31
Visible Spectro-Polarimeter (ViSP) SWG Meeting - Nov. 2-4, 2010 R. Casini  with P. Nelson, A. de Wijn, M. Knölker, and P. Huang

Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Visible Spectro­Polarimeter (ViSP)SWG Meeting ­ Nov. 2­4, 2010

R. Casini with P. Nelson, A. de Wijn, M. Knölker,

and P. Huang

Page 2: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

ViSP Science Justifications

Science Case: to study the emergence, evolution, and decay of magnetic flux in the solar atmosphere, and the dynamics of solar atmospheric structures

Examples: • formation and decay of active regions• small­scale evolution of quiet­Sun magnetism• magnetic stability of prominences and filaments• magnetic structure of flare and CME precursors• plasma oscillations in the photosphere and chromosphere• kinetic studies of filament eruption• spicules• deposition of mass and kinetic energy from the lower solar atmosphere into 

the corona

Page 3: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

ViSP Science Justifications

Methodology: • spectro­polarimetric observations of magnetic regions• plasma dynamics from Doppler shifts of spectral lines• modeling of polarized line formation (Zeeman effect; atomic polarization; 

radiative transfer in inhomogeneous media; radiation­MHD simulations)

Requirements: • High­sensitivity, high­cadence (not necessarily simultaneous) spectro­

polarimetry• multiple spectral lines simultaneously (improve magnetic inference; sample 

different atmospheric heights)• high spatial resolution, 2D maps of solar regions• high spectral resolution

Page 4: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

• Wavelength range:         380 – 900 nm, three lines simultaneously• Spatial resolution:           2£ ATST diffraction limit (0.07 arcsec @ 630nm)• Spatial FOV:                   2£2 a rcmin2 [camera format may limit further]• Spectral Resolution:       3.5 pm @ 630 nm (< 1.7 km/s)   → R ~ 180,000• Polarimetric Capability:  10­3  Icont  polarimetry in 10 sec @ required 

spectral/spatial res. [may not be possible over entire spectral range in all cases]• Simultaneous operation with:

— Visible Broadband Imager (VBI)— Diffraction­Limited Near­IR Spectro­Polarimeter (DL­NIRSP)— Visible Tunable Filter (VTF)

     [no spectral overlap unless light from slit­jaw is “recycled”]

ViSP Science Requirements

Page 5: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

1) Continuous spectral coverage from 380 to 1100 nm2) Meets FOV and spatial resolution requirements [slit height to width is ~4,000:1!]3) Low order gratings (m < 20) allow for large free spectral range:

– observation of wide lines like Ca II H & K, Hα, Ca II IR Triplet   [full capability requires 2K px spectral coverage per beam]– observation of multiple lines at different β­angles with scientifically useful 

spectrograph efficiencies [strongly dependent on grating choice]– reasonable number (~12) of order isolation filters to observe any line from 

380 to 1100 nm [filters are relatively inexpensive: ~ 5 K$]4) Multiple gratings (3 to 5) to ensure wavelength diversity with good spectrograph 

efficiency [may require custom gratings and associate design effort]5) Automated re­configuration [a few minutes for three lines]6) Library of photo­etched slits [3 provided at first light, corresponding to diffr. limit 

@ 450, 650, and 850 nm (respectively: ~16, 23, and 30 µm)]7) Multi­slit compatible design

ViSP DesignEssential Features

Page 6: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

ViSP Optical Concept

Page 7: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

ViSP Mechanical Overview

Page 8: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

ViSP Table

M8 OAP

M10 DM

BS1

BS2BS3

FM1

Con

text

Cam

Tab

l e

D-K Feed Telescope

(f=7m, F/35)

Context Cam Lens

Collimator Lens

GratingSlit

Counter Scanner

Cam3

Cam2

Cam1

CC

Cam LensPA

ATST­ViSP Layout Overview

Page 9: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

From slit

Air-gapped doublet collimator lens (f=2.6m, F/26)

Counter scanning fold mirrors

Air-gapped triplet camera lens1 (f=0.85m) Conic 1st surface

Order sorting filter

ProFlux polarization beam

splitter

FMCMOS detector array

Combiner prism

Collimator/Camera #1Detailed View

Page 10: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Typical Wavelength Selection(from SWG Use Cases)

Prominences  587.6  He I (D3)  656.3  Hα  854.2  Ca II1083.0  He I

A­R Filaments  630.2  Fe I  656.3  854.21083.0

Photo/Chromo­sphere  517.3  Mg I (b2)  630.2  656.3  849.8 Ca II  854.21083.0

Photosphere517.3525.0  Fe I553.8  Mn I630.2

Weak Fields453.6  Ti I455.4  Ba II460.7  Sr I589.0  Na I (D2)589.6  Na I (D1)

Page 11: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Other lines of interestOther lines of interest(accessible with versatile gratings in at least one of the beams)

...and more lines, as science and diagnostic capabilities improvebetween now and ATST first light

393.3  Ca II (K)396.8  Ca II (H)486.1  Hβ518.4  Mg I (b1)

617.3  Fe I676.8  Ni I769.9  K I849.8  Ca II

  866.2  Ca II  874.1  Mn I1526.0  Mn I1565.0  Fe I

Typical Wavelength Selection(from SWG Use Cases)

Page 12: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Wavelength Selection(from SWG Use Cases)

Prominences  587.6  He I (D3)  656.3  Hα  854.2  Ca II1083.0  He I

A­R Filaments  630.2  Fe I  656.3  854.21083.0

Photo/Chromo­sphere  517.3  Mg I (b2)  630.2630.2  656.3  849.8849.8 Ca II  854.2854.21083.01083.0

Photosphere517.3525.0  Fe I553.8  Mn I630.2

Weak Fields453.6  Ti I455.4  Ba II460.7  Sr I589.0  Na I (D2)589.6  Na I (D1)

Page 13: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Multiple Gratings for Spectral Diversity

Newport RGL53­*­451E316 l/mm63° blaze

204£408 mm2

α = 71.9°β−α=(­29.9°,­3.6°)

Scalar Efficienciescalculation

600 650 700 750 800 850 900 950 1000 1050 1100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Wavelength vs Order for a Fixed Alpha

5 6 7 8 9 10 11 12 13 14

Wavelength, nm

Esti

ma

ted

Eff

icie

nc

y

0 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Estimated Efficiency vs. Order

5 6 7 8 9 10 11 12 13 14

Beta

Esti

mat

ed

Eff

icie

ncy

Page 14: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Multiple Gratings for Spectral Diversity

TE & TM Efficiencieswith MRCWA

(Rathgen 2008)

Newport RGL53­*­451E316 l/mm63° blaze

204£408 mm2

α = 71.9°β−α=(­29.9°,­3.6°)

Page 15: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

ViSP Grating Optimization

Iterative search ofoptimal gratings

(both stockand custom)

Page 16: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Prominence Use Case                   Grating: 254.8 l/mm, blaze = 67.2˚,   = 68.7˚α

Wavelength (nm) Diffr. Order (  ­  )˚α β Approx.  Efficiency

He I D3 587.6 12 8.8 0.61

Ha 656.3 11 3.5 0.58

Ca II 854.2 8 14.7 0.55

He I 1083.0 6 22.3 0.59

A­R Filament Use Case                   Grating: 305.6 l/mm, blaze = 67.8˚,   = 67.8˚α

Wavelength (nm) Diffr. Order (  ­  )˚α β Approx.  Efficiency

Fe I 630.2 9 14.0 0.57

Ha 656.3 9 6.3 0.61

Ca II 854.2 7 3.5 0.57

He I 1083.0 5 21.0 0.62

Photo/Chromo­sphere Use Case                   Grating: 301.5 l/mm, blaze = 58.3˚,   = 65.5˚α

Wavelength (nm) Diffr. Order (  ­  )˚α β Approx.  Efficiency

Mg I b2 517.3 11 11.9 0.48

Fe I 630.2 9 12.4 0.48

Ca II 849.8 7 3.5 0.34

Ca II 854.2 6 26.1 0.34

He I 1083.0 5 19.3 0.57

ViSP Grating Optimization

Some use cases, and corresponding optimized custom gratings(not closed; gratings still untested for TE/TM efficiency)

Page 17: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Some Examples ofViSP Configurability

Prominence Use Case  –  Grating: 213.3 l/mm, blaze = 61.7˚,   = 67.4˚α

Ha 656.3

He I D3 587.6

He I 1083.0

Page 18: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Some Examples ofViSP Configurability

A­R Filament Use Case  –  Grating: 305.6 l/mm, blaze = 67.8˚,   = 67.8˚α

He I 1083.0

Fe I 630.2

Ca II 854.2

Page 19: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Some Examples ofViSP Configurability

Photo/Chromo­sphere Use Case  –  Grating: 267.4 l/mm, blaze = 60.3˚,   = 67.2˚α

Ca II 854.2

Ca II 849.8

Fe I 630.2

Page 20: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Air-gapped triplet context camera lens

(f=0.51m, M=0.16)

Conic 1st surface

Bandpass filter at exit pupil

CMOS detector array

From BS3FM1

Feed-M2

Context CameraDetailed View

Page 21: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge

Context CameraOptical Performance

Airy disk@ 630 nm

5 pi

xels

Page 22: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Spectrograph Ch1Optical Performance (NIR)

F = 0.85 m

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge5 

pixe

ls

Page 23: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Spectrograph Ch1Optical Performance (Vis)

F = 0.85 m

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge5 

pixe

ls

Page 24: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Spectrograph Ch1Optical Performance (UV)

F = 0.85 m

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge5 

pixe

ls

Page 25: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Spectrograph Ch2Optical Performance (NIR)

F = 1.10 m

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge5 

pixe

ls

Page 26: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Spectrograph Ch2Optical Performance (Vis)

F = 1.10 m

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge5 

pixe

ls

Page 27: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Spectrograph Ch2Optical Performance (UV)

F = 1.10 m

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge5 

pixe

ls

Page 28: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Spectrograph Ch3Optical Performance (NIR)

F = 1.40 m

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge5 

pixe

ls

Page 29: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Spectrograph Ch3Optical Performance (Vis)

F = 1.40 m

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge5 

pixe

ls

Page 30: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

Spectrograph Ch3Optical Performance (UV)

F = 1.40 m

Center

Slit end

FOV right edge

FOV right corner FOV left corner

FOV left edge5 

pixe

ls

Page 31: Sample Introductory Slide · Title: Sample Introductory Slide Author: rkneale Created Date: 11/4/2010 11:21:59 AM

• ViSP design meets or exceeds science requirements:– Continuous wavelength coverage over 380 – 1100 nm– Good spectrograph efficiency over entire spectral range 

(needs multiple, and likely custom, gratings)– Spatial, spectral resolution, FOV requirements met (camera 

format my limit the FOV further)– Quickly reconfigurable– Multi­slit compatible

• Design is well understood and is relatively low risk – Design heritage from ASP/SPINOR

ViSP Instrument Summary