3
Functional Analysis and Its Applications, Vol. 32, No. 3, 1998 BRIEF COMMUNICATIONS On Series with Respect to the Rademacher System in Rearrangement Invariant Spaces "Close" to Lco S. V . Astashkin UDC 517.982.27 L e t rk(t) signsin 2k-lr t be the system of Rademacher functions on [0, I]. a co For a = ( k)k=I E 12 we define the linear operator c o Ta(t) = ~ akrk(t) (k= 1,2,...) (t e [0, 11). (1) k = l If Ilallp = (E =I laklP) 1/p as usual, then it follows from the Khinchin inequality that IITallLp[O, J • [lal12 (2) for 1 _< p < oo (this means the existence of two-sided estimates with constants depending on p only). Moreover, we can readily verify the relation IITallL| = Ilalll. (3) More detailed information on the behavior of series with respect to the Raclemacher system can be obtained by treating these series in the framework of general rearrangement invariant spaces. Recall that a Banach space X of measurable functions x = x(t) on [0, 1] is said to be rearrangement invariant (r.i.s.) if the relations x*(t) < y*(t) (t E [0, 1]) and y E X imply the relation~ x E X and [[x[[ < [[YH (where z*(t) is the nonincreasing rearrangem ent of a function [z(t)[ [1, p. 83]). For any r.i.s. X on [0, 1] we have Loo C X C L1 [1, p. 124]. An Orlicz space is an important example of an r.i.s. Let N(t) be an increasing convex function on N(u)/u = u/N(u) = O. L N all measurable functions x = x(t) on [0, 1] such that HxiIN = inf {u > O : jo iN k u/([x(t)l~d t < l } < co . In particular, if N(t) = t p (1 < p < co), then LN = Lp. In the problems discussed below, a special role is played by the Orlicz space L M , where M(t) = exp (t 2) - 1, or, more precisely, the closure of Lco in the space L M , which is denoted by G. As was proved in [2], the norm of an r.i.s. X is equivalent to the norm of/2 on the linear span of the Rademacher functions (i.e., a relation similar to (2) holds for X) if and only if X D G. In this note we present results on the behavior of series with respect to the Rademacher system in an r.i.s. X that is intermediate between Lco and G. The main role here is played by notions and methods of the interpolation theory of linear operators. For a Banach pair (X0, X1), x E X0 + X1, and t > 0, we introduce the Peetre ~-functional as follows: JK(t,x; Xo, X1) = inf{HxoHx o + tHxliIx , : x = xo + Xl, xi E xi}. Samara State University, e-marl: astashkn~ssu.samara.emnet.ru. Translated from Funktsionallnyi Analiz i Ego Prilozhe- niya, Vol. 32, No. 3, pp. 62-65, July-September, 1998. Original article submitted October 7, 1996. 1 92 0016-2663/98/3203-0192 $20.00 C)1999 Plenum Publishing Corporation

S. V. Astashkin- On Series with Respect to the Rademacher System in Rearrangement Invariant Spaces "Close" to L-Infinity

  • Upload
    jutyyy

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

8/3/2019 S. V. Astashkin- On Series with Respect to the Rademacher System in Rearrangement Invariant Spaces "Close" to L-Infinity

http://slidepdf.com/reader/full/s-v-astashkin-on-series-with-respect-to-the-rademacher-system-in-rearrangement 1/3

F unc t iona l A na ly s i s and I t s A pp l i ca t i ons , V o l. 32 , N o . 3 , 1998

B R I E F C O M M U N I C A T I O N S

O n S e r i e s w i t h R e s p e c t t o t h e R a d e m a c h e r S y s t e m

i n R e a r r a n g e m e n t I n v a r i a n t S p a c e s " C l o s e " t o L c o

S. V . A s t a s h k i n UDC 5 1 7 .9 8 2 .2 7

L e t

r k ( t ) s i g n s i n 2 k - l r t

b e t h e s y s t e m o f R a d e m a c h e r f u n c t i o n s o n [ 0 , I ].

a c o

F o r a = ( k ) k = I E 1 2 w e d e f i n e t h e l i n e a r o p e r a t o r

c o

T a ( t ) = ~ a k r k ( t )

( k = 1 , 2 , . . . )

(t e [0, 11). (1)k = l

I f I l a l l p = (E =I l ak lP) 1 /p a s u su a l , t h e n i t fo ll o ws f ro m th e K h in c h in i n eq u a l i t y t h a t

I I T a l l L p [ O , J • [ la l 1 2 ( 2 )

f o r 1 _< p < o o ( t h is m e a n s t h e e x i s t e n c e o f t w o - s i d e d e s t i m a t e s w i t h c o n s t a n t s d e p e n d i n g o n p o n l y ) .

M o r e o v e r , w e c a n r e a d i l y v e r if y t h e r e l a t i o n

I I T a l l L | = I l a l l l . ( 3 )

M o r e d e t a i l e d i n f o r m a t i o n o n t h e b e h a v i o r o f s e r ie s w i t h r e s p e c t t o t h e R a c l e m a c h e r s y s t e m c a n b e o b t a i n e d

b y t r e a t i n g t h e s e s e r i e s in t h e f r a m e w o r k o f g e n e r a l r e a r r a n g e m e n t i n v a r i an t s p a ce s .

R e c a l l t h a t a B a n a c h s p a c e X o f m e a s u r a b l e f u n c t i o n s x = x ( t ) o n [0 , 1 ] i s sa id t o b e rea r ran g emen tin v a r i an t ( r . i. s .) i f t h e re l a t i o n s x * ( t ) < y * ( t ) ( t E [0, 1 ]) an d y E X im p ly t h e re l a t i o n ~ x E X an d

[[x[[ < [[YH (w he re z * ( t ) i s t h e n o n in c re as in g rea r ran g em en t o f a fu n c t i o n [z ( t) [ [1, p . 8 3 ]) . F o r an y r .i .s .

X on [0, 1] w e ha ve Loo C X C L1 [1, p. 124].

A n O r l ic z s p a c e is a n i m p o r t a n t e x a m p l e o f a n r . i. s. L e t N ( t ) b e a n i n c r e a s i n g c o n v e x f u n c t i o n o n

[0, co ) su ch t h a t N (0 ) = 0 an d l im, ,_ ~0N ( u ) / u = lim=_~cou / N ( u ) = O . T h e O r l ic z s p a c e L N co n s i s t s o f

a l l m e a s u r a b l e f u n c t i o n s x = x ( t ) on [0 , 1 ] such tha t

H x iI N = i n f { u > O : j oi N k u / ( [ x ( t) l ~ d t < l } < c o .

In p a r t i cu l a r , i f N ( t ) = t p (1 < p < co) , then L N = L p . I n t h e p r o b l e m s d i s c u s s e d b e lo w , a s p e c i a l r o l e

i s p la y e d b y t h e O r l ic z s p a c e L M , w h e r e M ( t ) = e x p ( t 2 ) - 1 , o r , m ore prec ise ly , th e c losur e of Lco in

t h e s p a c e L M , w h i c h is d e n o t e d b y G .

A s w a s p r o v e d i n [ 2] , t h e n o r m o f a n r. i. s. X i s e q u i v a l e n t t o t h e n o r m o f / 2 o n t h e l in e a r s p a n o f t h e

R a d e m a c h e r f u n c t i o n s ( i .e ., a r e l a t i o n s im i l a r to ( 2 ) h o l d s f o r X ) i f a n d o n l y i f X D G .

I n t h i s n o t e w e p r e s e n t r e s u l t s o n t h e b e h a v i o r o f s e r i e s w i t h r e s p e c t t o t h e R a d e m a c h e r s y s t e m i n a n

r .i .s . X t h a t i s i n t e r m e d i a t e b e t w e e n L c o a n d G . T h e m a i n r o l e h e r e i s p l a y e d b y n o t io n s a n d m e t h o d s

o f t h e i n t e r p o l a t i o n t h e o r y o f li n e a r o p e r a to r s .

F o r a B a n a c h p a ir ( X 0 , X 1 ) , x E X 0 + X 1 , a n d t > 0 , w e i n t r o d u c e t h e P e e t r e ~ - f u n c t i o n a l a s fo ll ow s :

J K ( t , x ; X o , X 1 ) = inf{HxoHx o + t H x l i I x , : x = x o + X l , x i E x i } .

S a m a r a S t a t e U n i v e r s it y , e - m a rl : a s t a s h k n ~ s s u . s a m a r a . e m n e t . r u . T r a n s l a t e d f r o m F u n k t s i o n a l ln y i A n a l i z i E g o P r i lo z h e -n i ya , V o l . 32 , N o . 3 , pp . 62 - 65 , Ju l y - Sep t ember , 1998 . O r i g i na l a r t i c l e submi t t ed O c t obe r 7 , 1996 .

1 92 0 0 1 6 - 2 6 6 3 / 9 8 / 3 2 0 3 - 0 1 9 2 $ 20 .0 0 C ) 1 9 9 9 P l e n u m P u b l i s h in g C o r p o r a t i o n

8/3/2019 S. V. Astashkin- On Series with Respect to the Rademacher System in Rearrangement Invariant Spaces "Close" to L-Infinity

http://slidepdf.com/reader/full/s-v-astashkin-on-series-with-respect-to-the-rademacher-system-in-rearrangement 2/3

Le t 310 be a su bsp ace of X0 an d le t 311 be a subs pac e of X 1. A pai r (Y0,311) is ca l led a Jc~-subpair o f

t h e p a i r ( X 0 , X 1 ) i f

y ; Y o , Y 1 ) • y ; X o , x l )

w i t h c o n s t a n t s t h a t d o n o t d e p e n d o n y E Y o + ] I1 a n d t > 0 .

I n p a r t i c u l a r , i f Y i = P ( X i ) ( i = 0 , 1 ), w h e r e P is a b o u n d e d l i n e a r p r o j e c t i o n i n X o a n d X 1 , t h e n

( Yo, Y1) i s a J~ - su b p a i r o f ( Xo , X1 ) [3 , p . 1 3 6 o f t h e R u ss i a n t r an s l a t io n ] . A t t h e sa m e t im e , t h e r e a r em an y ex am p les o f su b p a i r s t h a t a r e n o t Jg : -su b p a ir s ( see [ 3, p . 5 8 9 o f t h e R u ss i an t r an s l a t io n ; 4 ] an d

R e m a r k 1 o f th e p r e s e n t n o t e ) .

C o n s i d e r t h e c a s e i n w h i c h X o = L ~ , X 1 --- G , Y o = T ( l l ) , a n d ]I1 = T ( 1 2 ) , w h e r e T i s t h e o p e r a t o r

g i v e n b y ( 1 ) . I t f o l lo w s fr o m r e l a t i o n ( 3) a n d f r o m t h e a b o v e s t a t e m e n t o f [ 2] t h a t

9 g ' ( t , Ta ; T ( l l ) , T ( 1 2 ) ) • 3 g ' ( t , a ; l l , 1 2 ) . (4 )

I n s p i t e o f t h e f a c t t h a t T ( l l ) i s n o t c o m p l e m e n t e d i n L o o [ 5 ] , t h e f o l l o w i ng s t a t e m e n t h o l d s .

T h e o r e m 1 . T h e p a i r ( T ( l l ) , T ( 12 )) i s a ~ - s u b p a i r o f p a i r ( L oo , G ) . I n o t h e r w o r ds , b y (4 )

. Yd '( t, T a ; L o o , G ) x ~ ( t , a ; l l , 1 2)

(3Ow i t h c o n s t a n t s t h a t d o n o t d e p e n d o n a = ( ak ) k = l E 1 2 a n d t > O .

I n t h e p r o o f o f T h e o r e m 1 , t h e r e s u lt o f [ 6] o n t h e d i s t r i b u t i o n o f R a d e m a c h e r s n m s i s u se d .

R e m a r k 1 . T h e a s s e r t i o n o f T h e o r e m 1 f ai ls i f t h e s p ac e G is r e p l a ce d by L n f o r a n y p < c o .

E v e r y r .i . s. X n a t u r a l l y g e n e r a t e s t h e c o o r d i n a t e s e q u e n c e s p a c e o f t h e c o e f f ic i e nt s o f s e ri e s w i t h r e s p e c t

t o t h e R a d e m a c h e r s y s t e m . T h e o r e m 1 a l lo w s on e t o f in d t h is c o o r d i n a t e s p a c e f or th e c a s e in w h i c h X

i s a n i n t e r p o l a t i o n s p a c e b e t w e e n L o o a n d G ( t h a t i s , L oo C X C G a n d e a c h l i n e a r o p e r a t o r b o u n d e d

i n Lo o a n d G i s b o u n d e d i n X ) .

L e t E b e a B a n a c h i d e a l s p a c e o f t w o - s i d e d s e q u e n c e s s u c h t h a t ( r a i n ( l , 2 k)) ~~ E E . I f (X 0 , X 1 )

i s a B a n a c h p a i r , t h e n t h e s p a c e ( X 0 , X 1 ) ~ c o r r e s p o n d i n g t o t h e r e a l ~ - - m e t h o d o f i n t e r p o l a ti o n c o ns i st s

o f a l l x E X o + X 1 s u c h t h a t

I 1 1 1 = x ; X o , x l ) ) k l l < o o .

I n th e sp e c ia l ca se E = lp ( 2 - k ~ 0 < 8 < 1 , 1 < p _< c~ , we o b ta in th e c l a ss i ca l sp aces ( Xo , X1 ) 0 ,p ( f o r

t h e d e t a i l e d e x p o s i t i o n o f t h e i r p r o p e r t i e s , s e e [7 ]) .

I f a n r . i. s. X i s a n i n t e r p o l a t i o n sp a c e b e t w e e n L oo a n d G , t h e n i t is d e s c r i b e d b y t h e re a l ~ - m e t h o d [8 ].

T h i s m e a n s t h a t

x = ( L o o , ( 5 )

f or s o m e p a r a m e t e r E . T h e r e f o r e , T h e o r e m 1 i m p l ie s t h e f o ll o w in g a s s e rt i o n.

T h e o r e m 2 . L e t r. i .s . X b e a n i n t e r p o l a t i o n s p a c e b e t w e e n L o o a n d G a n d le t r e l a t i o n (5 ) h o l d . I nt h i s c a s e , :f o r t h e s e q u e n c e s p a c e F = ( l l , / 2 ) ~e" w e h a v e

I Irk • I I ( a ) l l F -_ X

T h i s r e s u l t s h o w s t h a t t h e c o r r e s p o n d e n c e e s t a b l i s h e d i n T h e o r e m 2 i s o n e - t o - o n e .

T h e o r e m 3 . L e t r . i .s . 's X o a n d X 1 b e t w o in t e r p o l a t i o n s p a c e s b e t w e e n L o o a n d G . I:f

akrk ~ ~ akrk ,

_ Xo k=l X 1

t h e n X o = X 1 , a n d th e n o r m s i n X o a n d X 1 a re e q u iv a le n t.

193

8/3/2019 S. V. Astashkin- On Series with Respect to the Rademacher System in Rearrangement Invariant Spaces "Close" to L-Infinity

http://slidepdf.com/reader/full/s-v-astashkin-on-series-with-respect-to-the-rademacher-system-in-rearrangement 3/3

T h e a b o v e r e s u l t s a l l o w o n e t o f i n d t h e s e q u e n c e s p a c e s o f th e c o e f f ic i e n ts o f s e r ie s w i t h r e s p e c t t o t h e

R a d e m a c h e r s y s t e m f o r c o n c r e te r . i .s .' s.

I n t h e e x a m p l e s b e l o w , ~ _> 0 i s a n i n c r e a s i n g c o n c a v e f u n c t i o n .

E x a m p l e 1 . T h e L o r e n t z r. i. s. A p ( ~ ) ( 1 < p < c ~ ) c o n s i st s o f a l l m e a s u r a b l e f u n c t i o n s x = x ( s ) s u c h

t h a t

I I = I I , , = d o ( s ) < o o .

I n p a r t i c u l a r , i f ~ ( s ) = l og 2 1- p2 / s a n d 1 < p < 2 , t h e n

akr k x ak p 9

_ "~P,P

E x a m p l e 2 . T h e M a r c in k i e w ic z r .i .s . M ( ~ ) c o n s is t s o f a ll m e a s u r a b l e f u n c t io n s x = x ( s ) s u c h t h a t

HXHMCcP) s u p { ~--~ t) ~0 t }x * ( s ) d s : O < t < _ l < o o .

I n p a r t i c u l a r , i f ~ ( t ) = t l o g 2 l og 2 1 6 / t , t h e n

Hk~_l II { 1 ~ a* )a k r k x JJ (a k )J Jh ( ln ) = sup l og2(2k ) i : k = 1 , 2 , . . . ,

_ M ( ~ ) i = 1

w h e r e ( a ~) i s t h e n o n i n c r e a s i n g r e a r r a n g e m e n t o f a s e q u e n c e (Jakl)k~176.

R e m a r k 2 . T h e o r e m s 2 a n d 3 s tr e n g t h e n r e s u lt s o f [ 2] , w h e r e s im i l a r s t a t e m e n t s w e r e o b ta i n e d f or

s e q u e n c e s p a c es F s a t i s fy i n g m o r e r e s t ri c t iv e c o n d i t io n s . F o r i n s ta n c e , w e c a n r e a d i l y s h o w t h a t t h e n o r m

o f t h e d i l a ti o n o p e r a t o r

f inn --" ( a l , . . . , a l , a 2 , . . . , a 2 , . . . )% 9 9 9

Y

n n

i n t h e s p a c e l l ( l n ) ( s e e E x a m p l e 2 ) i s e q u a l t o n . T h e r e f o r e , c o n d i t i o n ( 1 1 ) o f [ 2] f a i ls f o r t h i s s p a c e , a n d

t h e t h e o r e m s o b t a i n e d i n [ 2 ] c a n n o t b e a p p l i e d t o t h i s o p e r a t o r .

R e m a r k 3 . T h e o r e m s 1 - 3 c a n r e ad i l y b e e x te n d e d t o l a c u n a r y tr i g o n o m e t r i c s er ie s b y m e a n s o f r e su l ts

i n [ 9 ] .

R e f e r e n c e s

1 . S . G . K r e in , Y u . I. P e t u n i n , a n d E . M . S e m e n o v , I n t e r p o l a t i o n o f L i n e a r O p e r a t o r s [ in R u s s i an ] , N a n l ~ ,

M o s c o w , 1 9 7 8 .

2 . V . A . R o d i n a n d E . M . S e m e n o v , A n a l . M a t h . , 1 , N o . 3 , 2 0 7 - 2 2 2 ( 1 9 7 5 ) .3 . H . T r i e b e l , I n t e r p o l a t i o n T h e o r y , F u n c t i o n S p a c e s, D i f fe r e n t ia l O p e r a t o r s [ E n g l is h tr a n s l a t i o n ] , N o r t h -

H o l l an d , A m s t e r d a m - N e w Y o r k , 19 78 .

4 . R . W a l l s t e n , L e c t . N o t e s i n M a t h . , V o l . 1 3 0 2 , 1 9 8 8 , p p . 4 1 0 - 4 1 9 .

5 . V . A . R o d i n a n d E . M . S e m e n o v , F u n k t s . A n a l . P r i lo z h e n . , 1 3 , N o . 2 , 9 1 - 9 2 ( 1 9 79 ) .

6 . S . M o n t g o m e r y - S m i t h , P r o c . A m e r . M a t h . S o c . , 1 0 9 , N o . 2 , 5 1 7 - 5 2 2 ( 1 9 9 0 ) .

7 . J . B e r g h a n d J . L S f s tr S m , I n t e r p o l a t i o n S p ac e s. A n I n t r o d u c t i o n , S p r i n g e r- V e r la g , B e r l i n - H e i d e l b e r g -

N e w Y o r k , 1 9 7 6 .

8 , N . J . C a l t o n , S t u d i a M a t h . , 1 0 6 , N o . 3 , 2 3 3 - 2 7 7 ( 1 9 9 3 ) .

9 . J . J a k u b o w s k i a n d S . K w a p i e n , B u l l . P o l i s h A c a d . S c i. M a t h . , 2 7 , N o . 9 , 6 8 9 - 6 9 4 ( 1 9 7 9 ).

T r a n s l a t e d b y S . V . A s t a s h k i n

1 9 4