Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

Embed Size (px)

Citation preview

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    1/10

    INTERNATIONALJOURNALOFCIVILANDSTRUCTURALENGINEERING

    Volume3,No1,2012

    Copyrightbytheauthors-LicenseeIPA-UnderCreativeCommonslicense3.0

    ResearcharticleISSN09764399

    ReceivedonJune,2012PublishedonAugust2012239

    SafetycheckofexistingdamagainstalteredseismichazardconditionsGaurvaVerma

    1,VermaM.K

    2,TripathiR.K

    3

    1-M.Tech(WaterResources),CivilEngineeringDept.,NationalInstituteofTechnology,

    Raipur,Chhattisgarh,India2-Professor,CivilEngineeringDept.,NationalInstituteofTechnology,Raipur,Chhattisgarh,

    India

    3-AssociateProfessor,NationalInstituteofTechnology,Raipur,Chhattisgarh,India

    [email protected]

    doi:10.6088/ijcser.201203013023

    ABSTRACT

    The paperpresentsseismichazardanalysisofGangreldamsituatedinChhattisgarh,India

    using CADAM. The static and seismic safety of existing concrete gravity dams is acontinuousconcernowingtothedynamicseismicactivitiesduetothetectonicmovementof

    theearthplates.Thesetectonicmovementsresultsinearthquakesandmayaltertheimportant

    seismicparameterslikePeakGroundAcceleration(PGA).Earthquakeactionsaretakeninto

    account pseudo statically through inertia force characterized by a seismic coefficient.The

    designcheckofexistingdammustbeperformedtoassesswhetherseismicupgradingofa

    particularplaceis necessary fromseismicsafety pointofview.According toNRC (1985)

    Damsafetymusttakeprecedenceoverallotherconsiderations.CADAMsoftwarehasbeen

    used for design check. Seismic analysis is done using the pseudo static method.Gangrel

    Dam,amajordaminCGstatewasconstructedintheyear1979.RevisedSeismicparameter,

    PGAforthissitehadbeenreportedintheyear2006-07.Withreferencetoalteredvalueof

    PGA, seismichazardanalysisforGangreldamhasbeenperformedandpresented throughthis paper. The Dam stability is checked for altered value of PGA for various loading

    conditionsanditwasfoundtobewithinsafelimitspresently.

    Keywords:DeterministicSeismichazardAnalysis,MCE(MaximumCredibleEarthquake),

    OBE(OperatingBasisEarthquake),PGA(PeakGroundAcceleration),PseudostaticSeismic

    analysis,SeismicHazard.

    1.Introduction

    Earthquakes are vibrations caused by movement of base rocks along fault surfaces.Most

    earthquakesoccurwhentheenergystoredbyelasticdeformationintherocksonbothsidesofafaultisenoughtorupturetherocksortoovercomethefrictiononanexistingfaultplane.

    The deformation isunderstoodasbeing causedbyinternal forces such asofconvectional,

    gravitational andmagneticorigins.The energy of the earthquake, generated at the fault is

    radiatedoutwardsbymeansofelasticwaves.Asthesewavestravelthroughandalongthe

    crustoftheearththeyshaketheearthinalldirectionswithvaryingdegreeofintensityand

    thepatternofoscillation changesbyrefraction, reflectionand superpositionofonetypeof

    waveonothers.Generallythemagnitudeofthesewavesdecreasewithdistance.Thesizeof

    an earthquake depends on the amount of energy released. This can be measured by

    earthquakemagnitude.Theamountofenergyreleasedinturncanberelatedtothesizeofthe

    geologicoffset,faultparametersandtotheconsequencesoftheseismichazardonpeopleand

    theirenvironment.Thesefaultmovements,groundshakingandlandslidecaninduceseismic

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    2/10

    Safetycheckofexistingdamagainstalteredseismichazardconditions

    GaurvaVerma,VermaM.K,TripathiR.K

    InternationalJournalofCivilandStructuralEngineering240Volume3Issue12012

    hazard on dams. These in turn result in deformation, liquefaction, slope instability and

    overtoppingofthewaterofthedam.

    Earthquakespresentathreattopeopleandthefacilitiestheydesignandbuild.Seismichazard

    Analysis(SHA)istheevaluationofpotentiallydamagingearthquakerelatedphenomenonto

    whichafacilitymaybesubjectedduringitsusefullifetime.SHAisdoneforsomepractical

    purpose, typically seismic resistant design or retrofitting. SHA involves the quantitativeestimationofgroundshakinghazardsataparticularsite.Kramer(1996)consideredthatthe

    seismichazardsmaybeanalyzeddeterministicallywhenaparticularearthquakescenario is

    assumed,orprobabilistically,inwhichuncertaintiesinearthquakemagnitude,locationsand

    timeofoccurrencesareexplicitlyconsidered.PGAandResponseSpectrumarethemain

    Stronggroundmotionparametersalteredduringanearthquakeevent.

    Seismicsafetyassessmentconsistsbasicallyof

    1. Seismic Hazard assessment, which includes the seismotectonic features (i.e. faultmovements),andthegroundshaking(accelerationtimehistories)fordifferenttypeof

    designearthquakes;2. (Seismic response analysis, which combines the model of the dam-reservoir

    foundationsystem,thematerialpropertiesandthemethodofanalysis;

    3. Performanceassessmentwhichincludespossibledamageassessment.

    Similar analysis was performed forHoover Dam using two different approaches.Chopra

    A.K. and Hanchen T. (1996)applied a 3-D linearelastic analyses using EACD3D96

    incorporating foundation structure interaction with mass in the foundation, impedance

    contrast between the dam and the foundation. Payne (1998) and Chopra (2001) studied.

    hydrodynamic interaction using compressible fluid . Koltuniuk (1997) used a second

    approach of a non-linear three dimensional dynamic finite element analysis incorporating

    concrete cracking and contraction joint interaction using smeared crack techniques.

    Mills(1997) studied the kinematic stability analysis of the top of the dam. Gupta, (2002)

    stated that the seismichazard analysis isconcernedwithgettinganestimateof the strong

    motionparametersatasiteforthepurposeofearthquakeresistantdesignorseismicsafety

    Assessment. CADAM is based on the gravity method (rigid body equilibrium and beam

    theory).Itperformsstabilityanalysesforhydrostaticloadsandseismicloads.

    2.Studyarea

    Gangrel is a multipurpose concrete gravity dam constructed across river Mahanadi at

    204236N latitude and 813259E longitude in Chhattisgarh, India. The dam wascompletedin1979,hasacrestlengthof455m,acrestthicknessof7mandamaximumbase

    widthof14m.AccordingtoGlobalSeismicHazardAssessmentProgram(GSHAP)data,the

    stateofChhattisgarhfallsinregionoflowseismichazardwiththeexceptionbeingmoderate

    hazard in areas alongMaharashtra and AP state borders. The dam site is considered in

    seismiczoneIIasperI.S.1893(part-I):2002.

    2.1.Geology

    The dam is a part of the Mahanadi Project. Mahanadi project area is locatedwithin the

    Chhattisgarh sedimentary basin. This is formed by an ancient sequence of sand stones,

    carbonate, rocks(limestones anddolomites) and shaleswhichare preservedwith adownfaultedblockonthecrystallinebasement.Stablelandsurfacehavedevelopedathicklaterite

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    3/10

    Safetycheckofexistingdamagainstalteredseismichazardconditions

    GaurvaVerma,VermaM.K,TripathiR.K

    InternationalJournalofCivilandStructuralEngineering241Volume3Issue12012

    cover.Sandyalluviumoccursalongsomereachesofthemajorrivercoursesandthereisa

    relativelyextensiveareaofcoarsealluviumintheSouthernpartofthecommand.

    Atthedamsite,Chandrapursandstone(quartzitesandstone)areexposedintheleftflank

    and are available in depth of about 7 to 10 metres for about half the river width. In the

    remainingwidththerockistotallyscouredoutandisnotavailableevenatagreatdepth.Clay

    andbouldersareavailablebelowsandinthisportionoftheriverandontherightflank.

    2.2.Methodology

    The pseudo-static slope stability analysis is done with the conventional limit equilibrium

    methodby usingthe design groundmotion as aninput.The analysis isperformed for the

    upstream and down stream slopes of the dam by varying the possible critical cases. The

    evaluationofthestructuralstabilityofthedamagainstsliding,overturningandupliftingis

    performed considering two distinct analyses, a stress analysis to determine eventualcrack

    length and compressive stresses, a stability analysis to determine the (i) safety margins

    againstslidingalongthejointconsidered,and(ii)thepositionoftheresultantofallforces

    actingonthejoint.

    The use of the gravity method requires several simplifying assumptions regarding the

    structuralbehaviorofthedamandtheapplicationoftheloads

    1. Thedambodyisdividedintoliftjointsofhomogeneouspropertiesalongtheirlength,themassconcreteandliftjointsareuniformlyelastic,

    2. Allappliedloadsaretransferredtothefoundationbythecantileveractionofthedamwithoutinteractionswithadjacentmonoliths,

    3. Thereisnointeractionbetweenthejoints,thatiseachjointisanalyzedindependentlyfromtheothers,

    4. Normalstressesarelinearlydistributedalonghorizontalplanes,5. Shearstressesfollowaparabolicdistributionalonghorizontalplaneintheuncracked

    condition.USBR(1976).

    2.3.Geometricparametersconsidered

    Thedamparametersandreservoirlevelshavebeenreproducedfromthesoftware.

    A

    B

    CD

    E

    F

    G

    L1

    L3L2

    L4

    HI

    UPSTREAM

    DOWNSTREAM

    Figure1:Damgeometry

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    4/10

    Safetycheckofexistingdamagainstalteredseismichazardconditions

    GaurvaVerma,VermaM.K,TripathiR.K

    InternationalJournalofCivilandStructuralEngineering242Volume3Issue12012

    The dam section had been highlighted in Fig.1.Considering the geometry the dam base

    width(L1)is 36.785m.Thecrestwidth of thedam(L3,L4)is 7.5m.The elevation ofpoint F

    fromGroundLevelis20.5andtheheightofdamis30.5m.Theweightoftheconcreteis

    2630Kg/m3.The Poissons coefficient was 0.2. The dynamic flexibility of the structure is

    modeledwiththedynamicconcreteYoungsmodulus(Es)27400MPa.Thedamdampingonrigidfoundationwithoutreservoirinteractionisconsideredtobe0.05.Anychangetothese

    basic parametersaffects the fundamental period ofvibration and the dampingof the dam-

    foundation-reservoir system. Thus the spectral accelerations are evaluated. The wave

    reflectioncoefficient()istheratiooftheamplitudeofthereflectedhydrodynamicpressure

    wave to the amplitude of a vertical propagating pressure wave incident on the reservoir

    bottom.Avalueof=1indicatesthatpressurewavesarecompletelyreflected,andsmaller

    valuesofindicateincreasinglyabsorptivematerials.Thevalueofisconsideredtobe0.5.

    Thevelocityofpressurewavesinwaterisinfactthespeedofsoundinwater.Generallyitis

    assumed at 1440 m/sec (4720 ft/sec).As considering the reservoir levels the Normal

    OperatingLevelisconsideredas26.2mU/sand3.00mD/s.Galleryisatanelevationof

    2.00mat3.00mfromtheheelofthedam.Drainefficiencyis0.667.

    2.4.Seismicparametersconsidered

    InternationalcommitteeonLargeDams,ICOLD(1989)recommendationsarefollowedwhile

    evaluating the seismic parameters ;therefore anOperating Basis Earthquake (OBE) and a

    MaximumCredibleEarthquake(MCE)areconsidered.TheOBEisdefinedastheground

    motion with a 50 percent probability of being exceeded in 100 years. The dam, its

    appurtenant structures, and equipment should remain fully operational with minor or no

    damage when subjected to earthquake ground motions not exceeding the OBE. The

    MaximumDesignEarthquake(MDE)isthemaximumlevelofgroundmotionforwhichthe

    concrete dam should be analyzed. The MDE is usually equated to the MCE which, by

    definition,is thelargestreasonablypossibleearthquakethatcouldoccuralongarecognized

    fault orwithin aparticular seismic source zone. Incaseswhere the dam failure posesno

    dangertolifeorwouldnothavesevereeconomicconsequences,anMDElessthantheMCE

    maybeusedforeconomicreasons.Krinitzsky(2005)highlightsthataDeterministicSeismic

    HazardAnalysis (DSHA) uses geologyandseismichistory to identify earthquake sources

    and to interpretthestrongestearthquakeeach source iscapableofproducing regardlessof

    time,becausethatearthquakemighthappentomorrow.

    AccordingtoUSCOLD(1995),theMCEisthelargestearthquakethatappearspossiblealong

    arecognizedfaultunderthepresentlyknownorpresumedtectonicactivity,whichwillcausethemostsevereconsequencestothesite.AnMDEeventshouldbeconsideredasanextreme

    loading condition for which significant damage is acceptable, but without a catastrophic

    failurecausinglossoflifeorsevereeconomicloss.Theseismicinputisdefinedintermsof

    maximumhorizontalaccelerationsandunifiedresponsespectra.

    SahuT.(2006)evaluatedthatRegionalRecurrencerelationshipbetweenmagnitude,distance

    andgroundaccelerationisusedwhenevaluatingthemaximumhorizontalaccelerationwhich

    isbasedontheAssessmentofSeismicHazardforGangrelDam.FortheOBE,areturnperiod

    of200yearsisselectedwithaminimumvalueof0.5m/s.FortheMCE,notonlytheresults

    ofextreme-valuestatisticsareconsidered,butalsotheglobalgeologyandlong-termtectonic

    processesaretakenintoaccount.Theresultinggroundaccelerationscouldbeconsideredasapproximatevaluesonlyand,ingeneral,moredetailedstudiesincludingthelocalgeological

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    5/10

    Safetycheckofexistingdamagainstalteredseismichazardconditions

    GaurvaVerma,VermaM.K,TripathiR.K

    InternationalJournalofCivilandStructuralEngineering243Volume3Issue12012

    situationarenecessaryforaspecificsite.Themaximumaccelerationoftheverticalexcitation

    isdefinedas2/3oftherespectivemaximumhorizontalacceleration.

    Thefirststepintheseismicitystudyofadamsiteistodefinewhetherseismicloadingofthe

    structures must be incorporated in to the design or not. The usual basis for this initial

    assessmentisthemapofseismicactivity.Sarma(1975)statedthattheabsenceofanyrecordofanearthquakewithin400kmoftheproposedsiteisregardedassufficientjustificationfor

    regardingitasaseismic.Thepresenceofearthquakerecordwithinlimiteddistanceindicates

    that the Gangrel Dam site is aseismic. The seismic parameters are reproduced from the

    softwareandgiveninTable1.

    Table1:SeismicCoefficients

    Pseudo-static(seismiccoefficient)

    HorizontalPeakGround

    Acceleration(HPGA)

    0.100g Earthquakereturnperiod 200years

    VerticalPeakGround

    Acceleration(HPGA)

    0.0667g Earthquakeaccelrogram

    period(te)

    1sec

    Horizontalsustained

    acceleration(HSA)

    0.0500g Depthwherepressure

    remainsconstant

    Generalized

    Verticalsustained

    acceleration(VSA)

    0.0333g Westergaardcorrection

    forInclinedsurface

    Cornsetal.

    2.5.Materialanddesignparametersconsidered

    Theclaymaterialavailableinthevicinityofthedamwillprovideahighlyimpermeablefill

    forconstructionofthedamcore.Theclaycoreisoflowshearstrengthandofhighlyplastic

    consistency.Duetothehighclaycontentoftheproposedclaycorefill,severalfilterzonesoramulti stable filterwill be required to prevent piping in to the rock fill shells.Different

    laboratory and field tests have been carried out to estimate shear strength parameters as

    describedinTable2.

    Table2:Materialproperties

    LiftJointMaterialPropertiesMaterial

    NameConcreteStrength PeakFriction ResidualFriction Minimal

    compressivestress

    forcohesion(kPa)

    Fc(kPa) Ft(kPa) Cohesion(kPa)

    Angle(deg)

    Cohesion(kPa)

    Angle(deg)

    Base

    joint

    30000 0 0 55 0 45 0

    Joint 30000 0 0 55 0 45 0

    3.Pseudostaticseismicanalysis(Seismiccoefficientmethod)

    Pseudostaticanalysisissimilartothestaticlimitequilibriumanalysisroutinelyconductedby

    geotechnicalengineers. Itproducesa scalar indexofstability (the factorofsafety) that is

    analogous to that produced by static stability analyses. The inertia forces induced by the

    earthquakeare computed from the product of themassand the acceleration.The dynamicamplificationofinertiaforcesalongtheheightofthedamduetoitsflexibilityisneglected.In

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    6/10

    Safetycheckofexistingdamagainstalteredseismichazardconditions

    GaurvaVerma,VermaM.K,TripathiR.K

    InternationalJournalofCivilandStructuralEngineering244Volume3Issue12012

    thepseudo-staticmethodofseismicstabilityanalysis,someempiricalvaluesareadoptedfor

    thedesignseismiccoefficient; typically thislies in therangeof0.05-0.15.Sahu,T(1996)

    calculated the PGA value forGangrel dam as .05gwhich has beenused for the analysis.

    WestergaardH.M.,(1933)methodofHydrodynamicanalysisisconsidered.

    4.Analysisandresults

    StabilityAnalysisofthedamsectionhasbeenperformedusingCADAMwiththeparameters

    ofthedamasinput.Thedamsectionhasbeencheckedforvariousloadcombinations.The

    resultofstressandstabilityanalysisforusualcombinationhadbeenpresentedthroughTable

    3 and Table4 respectivelywhereas Table 5 and Table6 depicts the results of stress and

    stabilityanalysisforfloodcombination.Itisevidentfromtheresultsthatthestressarewithin

    thepermissiblelimitsonallthejointsandtheFactorofsafetyforOverturningandSlidingis

    quitehigherthanthedesired/safevaluesasperthecode.Theresultsofstressandstability

    analysisforpeakaccelerationvaluesandsustainedaccelerationvaluesforSeismic1(OBE)

    hasbeenpresentedthroughTable7-10andseismic2combinationshasbeenfiguredinTable

    11-14.Itisobservedthatthedamsectionissafeforallseismiccombinationsandthedamissafeagainststresses,slidingandoverturningatallthejointsconsidered.Theoverallresults

    canbe summarized as follows. The dam section is found tobesafe for the presentPGA

    valuesof0.1gandnofurtherretrofittingmeasuresarerequiredforthesectionpresently.The

    FOS for sliding and overturning are observed as 4.205 for usual combination where as

    requiredis3.00.ForfloodcombinationtheFOSisobservedas2.292whereasrequiredis1.1.

    Forseismic1combinationFOSis4.779whenrequiredis1.1andforseismic2combinations

    itcomestobe4.683.

    Table3:Usualcombination(stressanalysis)

    Joint Stresses

    ID

    Upstream

    Elevation

    (m)

    Normalstresses

    U/sD/s

    (kPa)(kPa)

    Allowablestresses

    Tensioncompression

    Shear

    u/smaximumD/s

    (kPa)(kPa)

    (kPa)

    1 30.000 -11.772 -11.772 0.000-9990.000

    2 24.000 -134.777 -158.346 0.000-9990.000 0.0004.7480.000

    3 18.000 -289.493 -86.880 0.000-9990.000 0.000-6.235124.111

    4 12.000 -358.536 -37.175 0.000-9990.000 0.00067.18953.106

    5 6.000 -414.216 -62.994 0.000-9990.000 0.00096.91689.99

    6 BASE -461.366 -72.030 0.000-9990.000 0.000121.422

    102.897

    Table4:UsualCombination(stabilityAnalysis)

    Joint SafetyFactors Resultants Uplift

    ID Upstream

    Elevation

    Sliding

    Peakresidual

    Overturning

    toward

    u/sd/s

    Uplifting Normal

    kN

    Shear

    KN

    Moment

    KN

    Position

    %of

    joint

    Final

    Force

    kN

    1 30.000 >100 >100 >100 >100 >100 -88.3 0.0 0.0 50.000

    2 24.000 66.126 46.302 48.543 14.711 23.636 -1099.2 23.7 110.5 51.340 48.6

    3 18.000 9.022 6.317 16.064 5.846 10.104 -2083.5 329.8 -2069.6 41.028 228.9

    4 12.000 5.612 3.929 9.907 4.660 7.528 -3886.4 989.0 -

    10332.6

    36.465 595.3

    5 6.000 4.804 3.364 8.997 4.249 6.968 -6731.9 2001.4 -

    23298.2

    37.734 1130

    6 BASE 4.205 2.944 4.661 3.447 4.626 -9810.6 3332.1 -

    43902.1

    37.836 2705.5

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    7/10

    Safetycheckofexistingdamagainstalteredseismichazardconditions

    GaurvaVerma,VermaM.K,TripathiR.K

    InternationalJournalofCivilandStructuralEngineering245Volume3Issue12012

    Table5:Floodcombination(Stressanalysis)

    Joint Stresses

    ID

    Upstream

    Elevation

    (m)

    Normalstresses

    U/sD/s

    (kPa)(kPa)

    Allowablestresses

    TensionCompression

    Shear

    U/smaximumD/s

    (kPa)(kPa)(kPa)

    1 30.000 -11.772 -11.772 0.000-15000.00

    2 24.000 -112.052 -170.476 0.000-15000.00 0.00015.6960.000

    3 18.000 -242.187 -125.111 0.000-15000.00 0.000-7.764178.726

    4 12.000 -306.362 -53.818 0.000-15000.00 0.00085.22976.880

    5 6.000 -321.925 -54.699 0.000-15000.00 0.00097.48678.140

    6 BASE -352.846 -70.962 0.000-15000.00 0.000107.949101.372

    Table6:Floodcombination(Stabilityanalysis)Joint SafetyFactors Resultants Uplift

    ID Upstream

    Elevation

    Sliding

    Peakresidual

    Overturning

    toward

    U/sD/s

    Uplifting Normal

    kN

    Shear

    KN

    Moment

    KN

    Position

    %of

    joint

    Final

    Force

    kN

    1 30.000 >100 >100 >100 >100 >100 -88.3 0.0 0.0 50.000

    2 24.000 19.280 13.500 27.237 7.115 13.000 -1059.5 78.5 273.9 53.447 88.3

    3 18.000 5.920 4.145 14.130 4.145 8.285 -2033.2 490.5 -1195.9 44.688 279.1

    4 12.000 4.087 2.862 4.870 3.264 4.638 -3537.4 1236.1 -8119.9 38.314 972.3

    5 6.000 3.683 2.579 2.495 2.436 2.773 -5313.0 2060.1 -

    17726.4

    38.175 2997.4

    6 BASE 3.848 2.694 2.034 2.135 2.292 -7794.9 2893.4 -

    31785.6

    38.915 6031.4

    Table7:Seismic#1combination-Peakaccelerations(Stressanalysis)Joint Stresses

    ID

    Upstream

    Elevation

    (m)

    Normalstresses

    U/sD/s

    (kPa)(kPa)

    Allowablestresses

    Tensioncompression

    Shear

    U/smaximumD/s

    (kPa)(kPa)(kPa)

    1 30.000 -12.792 -12.321 0.000-27270.000 0.000-1.7660.000

    2 24.000 -185.604 -127.92 0.000-27270.000 0.000-19.9870.000

    3 18.000 -393.433 -10.788 0.000-27270.000 0.000-1.33015.411

    4 12.000 -459.836 0.000 0.000-27270.000 0.00032.5470.000

    5 6.000 -522.819 0.000 0.000-27270.000 0.00052.2940.000

    6 BASE -584.284 0.000 0.000-27270.000 0.00070.7860.001

    Table8:Seismic#1combination-Peakaccelerations(StabilityAnalysis)Joint SafetyFactors Resultants Uplift

    ID Upstream

    Elevation

    Sliding

    Peakresidual

    Overturning

    toward

    U/sD/s

    Uplifting Normal

    kN

    Shear

    KN

    Moment

    KN

    Position

    %of

    joint

    Final

    Force

    kN

    1 30.000

    15.234 10.667

    >

    100 >100 >100 -94.2 -8.8 -2.2 49.688

    2 24.000

    16.802 11.765 9.808 16.993 25.212

    -

    1175.7 -99.9 -270.4 46.934 48.6

    3 18.000

    92.486 64.759 4.808 6.805 10.777

    -

    2237.6 34.6 -3908.5 34.223 228.9

    4 12.000

    15.133 10.596 4.469 5.288 8.030

    -

    4185.2 395.0

    -

    12697.1 30.890 595.3

    5 6.000

    10.709 7.498 4.736 4.780 7.421

    -

    7256.1 967.7

    -

    33568.4 32.794 1130.0

    6 BASE

    8.841 6.191 3.387 3.861 4.935 -10645 1719.5

    -

    64646.4 33.019 2705.5Required>1.3000>1.000>1.100>1.100>1.100

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    8/10

    Safetycheckofexistingdamagainstalteredseismichazardconditions

    GaurvaVerma,VermaM.K,TripathiR.K

    InternationalJournalofCivilandStructuralEngineering246Volume3Issue12012

    Table9:Seismic#1combination-Sustainedaccelerations(StressAnalysis)

    Joint Stresses

    ID

    Upstream

    Elevation

    (m)

    Normalstresses

    U/sD/s

    (kPa)(kPa)

    Allowable

    stresses

    TensionCompression

    Shear

    U/smaximumD/s

    (kPa)(kPa)(kPa)

    1 30.000 -12.282 -12.047 0.00-27270.000 0.000-0.8830.000

    2 24.000 -160.190 -143.13 0.00-27270.000 0.000-7.6190.000

    3 18.000 -341.463 -48.834 0.00-27270.000 0.000-3.76369.761

    4 12.000 -407.951 -2.972 0.00-27270.000 0.00051.8064.245

    5 6.000 -468.449 -27.338 0.00-27270.000 0.00071.08539.054

    6 BASE -522.799 -33.283 0.00-27270.000 0.00093.20747.546

    Table10:Seismic#1combination-Sustainedaccelerations(StabilityAnalysis)

    Table11:Seismic#2combination-Peakaccelerations(StressAnalysis)

    Joint Stresses

    ID

    Upstream

    Elevation

    (m)

    Normalstresses

    U/sD/s

    (kPa)(kPa)

    Allowablestresses

    Tension

    compression

    Shear

    U/smaximumD/s

    (kPa)(kPa)(kPa)

    1 30.000 -12.792 -12.321 0.000-27270.000 0.000-1.7660.000

    2 24.000 -185.604 -127.924 0.000-27270.000 0.000-19.9870.000

    3 18.000 -393.433 -10.788 0.000-27270.000 0.000-1.33015.411

    4 12.000 -459.836 0.000 0.000-27270.000 0.00032.5470.000

    5 6.000 -522.819 0.000 0.000-27270.000 0.00052.2940.000

    6 BASE -584.284 0.000 0.000-27270.000 0.00070.7860.001

    Table12:Seismic#2combination-Peakaccelerations(StabilityAnalysis)Joint SafetyFactors Resultants Uplift

    ID Upstream

    Elevation

    Sliding

    Peakresidual

    Overturning

    toward

    U/sD/s

    Uplifting Normal

    kN

    Shear

    KN

    Moment

    KN

    Position

    %of

    joint

    Final

    Force

    kN

    1 30.000 29.515 20.667 >100 >100 >100 -91.2 -4.4 -1.1 49.839

    2 24.000 42.641 29.857 15.978 15.852 24.424 -1137.5 -38.1 -79.9 49.063 48.6

    3 18.000 16.937 11.859 7.285 6.325 10.440 -2160.6 182.2 -2989.1 37.504 228.9

    4 12.000

    8.329 5.832 6.096 4.974 7.779 -4035.8 692.0

    -

    13021.1 33.574 595.3

    5 6.000

    6.728 4.711 6.154 4.515 7.190 -6994.0 1484.6

    -

    29261.0 35.171 1130.0

    6 BASE

    5.783 4.049 3.907 3.654 4.780

    -

    10227.7 2525.8

    -

    55198.5 35.328 2705.5

    Joint SafetyFactors Resultants Uplift

    ID Upstream

    Elevation

    Sliding

    Peakresidual

    Overturning

    toward

    U/sD/s

    Uplifting Normal

    kN

    Shear

    KN

    Moment

    KN

    Position

    %ofjoint

    Final

    ForcekN

    1 30.000 29.515 20.667 >100 >100 >100 -91.2 -4.4 -1.1 49.839

    2 24.000 42.641 29.857 15.978 15.852 24.424 -1137.5 -38.1 -79.9 49.063 48.6

    3 18.000 16.937 11.859 7.285 6.325 10.440 -2160.6 182.2 -2989.1 37.504 228.9

    4 12.000 8.329 5.832 6.096 4.974 7.779 -4035.8 692.0 -13021 33.574 595.3

    5 6.000 6.728 4.711 6.154 4.515 7.190 -6994.0 1484.6 -29261 35.171 1130.0

    6 BASE

    5.783 4.049 3.907 3.654 4.780

    -

    10227.7 2525.8

    -

    55198.5 35.328 2705.5

    Required>1.3000>1.000>1.100>1.100>1.100

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    9/10

    Safetycheckofexistingdamagainstalteredseismichazardconditions

    GaurvaVerma,VermaM.K,TripathiR.K

    InternationalJournalofCivilandStructuralEngineering247Volume3Issue12012

    Table13:Seismic#2combination-Sustainedaccelerations(StressAnalysis)

    Joint Stresses

    ID

    Upstream

    Elevation

    (m)

    Normalstresses

    U/sD/s

    (kPa)(kPa)

    Allowablestresses

    Tensioncompression

    Shear

    U/smaximumD/s

    (kPa)(kPa)(kPa)

    1 30.000 -12.282 -12.047 0.000-27270.000 0.000-0.8830.000

    2 24.000 -160.190 -143.13 0.000-27270.000 0.000-7.6190.000

    3 18.000 -341.463 -48.834 0.000-27270.000 0.000-3.76369.761

    4 12.000 -407.951 -2.972 0.000-27270.000 0.00051.8064.245

    5 6.000 -468.449 -27.338 0.000-27270.000 0.00071.08539.054

    6 BASE -522.799 -33.283 0.000-27270.000 0.00093.20747.546

    Table14:Seismic#2combination-Sustainedaccelerations(StabilityAnalysis)

    5.Conclusionsandrecommendations

    Results presented in this paper demonstrate that the response of concrete gravity dam-

    reservoirsystemsissignificantlyaffectedbyvariousstaticanddynamicloadingparameters.

    Thedesigncheckofexistingdamisperformed,forthepresentPGAvalueof0.1g,toassess

    whetherseismicupgradingofGangrelDamisnecessaryfromseismicsafetypointofview.It

    canbeconcluded from the present studythat the dam section issafe for all possibleload

    combinationsandnofurtherretrofittingmeasuresarerequiredforthesection.

    6.References

    1. Chopra A.K, (2001), Dynamics of Structures Theory and Application to

    EarthquakeEngineering.PrenticeHall,2001.

    2. Chopra A.K. and Hanchen T.,EACD-3D-96: A Computer program for 3-dimensionalanalysisofconcreteDam,UniversityofCalifornia,Berkeley,California,

    ReportNo.UCB/SEMM-96/06,October1996.

    3. GuptaI.D,(2002),ThestateoftheartinSeismicHazardAnalysis,ISETJournalofEarthquakeTechnology,39(4),pp311-346.

    Joint SafetyFactors Resultants Uplift

    ID Upstream

    Elevation

    Sliding

    Peakresidual

    Overturning

    toward

    U/sD/s

    Uplifting Normal

    kN

    Shear

    KN

    Moment

    KN

    Position

    %of

    joint

    Final

    Force

    kN

    1 30.000 29.515 20.667 >100 >100 >100 -91.2 -4.4 -1.1 49.839

    2 24.000 42.641 29.857 15.978 15.852 24.424 -1137.5 -38.1 -79.9 49.063 48.6

    3 18.000 16.937 11.859 7.285 6.325 10.440 -2160.6 182.2 -2989.1 37.504 228.9

    4 12.000

    8.329 5.832 6.096 4.974 7.779 -4035.8 692.0

    -

    13021.1 33.574 595.3

    5 6.000

    6.728 4.711 6.154 4.515 7.190 -6994.0 1484.6

    -

    29261.0 35.171 1130.0

    6 BASE

    5.783 4.049 3.907 3.654 4.780

    -

    10227.7 2525.8

    -

    55198.5 35.328 2705.5

    Required>1.3000>1.000>1.100>1.100>1.100

  • 7/27/2019 Safety Check of Existing Dam Against Altered Seismic Hazard Conditions MARY JAMES

    10/10

    Safetycheckofexistingdamagainstalteredseismichazardconditions

    GaurvaVerma,VermaM.K,TripathiR.K

    InternationalJournalofCivilandStructuralEngineering248Volume3Issue12012

    4. ICOLD, (1989), Selecting Parameters for Large dams-Guidelines andRecommendations,ICOLDCommitteeonSeismicAspectsofLargedams,Bulletin

    72.

    5. Koltuniuk,R.M.,HVD-8110-MDA-97-4,Non-linearDynamicStructuralAnalysisofHoover Dam Including Modelling of Contraction Joint Opening and ConcreteCracking,BureauofReclamation,September1997.

    6. Kramer,StevenL.1996,GeotechnicalEarthquakeEngineering,PrenticeHall,pp653.

    7. Krinitzsky,E.L,(1995),Deterministicversusprobabilisticseismichazardanalysisforcriticalstructures,EngGeology,40,pp1-7.

    8. Mills,B.L.,HVD-8110-MDA-97-5, Kinematic studies to determine the stability ofpostulated independent concrete blocks indicated by the non-linear analysis of

    HooverDamduringSeismicLoading,BureauofReclamation,December1997.

    9. NationalResearchCouncil(NRC),(1985),SafetyofDams;FloodandEarthquake

    Criteria,WashingtonD.C;NationalAcademyPress.

    10. Payne, T.L.HVD-8110-MDA-97-2, Linear Elastic Dynamic Structural Analysisincludingmass in thefoundation forHooverDam,BureauofReclamation,April,

    1998.

    11. Sahu, Tejram 2006-07, NIT, Raipur, Chhattisgarh, Seismic Hazard Analysis ofGangrelandSondurDamSites,M.Tech.desertation.

    12. Sarma S. K. (1975), Seismic stability of earth dams and embankments,Geotechnique,25,pp743-761.

    13. United States Committee on Large Dams, (1995), U.S. and World Dam,HydropowerandReservoirStatistics,USCOLDCommitteeonRegisterofDams.

    14. USBR,DesignofGravityDams,(1976),Denver:UnitedStatesDepartmentoftheInteriorBureauofReclamation.

    15. Westergaard H. M., (1933), Water pressure on dams during earthquakes,TransactionsASCE,98(1835),pp418-433.