Satellite Communication Fundamentals 1

Embed Size (px)

Citation preview

  • 8/2/2019 Satellite Communication Fundamentals 1

    1/45

    Satellite Communication

    Fundamentals

  • 8/2/2019 Satellite Communication Fundamentals 1

    2/45

    History of International

    Communication 1850 - Submarine Telephone cable (UK & France)

    1901 Transoceanic Long Wave Communication (Europe & America)

    1926 Short wave communication (UK & Europe)

    1945 Microwave Transmission System (Europe & America) 1945 Geo stationery Satellite concept by Arthur C Clarke

    1956 Co-axial multi channel submarine cable (UK & USA)

    1957First man made satellite Sputnik by USSR

    1964 Formation of Intelsat Organization (UK, USA, Australia,Japan, Germany, Italy & France)

    1965 First Communication Satellite (Intelsat - 1)

  • 8/2/2019 Satellite Communication Fundamentals 1

    3/45

    Satellites

    Arthur C. Clarkes vision:

    3 Geostationary satellites illuminate theEarth

    Illumination Lines

    Satellite 1 Satellite 2

    Satellite 3

    17.4

  • 8/2/2019 Satellite Communication Fundamentals 1

    4/45

    PolarOrbitInclined

    Orbit

    EquatorialOrbit

    Equator

    Satellites

    Three Basic Orbits

  • 8/2/2019 Satellite Communication Fundamentals 1

    5/45

    Satellites

    What does Geostationary mean?

    Geo = Earth, Stationary = Not Moving

    Satellite is a Fixed Point in the Sky

    Rotation of the Satellite = Rotation of the Earth(~24 Hrs/Rot)

    Equatorial Plane (only possible orbit)

    35,786 km above the Earths surface(only possible distance)

  • 8/2/2019 Satellite Communication Fundamentals 1

    6/45

    Equatorial Plane

    Station-keepingBox

    42,16

    5km

    LongitudinalDrift+0.1

    Variation due toOrbital Ellipticity

    LatitudinalVariation

    +0.1

    NominalSatelliteLocation

    Satellites

    Geostationary Orbits

    Satellite needs to stay within designated area:

    Station-keeping box

  • 8/2/2019 Satellite Communication Fundamentals 1

    7/45

    Transmit Antenna

    Transponder(incl. Switching

    Matrix)

    Receive Antenna

    Spinner

    3-Axis Stabilized

    Communications Satellites

    What is a Communications Satellite?

    ARadio Relayin the SkyReceives, amplifies and re-directs analog and digital

    signals carried within a carrier frequency

  • 8/2/2019 Satellite Communication Fundamentals 1

    8/45

    Electrical Power

    CommunicationAntenna Payload

    Spacecraft Control/Propulsion

    Communications Satellites

    What are the Satellite Components?

    Main subsystems:

  • 8/2/2019 Satellite Communication Fundamentals 1

    9/45

    Communication Satellite

    Earth(M)

    Satellite

    (m)

    Gravitational Force

    GmM/R2

    Centrifugal Force

    mV2/R

    At equilibration

    mV2/R=GmM/R2

    Since

    V=R

    R=(GM)1/3/ 2/3

    Resolving

    R=42,000 km

    From Surface of Earth

    R=42,000km-6,378km=35,786km

  • 8/2/2019 Satellite Communication Fundamentals 1

    10/45

    Spin Stabilization

    Three Axis Stabilization

    Satellite Stabilization

    wheel

    motor

    satellite

    rotation

    Motor applies torque to wheel (red)

    Reaction torque on motor (green)causes satellite to rotate

    Spin Stabilization For (cylindrical shape)

  • 8/2/2019 Satellite Communication Fundamentals 1

    11/45

    Three Axis Stabilization (For cubical shape)

    N

    S

    Satellite Position

    (South - North Drift)

    Orbital Path

    Roll

    Yaw

    Pitch

    Local Vertical

    (East-West Drift)

    Geostationary Orbits (especially 3-AxisStabilized S/C)

    Station-keeping for East-West & North-South drift

  • 8/2/2019 Satellite Communication Fundamentals 1

    12/45

    S

    N

    Sub Satellite Point

    Longitude (Long=342 for IS-705)

    Latitude (Lat=0 for all Intelsat Satellites)

    Communications Satellites

    What identifies a S/C? Each satellite is defined by its Sub Satellite Point (SSP)

  • 8/2/2019 Satellite Communication Fundamentals 1

    13/45

    Satellite Architecture

    Communications data passes through a satellite usinga signal path known as a Transponder.

    Typically satellites have between 24 and 72transponders.

    A single transponder is capable of handling up to 155million bits of information per second.

    Simple voice or data to the most complex andbandwidth-intensive video, audio and Internet

    content.

  • 8/2/2019 Satellite Communication Fundamentals 1

    14/45

    Radio frequency bands

    Band Frequency/(GHz)

    UHF 0.3 1.0

    L 1.0 1.5

    S 1.5 3.9

    C 3.9 8.0

    X 8.0 12.5

    Ku 12.5 18.0

    K 18.0 26.5

    Ka 26.5 40.0

  • 8/2/2019 Satellite Communication Fundamentals 1

    15/45

    Communications Satellites

    Why do we use satellites?

    Global reach

    Distance insensitive

    Mobility and flexibility

    Rapid deployment of ground equipment /ease of expansion

    Bundling of applications

  • 8/2/2019 Satellite Communication Fundamentals 1

    16/45

    Indian/APROcean Region

    33E 64E 85E60E 66E 110.5 E62E 83E 157 E

    AtlanticOcean Region

    PacificOcean Region

    304.5E 328.5E 340E307E 330.5E 342E310E 332.5E 359E325.5E 335.5E

    174E 178E176E 180E

    Communications Satellites

    Where are the satellites located? Three Orbital Regions

    AOR, IOR/APR, POR

  • 8/2/2019 Satellite Communication Fundamentals 1

    17/45

    Co-located S/C

  • 8/2/2019 Satellite Communication Fundamentals 1

    18/45

    Communications Satellites

    How is simultaneous operation of satellitespossible?

    Spacing (2-degree, 3-degree)

    Coverage (different footprints)

    Frequency (C-band, Ku-band, Ka-band )

    How close can simultaneous satellites operate?

    At different frequency bands:

    Co-location: typically at 0.2 (~ 120 km)

  • 8/2/2019 Satellite Communication Fundamentals 1

    19/45

    E/S

    Distance between 2-degree Satellites:~ 1200 km

    Distance between 3-degree Satellites:~ 1900 km

    S/C 1

    S/C 2

    2

    3S/C 3

    Communications Satellites

    Spacing

    Why is the satellite spacing important?

    Pointing error (E/S mispointing)

    System margins (small error => BIG mistake)

  • 8/2/2019 Satellite Communication Fundamentals 1

    20/45

    Spacing

    Why is the satellite spacing important?(Continued)

    Antenna size (radiation pattern) Small E/S (wide beam, low gain)

    Large E/S (narrow beam, high gain)

    What to keep in mind?

    Interference margins (ASI)

    Communications Satellites

    Antenna Peak Gain

    Large E/SSmall E/S

  • 8/2/2019 Satellite Communication Fundamentals 1

    21/45

    Communications Satellites

    Satellite Spacing:

    Desired and un-desired

    RADIO LINK

    DESIRED

    SATELLITE SPACING

    UNWANTED SIGNALS

    WANTED SIGNALS

    SATELLITE ANTENNA

    UNDESIREDSATELLITESPACING

  • 8/2/2019 Satellite Communication Fundamentals 1

    22/45

    What is a Footprint?

    Communications Satellites

    Composite Plot/IBN

    1-dB Contour Plot

    Composite Plot / Satellite Guide

  • 8/2/2019 Satellite Communication Fundamentals 1

    23/45

    +

    How to visualize a footprint?

    Communications Satellites

    Like Mountains Profile:

    Antenna Radiation Pattern: Cartesian Representation

    Full Gain Grid - 1 dB steps

  • 8/2/2019 Satellite Communication Fundamentals 1

    24/45

  • 8/2/2019 Satellite Communication Fundamentals 1

    25/45

    1000

    100

    10

    1SkyTemperature

    (DegreesKelvin)

    0.5 5 10 50

    Frequency GHz

    GalacticBackground

    MicrowaveWindow

    Sky Temp(Total)

    Water VaporResonance

    22 GHz

    OxygenResonance

    60 GHz

    AtmosphereAbsorption

    (Ka-Band)

    C-Band Ku-Band

    Satellite Communication

    Why C- and Ku-band? ITU-assigned frequency band: 1 - 30 GHz

    Low rain degradation

    Low sky noise

  • 8/2/2019 Satellite Communication Fundamentals 1

    26/45

    What is Polarization? Linear (vertical / horizontal)

    All Intelsat Ku-band

    C-band on [email protected], APR-1@83E and [email protected]

    => When used Simultaneously: Double theBandwidth

    Circular (left-hand / right-hand)C-band on most Intelsat satellites

    => When used Simultaneously: Double theBandwidth

    Satellite Communication

  • 8/2/2019 Satellite Communication Fundamentals 1

    27/45

    Horizontal Polarization

    Vertical Polarization

    Linear Polarization

  • 8/2/2019 Satellite Communication Fundamentals 1

    28/45

    Circular Polarization

  • 8/2/2019 Satellite Communication Fundamentals 1

    29/45

    Communications Satellites

    Why do we need solar panels?

    Convert sunlight into electric power

    Primary power supply

    Only 10% - 14% of sunlight can be converted

    Charge satellite battery system

    Ceases during eclipse

  • 8/2/2019 Satellite Communication Fundamentals 1

    30/45

    Autumn

    Summer

    Spring

    Winter

    Communications Satellites

    What is theimpact of aneclipse?

    No solar power Error in earth

    sensor

    Service outages

    Eclipse: 21 MarchMax. Outage = 70 min.+ preceding & following days

    Eclipse: 23 September

    Max. Outage = 70 min.+ preceding & following days

  • 8/2/2019 Satellite Communication Fundamentals 1

    31/45

    Satellite Communication

    What is the Communication Subsystem? Transponder satellite bandwidth

    Receiver satellite antenna (G/T)

    Amplifier TWTA/SSPA (wattage) Switching matrix connectivity

    Transmitter transmit power (D/L e.i.r.p.)

    Full Transponder Layout:

  • 8/2/2019 Satellite Communication Fundamentals 1

    32/45

    Satellite Communication

    Some typical carriers

    Voice:8 kb/s

    16 kb/s

    64 kb/s

    Data:64 kb/s

    up to 155 Mb/s

    Video:2 Mb/s

    8 Mb/s

  • 8/2/2019 Satellite Communication Fundamentals 1

    33/45

    What to keep in mind?

    Time delay

    One-way delay: location dependant

    Sub-satellite point: 119.3 ms

    Horizon: 138.9 ms

    Path length:

    Location dependant (elevation angle)

    Sub-satellite point: 71,572 km

    Horizon: 83,360 km

    Dependant on actual elevation angle

    C-band: ~200 dB

    Ku-band: ~206 dB

    Satellite Communication

    SSP

    Horizon

  • 8/2/2019 Satellite Communication Fundamentals 1

    34/45

    Earth Station

    Technology

  • 8/2/2019 Satellite Communication Fundamentals 1

    35/45

    Earth Station Equipment For Data

    U/C

    HPA

    IF COMB

    RF COMB

    MOD

    U/C

    HPA

    IF COMB

    RF COMB

    MOD

    D/C

    LNA

    IF DIV

    RF DIV

    DEMOD

    D/C

    LNA

    IF DIV

    RF DIV

    DEMOD

    RHCP LHCP RHCP LHCP

    TRANSMIT PATH RECEIVE PATH

  • 8/2/2019 Satellite Communication Fundamentals 1

    36/45

    Earth Station Equipment For TV

    U/C

    HPA

    IF COMB

    RF COMB

    ENCODER

    U/C

    HPA

    IF COMB

    RF COMB

    ENCODER

    D/C

    LNB

    IF DIV

    RF DIV

    DECODER

    D/C

    LNB

    IF DIV

    RF DIV

    DECODER

    RHCP LHCP RHCP LHCP

    TRANSMIT PATH RECEIVE PATH

    T i l P t f E th

  • 8/2/2019 Satellite Communication Fundamentals 1

    37/45

    Typical Parameters for EarthStation Antennas: C Band

    IntelsatStandard

    G/T (dB/K) AntennaDiameter(typical)

    A 35 (35 + 20 Log f/4) 18 - 21 m

    B 31.7 11 - 13 m

    F3 29 9 10 m

    F2 27 6.5 7.3 m

    F1 22.7 3.7 4 m

    H 22.1 for H4

    18.3 for H3

    15.1 for H2

    3.7 m

    2.4 m

    1.8 m

    T i l P t f E th

  • 8/2/2019 Satellite Communication Fundamentals 1

    38/45

    Typical Parameters for EarthStation Antennas: Ku Band

    IntelsatStandard

    G/T (dB/deg K) AntennaDiameter(typical)

    C 37 11 m

    E3 34 7 - 8 m

    E2 29 3.7 4.5 m

    E1 25 2.4 - 3.7 m

    K3 23.3 1.8 m

    K2 19.8 1.2 1.5 m

  • 8/2/2019 Satellite Communication Fundamentals 1

    39/45

    CASSEGRAIN FEED SYSTEM

    PARAXIAL FOCUS

    Earth Station Antenna Configurations

    Common Antenna Feed Systems

    FOCAL FEED PARABOLOID

    HYPERBOLOID

    GREGORIAN FEED SYSTEM

    ELLIPSOID

    SPHERICAL REFLECTOR

    FEEDER PHOTO REQUIRED

  • 8/2/2019 Satellite Communication Fundamentals 1

    40/45

    Prime Focus & Cassegrain Antenna Optics

  • 8/2/2019 Satellite Communication Fundamentals 1

    41/45

    Antenna Radiation Pattern (1)

  • 8/2/2019 Satellite Communication Fundamentals 1

    42/45

    Satellite Communication

    Transmission via satellite Modulation (change of properties of an

    electrical signal)

    Coding (change an analog signal to a digital

    signal)

    Multiplexing (combine several signals)

    Up/Down converter (change of frequency)

    Amplifier (enhance signal strength) Multiple access techniques (procedure to access

    the satellite)

    T f P l i

  • 8/2/2019 Satellite Communication Fundamentals 1

    43/45

    Types of Propulsion

    Chemical Propulsion

    Performance is energy limitedPropellant Selection

    Electric Propulsion

    ElectrostaticIon Engine

    Electro thermalArc JetElectromagneticRail gun

    Solar Sails

    Would use large (1 sq. km.) reflective sail (made of thinplastic)

    Light pushes on the sail to provide necessary force to changeorbit.

    Still on the drawing board, but technologically possible!

    Nuclear Thermal

    L hi

  • 8/2/2019 Satellite Communication Fundamentals 1

    44/45

    Vp Transfer orbit

    Launching

    Earth

    Geo stationary orbit

    Va

    Parking orbit

    Launching

  • 8/2/2019 Satellite Communication Fundamentals 1

    45/45

    N

    EWEquator

    Orbital velocity

    Velocity acceleratedby

    Apogee motor

    Geo St. velocity

    Launching