3
Functional Analysis and Its Applications, Vol. 30, No. ~, 1996 BRIEF COMMUNICATIONS On the Multiplier of a Rearrangement Invariant Space with Respect to the Tensor Product S. V. Astashkin UDC 517.982.27 Let x = x(s) and y = y(t) be measurable functions on I = [0, 11. We introduce the bihnear operator Recall that a Banach space E of measurable functions on I is said to be rearrangement invariant (r.i.) if for any y E E the relation z*(t) < y*(t) (where z*(t) is the nonincreasing rearrangement of the function [z(u)[ [1, p. 93]) implies the relations z E E and [[zl[ <_ I[Y[[- If E is an r.i. space on I, then the corresponding r.i. space E(I x I) on the square consists of all measurable functions x = z(s, t) on I × I such that z" e E and IlXllEUxl) = IIx'IIE. If X, Y, and Z are r.i. spaces on I, then the operator B from X × Y into Z(I × I) is continuous if and only if the embedding of the projective tensor product X ® Y in Z is continuous [2, p. 51]. For this reason, B is called the tensor product operator. Studying the operator B is important because it naturally arises in solving a number of problems related to geometric properties of r.i. spaces (e.g., see [3, p. 169-171; 4, 5]). The majority of papers on the tensor product operator for r.i. spaces are devoted to studying continuity conditions for this operator in special classes of these spaces, namely, in Lorentz, Marcinkiewicz, Orlicz spaces, etc. [2, 6-9]. In this note we consider arbitrary r.i. spaces. Let us introduce the main notion of multiplier of an r.i. space with respect to the operator B. Let E be an r.i. space on I. By the multiplier of this space we mean the set M(E) of all measurable functions z = z(s) on I such that z ® y E E(I x I) for an arbitrary function y E E. Then M(E) is a linear space, which is an r.i. space on I with respect to the norm IIzIIM(E) = sup{fix ®YIIE(I×~); IlyIIE <- 1}. M(E) C E. Consider an example. Let E be the Lorentz space A(¢), where ¢(u) is a nonnegative increasing concave function on (0, 1]. Recall that this space consists of all measurable functions x = x(8) such that IIXlIA(,) = **(8) de(s) < oo. Assume that for the dilation function we have ./YY¢(v) = sup{¢(tv)/¢(t), 0 < t < min(1, 1/v)} = lira ¢(tv)/¢(t) t--.~to where to E [0, 11 does not depend on v E [0, 1]. Simple calculations show that M(A(¢)) = h(.//g,). L e t Xe(S) = 1, s E e, and Xe(s) = O, s ~ e (where e is a measurable subset of I or I x I). The fundamental function CE(t) = ]lX(o,t)llE of the r.i. space E and the dilation operator aty(u) = y(u/t)X[o,1](u/t) r.i. spaces. Sam ara State University. Translated from Funktsionallnyi Analiz i Ego Prilozhenlya, Vol. 30, No. 4, pp. 58-60, October- December, 1996. Original article subm itted September 15, 1994. 0016-2663/96/3004-0267 $15.00 C)1997 Plenum Publishing Corporation 2 67

S. V. Astashkin- On the Multiplier of a Rearrangement Invariant Space with Respect to the Tensor Product

  • Upload
    jutyyy

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

8/3/2019 S. V. Astashkin- On the Multiplier of a Rearrangement Invariant Space with Respect to the Tensor Product

http://slidepdf.com/reader/full/s-v-astashkin-on-the-multiplier-of-a-rearrangement-invariant-space-with 1/3

F u n c t i o n a l A n a l y s i s a n d I t s A p p l i c a t i o n s , V o l . 3 0 , N o . ~ , 1 9 9 6

B R I E F C O M M U N I C A T I O N S

O n t h e M u l t i p l i e r o f a R e a r r a n g e m e n t I n v a r ia n t S p a c e

w i t h R e s p e c t t o t h e T e n s o r P r o d u c t

S . V . A s t a s h k i n U D C 5 1 7 . 9 8 2 . 2 7

L e t x = x ( s ) a n d y = y ( t ) b e m e a s u r a b l e fu n c t i o n s o n I = [ 0, 11 . W e i n t r o d u c e t h e b i h n e a r o p e r a t o r

R e c a l l t h a t a B a n a c h s p a c e E o f m e a s u r a b l e fu n c t i o n s o n I i s s a i d t o b e r e a r r a n g e m e n t i n v a r i a n t

( r . i .) i f f o r a n y y E E t h e r e l a t i o n z * ( t ) < y * ( t ) ( w h e r e z * ( t ) is t h e n o n i n c r e a s in g r e a r r a n g e m e n t o f t h e

f u n c t i o n [ z ( u ) [ [ 1, p . 9 3 ] ) i m p l i e s t h e r e l a t i o n s z E E a n d [ [ zl [ <_ I[Y [[-

I f E i s a n r . i. s p a c e o n I , t h e n t h e c o r r e s p o n d i n g r .i . s p a c e E ( I x I ) o n t h e s q u a r e c o n s i s ts o f al l

m e a s u r a b l e f u n c ti o n s x = z ( s , t ) o n I × I s u c h t h a t z " e E a n d I l X l l E U x l ) = I I x ' I I E .

I f X , Y , a n d Z a r e r .i . s p a c e s o n I , t h e n t h e o p e r a t o r B f r o m X × Y i n t o Z ( I × I ) i s c o n t i n u o u s i f

a n d o n l y i f t h e e m b e d d i n g o f t h e p r o j e c t i v e t e n s o r p r o d u c t X ® Y i n Z i s c o n t i n u o u s [ 2, p . 5 1] . F o r t h is

r e a s o n , B i s c a l le d t h e t e n s o r p r o d u c t o p e r a t o r .

S t u d y i n g t h e o p e r a t o r B i s i m p o r t a n t b e c a u s e it n a t u r a l l y a r i s e s i n s o l v in g a n u m b e r o f p r o b l e m s

r e l a t e d t o g e o m e t r i c p r o p e r t i e s o f r .i . s p a c e s ( e . g ., s e e [3 , p . 1 6 9 - 1 7 1 ; 4 , 5 ] ).

T h e m a j o r i t y o f p a p e r s o n t h e t e n s o r p r o d u c t o p e r a t o r f o r r .i . s pa c e s a re d e v o t e d t o s t u d y i n g c o n t i n u i t y

c o n d i t i o n s fo r t h i s o p e r a t o r i n s p e c i a l c l a s se s o f t h e s e s p a c e s , n a m e l y , i n L o r e n t z , M a r c i n k i e w i c z , O r l ic z

s p a c e s, e tc . [ 2, 6 -9 ] . I n t h i s n o t e w e c o n s i d e r a r b i t r a r y r . i. s p a c e s. L e t u s i n t r o d u c e t h e m a i n n o t i o n o f

m u l t i p li e r o f a n r .i . s p a c e w i t h r e s p e c t t o t h e o p e r a t o r B .

L e t E b e a n r .i . s p a c e o n I . B y th e m u l t i p l i e r o f t h i s s p a c e w e m e a n t h e s e t M ( E ) o f a ll m e a s u r a b l e

f u n c t i o n s z = z ( s ) o n I s u c h t h a t z ® y E E ( I x I ) f o r a n a r b i t r a r y f u n c t i o n y E E . T h e n M ( E ) is a

l i n ea r sp a c e , w h i c h i s a n r . i. s p a c e o n I w i t h r e s p e c t t o t h e n o r m

IIz I IM(E) = sup {f ix ® YIIE (I×~ ) ; I lyI IE <- 1} .

I t i s c l e a r t h a t w e a l w a y s h a v e M ( E ) C E .

C o n s i d e r a n e x a m p l e . L e t E b e t h e L o r e n tz s p a c e A ( ¢ ) , w h e r e ¢ ( u ) i s a n o n n e g a t i v e i n c r e a s i n g

c o n c a v e f u n c t i o n o n ( 0 , 1] . R e c a l l t h a t t h is s p a c e c o n s is t s o f a ll m e a s u r a b l e f u n c t i o n s x = x ( 8 ) s u c h t h a t

I IX l IA ( ,) = * * ( 8 ) d e ( s ) < oo .

A s s u m e t h a t f o r t h e d i l a t io n f u n c t i o n

w e h a v e

. /Y Y ¢ (v ) = s u p { ¢ ( t v ) / ¢ ( t ) , 0 < t < m i n ( 1 , 1 / v ) }

= l i r a ¢ ( t v ) / ¢ ( t )t--.~to

w h e r e t o E [ 0, 11 d o e s n o t d e p e n d o n v E [0 , 1 ]. S i m p l e c a l c u l a t i o n s s h o w t h a t M ( A ( ¢ ) ) = h ( . / / g , ) .

L e t X e ( S ) = 1 , s E e , a n d X e ( s ) = O , s ~ e ( w h e r e e i s a m e a s u r a b l e s u b s e t o f I o r I x I ) .

T h e f u n d a m e n t a l f u n c t i o n C E ( t) = ]lX(o,t) l lE o f t h e r .i . s p a c e E a n d t h e d i l a t i o n o p e r a t o r a t y ( u ) =

y ( u / t ) X [ o , 1 ] ( u / t ) ( t > 0 ) , w h i c h is c o n t in u o u s i n a n y r . i. s p a c e , p l a y a n i m p o r t a n t r o le i n t h e t h e o r y o f

r . i . s p a c e s .

Sam ar a S t a t e U n i ve r s it y . T r ans l a t ed f r om Funk t s i ona l l ny i A na l iz i E go Pr i l ozhen l ya , V o l . 30 , N o . 4 , pp . 58 - 60 , O c t obe r -D ecemb er , 1996 . O r i g ina l a r t i c l e subm i t t ed S ep t emb er 15 , 1994 .

0016- 2663 / 96 / 3004- 0267 $15 .00 C ) 1997 P l enum Pub l i sh i ng C or p or a t i on 267

8/3/2019 S. V. Astashkin- On the Multiplier of a Rearrangement Invariant Space with Respect to the Tensor Product

http://slidepdf.com/reader/full/s-v-astashkin-on-the-multiplier-of-a-rearrangement-invariant-space-with 2/3

T h e o r e m 1 . F o r a n y r . i . s p a c e E o n I w e h a v e

e M ¢ E ) ( t ) = I I ~ , H ~ - . E , 0 < t < 1 ,

I I ~ ' I I M ( E ) - - , M ( E ) = I I G ,I I E - , E , 0 < t < Z , ( 1 )

-- 1

Ha l / , [ IE_ ~E <_ Ha t ] ]M (E)~M (E) _< HatI]E--~E, t > 1. (2)

I n g e n e r a l , i n e q u a l i t i e s ( 2 ) c a n n o t b e r e p l a c e d b y a r e l a t i o n s i m i l a r t o ( 1 ) . T o e s t a b l i s h t h i s i t s u f fi c es

t o c o n s i d e r t h e c a s e i n w h i c h C a ( S ) = s a l n - l ( C / s ) , E = A ( ¢ a ) ( 0 < a < 1 ), a n d C > e x p { 1 / ( 1 - a ) }

a n d a p p l y t h e r e s u l t o f t h e a b o v e e x a m p l e .

R e c a l l t h a t f o r a n y r. i. s p a c e E , t h e l i m i ts

aE = l im ln II~,HE--,E/lnt , ZE = l im l nHa, HE-+E / ln tt--t0 t--~oo

e x i st , w h i c h a r e c a l l e d t h e B o y d u p p e r a n d l o w e r i n d ic e s o f t h e s p a c e E [ 1 ], r e s p e c ti v e l y . W e a l w a y s h a v e

0 < a E < Z E < 1 [ 1 , p . 1 3 4 ] .

C o r o l l a r y 1 . F o r th e B o y d i n d ic e s o f r .i . s p ac e s E a n d M ( E ) t h e i n e q u a li ti e s a S <_ a M ( E ) < ] ~ M ( E ) < ~--

[3E hold .

T h e o r e m 2 ( u p p er b o u n d ). L e t E b e a n r . i. sp a c e o n I a n d l e t p = 1 / a E , w h e r e a E i s t h e B o y d

l o w e r i n d e z o f E . T h e n w e h a v e M ( E ) C L p , a n d th e e m b e d di n g co n s t a n t d o es n o t d e p e n d o n E .

C o r o l l a r y 2 . I f a E = O , t h e n M ( E ) = L o o .

I f E i s a n r . i. s p a c e o n I , t h e n t h e a s s o c i a t e d sp a c e E ' c o n s i s ts o f a ll m e a s u r a b l e f u n c t i o n s y = y ( t )

o n I s u c h t h a t

{ / 0 1 }lY llE ' = s u p x ( t ) y ( t ) d t ; I l z l l~ < 1 < c o .

T h e n o r m i n a n r .i . s p a c e E i s s a i d to b e o r d er s e m i c o n t i n u o u s i f t h e m o n o t o n e c o n v e r g e n c e x , 1" z

a l m o s t e v e r y w h e r e ( z , , z 6 E ) i m p li e s t h e r el a ti o n H z , H - + H z ]] .

C o r o l l a r y 3 . L e t E b e a n r .i . s p a c e w i t h o r d e r s e m i c o n t i n u o u s n o r m . I f B : E x E --+ E ( I x I ) a n d

B : E ' x E ' - > E ' ( I x I ) , t h e n E = L p fo r s o m e p 6 [1 , or ] .

T h e o r e m 3 (l ow e r b o u n d ) . F o r a n y r .i . s p a c e E o n I w e h a v e

M ( E ) D A ( ¢ ) ,

w h e r e ¢ ( t ) = I I ~ , I I E - + E ( 0 < t < 1 ) .H e r e t h e e m b e d d i n g c o n s t a n t d o e s n o t d e p e n d o n E .

L e t u s p a s s t o c o n c r e t e r e s u l t s . R e c a l l t h a t t h e s p a c e L p q ( 1 < p < c o , 1 < q < c o ) c o n s i s ts o f a l l

m e a s u r a b l e f u n c t i o n s z = x ( t ) o n I f o r w h i c h t h e f u n c t i o n a l

; { f ~ ( x * ( t ) t l / P ) q dr~t}1/q for 1 < q < co ,I lxllpq

s u p o < , < , ( x * ( t ) t 1 / p ) f o r q = c o ,

w h i c h i s e q u i v a l e n t t o t h e n o r m , i s f i n i t e .

T h e o r e m 4 . L e t a n r .i . sp a c e E b e a n i n t e r p o l a t i o n s p a c e b e t w e e n Lp a n d L p , o o f o r s o m e p 6 ( 1 , c o )

( i. e ., i f a l i n e ar o p e ra t o r is b o u n d e d i n L p a n d L p , o o , t h e n i t i s c o n t i n u o u s i n E ) . T h e n M ( E ) = L p .

S i nc e L pq ( p < q _< c o ) i s a n i n t e r p o l a t i on s p a c e be t w e e n L p a n d L p ,oo [ 1, p . 142 ] , w e ob t a i n

C o r o l l a r y 4 . I f l < p < c o , p < q < c o , t he n M ( L p q ) = L p .

F o r t h e c a s e q = c o , t h e l a s t a s s e r t i o n w a s p r o v e d i n [9 ].

I n c o n c l u s io n w e p r e s e n t a n a p p l i c a t i o n o f t h e a b o v e r e s u l t s in c o n n e c t i o n w i t h t h e w e l l - k n o w n O ' N e i l

t h e o r e m o n c o n t i n u i t y o f t h e t e n s o r p r o d u c t o p e r a t o r i n t h e s p a ce s Lpq.

26 8

8/3/2019 S. V. Astashkin- On the Multiplier of a Rearrangement Invariant Space with Respect to the Tensor Product

http://slidepdf.com/reader/full/s-v-astashkin-on-the-multiplier-of-a-rearrangement-invariant-space-with 3/3

T h e o r e m 5 [8] . L e t 1 < p < oo and 1 < q , r , s < oo . The ope ra to r B f rom L pr × L p , i n to L p q ( I x I )

i s c on t inuous i f and on l y i f t h e f o l l ow ing c ond i t i ons ho ld :

( 1) m a x ( s , r ) < q ;

(2 ) 1 / p + 1 / q < 1 / s + 1 / r .

C o r o l l a r y 4 s h o w s t h a t T h e o r e m 5 i s e x a c t w i t h r e s p e c t t o t h e c l as s o f a l l r .i . s p a c e s ( a n d n o t o n l y Lpq

s p a c e s) in t h e c a s e s = p < r = q . N a m e l y , L p i s t h e m a x i m a l s p a c e a m o n g t h e r . i. s p a c e s E f o r w h i c h

B i s a b o u n d e d o p e r a t o r f r o m L p r × E i n t o L p ~ ( I × I ) .

R e f e r e n c e s

1 . S . G . K r e i n , Y u . I . P e t u n i n , a n d E . M . S e m e n o v , I n t e r p o l a t i o n o f L i n e a r O p e r a t o r s [ in R u s s i a n ] , N a u l m ,

M o s c o w , 1 9 7 8.

2 . M . M i l m a n , N o t a s M a t . , 2 0 , 1 - 1 2 8 ( 1 9 78 ) .

3 . J . L i n d e n s t r a u s s a n d L . T z a f r i r i, C l a s s i c al B a n a c h S p a c e s . V ol . 2 . F u n c t i o n S p a c e s , S p r i n g e r- V e r l a g ,

B e r l i n , 1979 .

4 . W . B . J o h n s o n , B . M a u r e y , G . S c h e c h t m a n , a n d L . T z af r ir i , S y m m e t r i c S t r u c t u r e s i n B a n a c h S p a c es ,

M e r e . A m . M a t h . S o c . , 2 1 7 , 1 - 2 9 8 ( 1 9 7 9 ) .

5 . N . L . C a r o t h e r s , I s r a e l J. M a t h . , 4 0 , N o . 3 - 4 , 2 1 7 - 2 2 8 ( 1 98 1 ) .

6 . M . M i l m a n , N o t a s M a t . , 1 3 , 1 - 7 ( 19 7 7 ).

7 . M . M i l m a n , A n a l . M a t h . , 4 , N o . 3, 2 1 5 -2 2 3 ( 1 9 7 8 ) .

8 . R . O ' N e i l , J . d ' A n a l y s e M a t h . , 2 1 , 1 2 9 - 1 4 2 (1 9 6 8 ).

9 . S . V . A s t a s h k i n , i n : S t u d i e s i n t h e T h e o r y o f F u n c t i o n s o f M a n y R e a l V a r i a b l es , Y a r o s l av l , 1 9 82 ,

p p . 3 - 1 5 .

T r a n s l a t e d b y A . I . S h t e r n

Fun ctional Ana lysis a nd Its Applications, VoL 30, No. 4, 1996

I n f in i t e -D i m e n s i o n a l N o n - G a u s s i a n A n a l y s i s

and Generalized Translation Operators

Y u . M . B e r e z a n s k y U D C 5 17 .5 15

G a u s s i a n i n f i n i t e - d i m e n s i o n a l a n a l y s i s [ 1, 2 l h a s b e e n r e c e n t l y g e n e r a li z e d t o t h e c a s e o f a n o n - G a u s s i a n

m e a s u r e , a n d o n e o f s u c h g e n e r a li z a ti o n s is b a s e d u p o n t h e r e p l a c e m e n t o f o r t h o g o n a l d e c o m p o s i t i o n s

w i t h b i o r t h o g o n a l o n e s [ 3, 4 ]. I n [ 5 -7 ] , i n t h e m o d e l o n e - d i m e n s i o n a l c a s e , i t w a s e s t a b l i s h e d t h a t t h e

a p p r o a c h o f [ 3, 4 ] c a n b e w i d e l y g e n e r a l i z ed i f o n e t a k e s t h e c h a r a c t e r s o f a n L l - h y p e r g r o u p i n s t e a d o f th e

e x p o n e n t s a n d t h e g e n e r a li z e d tr a n s l a t io n s i n s t e a d o f t h e o r d i n a r y o n e s . I n t h i s n o t e w e s h o w t h a t t h e s a m e

p r o c e d u r e c a n b e c a r r i e d o u t i n t h e i n f i n i t e - d i m e n s i o n a l s e t t i n g a n d o b t a i n r e s u l t s , f o r t h e g e n e r a l c a se ,

w h i c h g e n e r a li z e r e s u l t s o f [3 , 4 ]. N o t e t h a t h e r e a d e t a i l e d t h e o r y ( s t il l n o t c o n s t r u c t e d ) o f L l - h y p e r g r o u p s

w i t h a n o n - l o c a l l y - c o m p a c t b a s i s Q i s n o t n e e d e d a n d i t s uf fi ce s t o u s e g e n e r a l i z e d t r a n s l a t i o n o p e r a t o r s

T ~ ( z E Q ) w h i c h s at i s fy r a t h e r s i m p l e c o n d i t i o n s .

1 . L e t Q b e a s e p a r a b l e c o m p l e t e m e t r i c s p a c e o f p o i n t s z , y , . . . a n d l e t C ( Q ) b e t h e l i n e a r s p a c e

o f a ll c o m p l e x - v a l u e d l o ca l ly b o u n d e d ( i .e ., b o u n d e d o n e v e ry b a ll i n Q ) c o n t i n u o u s fu n c t i o n s o n Q . L e t

a f a m i l y T = { T ~ }~ e Q o f li n e a r o p e r a t o r s o n C ( Q ) , t h e s o - c a l l e d " g e n e r a l i z e d t r a n s l a t i o n o p e r a t o r s , " b e

g i v e n a n d h a v e t h e f o l lo w i n g p r o p e r t i e s : ( a) ( T ~ f ) ( y ) = ( T y f ) ( x ) ( x , y E Q ) f o r a n a r b i t r a r y f u n c t i o n

f e C ( Q ) ( c o m m u t a t i v i t y ) ; ( b ) t h e r e i s a p o i n t e e Q ( b a s i c i d e n t i t y e l e m e n t ) s u c h t h a t T e = i d ; ( c) f o r

a r b i t r a r y x , y E Q , t h e r e i s a b a l l W = W ~ ,y C Q s u c h t h a t , f o r a n a r b i t r a r y f u n c t i o n f E C ( Q ) , t h e

NAN U Mathematical Institute, K iev, Ukraine and M CS University, Lublin, Poland. Tran slated from FunktsionaltnyiAnaliz i Ego Prilozhenlya, Vol. 30, No. 4, pp. 61-65, October-December, 1996. Original article sub mi tted Jun e 13, 1996.

0016-2663/96/3004-0269515 .00 C)1 99 7 Plenum Publishing Corporation 2 6 9