENT = Control Volume Method

Incompressible/compressible

Laminar/Turbulent flows

POLYFLOW = Finite Element Method

Incompressible flows

Laminar flows

Newtonian fluids (air, water, oils…)

Turbulence models

RANS (Reynolds averaging)

RSM (Reynolds stress)

Viscoelastic fluids (polymers, rubbers…)

Differential models Oldroyd type (Maxwell, Oldroyd B, Metzner White), PTT, Leonov (structural tensors)

Integral models

Single and Multiphase flows

Heat transfer & radiation

tensor of rate of tensor of deformationviscous stress

2

Jaumann time derivative

2gt

0 Cauchy Greendeformation tensor

( ) ( )M s C t s ds

CFX(FEM) ~ Fluent

)(turbulencefDt

D

( )turbulence

Remark: CFX is in fact CVM but using FE technology (isoparametric shape functions in finite elements)

Page 15: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD1 Prerequisities: Tensors

Bailey

Page 16: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD operates with the following properties of fluids (determining state at point x,y,z):

Scalars T (temperature), p (pressure), (density), h (enthalpy), cA (concentration), k (kinetic energy)

Vectors (velocity), (forces), (gradient of scalar)

Tensors (stress), (rate of deformation), (gradient of vector)

CFD1 Prerequisities: Tensors

u

f

T

u

Scalars are determined by 1 number.

Vectors are determined by 3 numbers

Tensors are determined by 9 numbers

333231

232221

131211

321 ),,(),,(

zzzyzx

yzyyyx

xzxyxx

zyx uuuuuuu

Scalars, vectors and tensors are independent of coordinate systems (they are objective properties). However, components of vectors and tensors depend upon the coordinate system. Rotation of axis has no effect upon vector (its magnitude and arrow direction), but coordinates of the vector are changed (coordinates ui are projections to coordinate axis).

Page 17: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Rotation of cartesian coordinate systemCFD1

Three components of a vector represent complete description (length of an arrow and its directions), but these components depend upon the choice of coordinate system. Rotation of axis of a cartesian coordinate system is represented by transformation of the vector coordinates by the matrix product

'1 1 2 3

'2 1 2 3

'3 1 2 3

cos(1',1) cos(1', 2) cos(1',3)

cos(2 ',1) cos(2 ', 2) cos(2 ',3)

cos(3',1) cos(3', 2) cos(3',3)

a a a a

a a a a

a a a a

a1

a2

a’1

a’2

1

2

1’

2’

2 c o s ( 1 ' , 2 )a

1 c o s ( 1 ' , 1 )a

'1 1'2 2'3 3

cos(1',1) cos(1', 2) cos(1',3)

cos(2 ',1) cos(2 ', 2) cos(2 ',3)

cos(3',1) cos(3', 2) cos(3',3)

a a

a a

a a

[ '] [[R]][ ]a a

Rotation matrix (Rij is cosine of angle between

axis i’ and j’)

a

Page 18: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Rotation of cartesian coordinate systemCFD1

Example: Rotation only along the axis 3 by the angle (positive for counter-clockwise direction)

1

'1 1'2 2

cos(1',1) cos cos(1', 2) sin

cos(2 ',1) sin cos(2 ', 2) cos

a a

a a

1[[R]] [[R]]=[[I]] [[R]] [[ ]]T TR

2

1’

2’

1 ', 22

1 ' , 1

( ) 2 ',12

2 ' , 2

Properties of goniometric functions sin))2

(cos( sin)2

cos( cos)cos(

2 2

2 2

cos sin cos sin

sin cos sin cos

cos sin cos sin sin cos

sin cos cos sin sin cos

1 0

0 1

therefore the rotation matrix is orthogonal and can be inverted just only by simple transposition (overturning along the main diagonal). Proof:

a

Page 19: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD1 Stresses describe complete stress state at a point x,y,z

ijx

y

z

x

y

z

x

y

z

zz

zy

zxyz

yy

yxxz

xy

xx

Index of plane index of force component (cross section) (force acting upon the cross section i)

Page 20: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD1

Later on we shall use another tensors of the second order describing kinematics of deformation (deformation tensors, rate of deformation,…)

Nine components of a tensor represent complete description of state (e.g. distribution of stresses at a point), but these components depend upon the choice of coordinate system, the same situation like with vectors. The transformation of components corresponding to the rotation of the cartesian coordinate system is given by the matrix product

Tensor rotation of cartesian coordinate system

[[ ']] [[R]][[ ]][[R]]T

cos(1',1) cos(1', 2) cos(1',3)

[[ ]] cos(2 ',1) cos(2 ', 2) cos(2 ',3)

cos(3',1) cos(3', 2) cos(3',3)

R

where the rotation matrix [[R]] is the same as previously

Page 21: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

ji

ji

ij

ij

for 1

for 0

100

010

001

CFD1 Special tensorsKronecker delta (unit tensor)

Levi Civita tensor is antisymmetric unit tensor of the third order (with 3 indices)

In term of epsilon tensor vector product will be defined

Page 22: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

jijiiji fnnfn

3

1i

CFD1 Scalar product

Scalar product (operator ) of two vectors is a scalar

x

y

z

nf

iii

ii babababababa

3

1332211

aibi is abbreviated Einstein notation (repeated indices are summing indices)

Scalar product can be applied also between tensors or between vector and tensor

i-is summation (dummy) index, while j-is free index

This case explains how it is possible to calculate internal stresses acting at an arbitrary cross section (determined by outer normal vector n) knowing the stress tensor.

Page 23: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD1 Scalar product

Derive dot product of delta tensor!

Define double dot product!

Page 24: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

233223132321231 babababac

kjijkj k

kjijki babac

abbac

3

1

3

1

)(

b

CFD1 Vector productScalar product (operator ) of two vectors is a scalar. Vector product (operator x) of two vectors is a vector.

For example

a

c

Page 25: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Vector productCFD 1

F

Moment of force (torque) FrM

umF 2

Coriolis force

uF

application: Coriolis flowmeter

Examples of applications

Page 26: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

ixxyx

i ),,(

CFD1 Differential operator

Symbolic operator represents a vector of first derivatives with respect x,y,z.

applied to scalar is a vector (gradient of scalar)

ii x

TT

z

T

y

T

x

TT

),,(

applied to vector is a tensor (for example gradient of velocity is a tensor)

i

jj

zyx

zyx

zyx

x

uu

z

u

z

u

z

uy

u

y

u

y

ux

u

x

u

x

u

u

i

GRADIENT

Page 27: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

source 0 u

3

1 i

i

i i

izyx

x

u

x

u

z

u

y

u

x

uu

sink 0 u

CFD1 Differential operator

Scalar product represents intensity of source/sink of a vector quantity at a point

i-dummy index, result is a scalar

jizzyzxzzyyyxyzxyxxx

zyxzyxzyxf jif ,,

DIVERGENCY

Scalar product can be applied also to a tensor giving a vector (e.g. source/sink of momentum in the direction x,y,z)

onconservati 0 u

Page 28: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD1 Differential operator

volume of resulting surface force cubeacting to small cube

/xx x y z x y zx

DIVERGENCY of stress tensor

( )2

xxxx

xy z

x

( )

2xx

xx

xy z

x

x

(special case with only one non zero component xx )

Page 29: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

ii xx

T

z

T

y

T

x

TTT

2

2

2

2

2

2

22

CFD1 Laplace operator 2

Scalar product =2 is the operator of second derivatives (when applied to scalar it gives a scalar, applied to a vector gives a vector,…). Laplace operator is divergence of a gradient (gradient temperature, gradient of velocity…)

),,(23

12

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

ii

j

i i

jzzzyyyxxx

xx

u

x

u

z

u

y

u

x

u

z

u

y

u

x

u

z

u

y

u

x

uu

Laplace operator describes diffusion processes, dispersion of temperature, concentration, effects of viscous forces.

i-dummy index

Page 30: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

Laplace operator 2MHMT1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

)exp()( 2xxT

T2

Negative value of 2T tries to suppress the peak of the

temperature profile

Positive value of 2T tries to enhance the

decreasing part

Tt

T 2

Page 31: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD1 Symbolic indicial notation

General procedure how to rewrite symbolic formula to index notationReplace each arrow by an empty place for index

Replace each vector operator by -

Replace each dot by a pair of dummy indices in the first free position left and right

Write free indices into remaining positions

Practice examples!!

Page 32: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

r

sTcr

T

x

z

z

T

x

T

x

r

r

T

x

T

1111

2 2 2 2

T T r T T z T T cs

x r x x z x r r

CFD1 Orthogonal coordinatesPrevious formula hold only in a cartesian coordinate systemsCylindrical and spherical systems require transformations

rx1

x2

(x1 x2 x3)

(r,,z)

zx

rsx

rcx

3

2

1 1

2

3

0

0

0 0 1

dx c rs dr

dx s rc d

dx dz

where sin coss c

1

2

3

0

0

0 0 1

c sdr dx

s cd dx

r rdz dx

Using this it is possible to express the same derivatives in different coordinate systems, for example

3 3 3 3

T T r T T z Ts

x r x x z x z

Page 33: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

1

2

3

0

0

0 0 1

r

z

i c s e

i s c e

i e

CFD1 Orthogonal coordinatesTransformation of unit vectors

1

2

3

0

0

0 0 1

r

z

e c s i

e s c i

e i

Example: gradient of temperature can written in any of the following ways

zr

zr

ez

Te

T

rer

T

ex

Te

x

Tc

x

Tse

x

Ts

x

Tci

x

Ti

x

Ti

x

TT

1

)()(32121

33

22

11

follows from transformation of unit vectors

follows from transformation of derivatives (previous slide)

rx1

x2

(x1 x2 x3)

(r,,z)e

re

1i

2i

Page 34: Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2013

CFD1 Integral theoremsGauss

dundu

2( ) ( ) ( ) ( )u vd u v d n u vd

Green (generalised per partes integration)

( ) ( )yxx x y y

uudxdy u n u n d

x y

(0,1)

y

n

n u u

(1,0)

x

n

n u u

(0, 1)

y

n

n u u

( 1,0)

x

n

n u u

ba

b

a

b

a dx

duvdx

dx

dv

dx

duvdx

dx

ud][

2

2