24
Polymer scaffolds must posses many key characteristics, including high porosity and surface area, structural strength, and specific 3D shapes, to be useful as materials for tissue engineering. These characteristics are determined by the scaffold fabrication technique, which must be developed such that it does not adversely affect the biocompatibility of the material of construction. Scaffold Design & Fabrication

Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

  • Upload
    lycong

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Polymer scaffolds must posses many key characteristics, including high porosity and surface area, structural strength, and specific 3‐D shapes, to be useful as materials for tissue engineering. These characteristics are determined by the scaffold fabrication technique, which must be developed such that it does not adversely affect the biocompatibility of the material of construction.

Scaffold Design & Fabrication

Page 2: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

One of the attractive features of polymers is their ease of processing.

Polymer Processing

Solvent ProcessingMelt Processing

Page 3: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

It involves heating the polymer above the glass transition temperature (Tg) or the melting temperature (Tm) and depends on the melt viscosity.

Thermoplastic polymers may be molded to shape by:

Melt Processing

Vacuum formingCompression moldingExtrusionInjection molding

Page 4: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Vacuum forming

Proceduresheated with infra‐red radiation drawn over a template by means of vacuum

Simple, relatively inexpensiveComplexity of the molding is limited

Page 5: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Compression molding

Proceduresheated in a mold Two halves of the mold are brought together

Simple, relatively inexpensiveLabor intensive and time consuming

Page 6: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Extrusion is a technique where molten polymer is forced through a die; used to produce components of a fixed cross‐sectional area such as tubes and rods

Extrusion

Page 7: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Injection molding involves a heated Archimedean screw contained in a barrel, which is fed with solid polymer granules at one end.

Injection molding

Page 8: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

In case of polymers that are sensitive to thermal degradation. It depends on polymer solubility and solvent volatility.

Solvent Processing

Page 9: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Some conventional processing techniques and porogen methods used in the polymer industry are unsuitable for producing medical implants. Adjuvants that are commonly used, such as surfactants, plasticizers, stabilizers, lubricants and blowing agents, can release toxic residues or by‐products incompatible with the body.

Things to Be Kept in Mind

Page 10: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Fibers provide a large ratio of surface area to volume. Poly(glycolic acid) (PGA) is commercially available in the form of long fibers; it was developed as a suture material. It lacks the structural stability necessary for in vivo use, however. A fiber bonding techniquewas developed to prepare interconnecting fiber networks for use as scaffolds.

Poly(L‐lactic acid) (PLLA) is dissolved in dichloromethane, a nonsolvent for PGA and the resulting solution is cast over a nonwoven mesh of PGA fibers. The solvent is then removed, leaving a composite material. The composite is heated to over Tmof PGA; the PGA fibers join at their cross points but the two polymers do not join due to their immiscibility in the melt state. The composite is quenched and then PLLA is removed. Notethat PLLA matrix is required to prevent collapse of the PGA mesh and to confine the melted PGA to a fiber‐like shape.

Fiber Bonding

Page 11: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated
Page 12: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

A simple and most commonly used method for fabricating scaffolds for tissue engineering. This method involves mixing water soluble salt (e.g., NaCl) particles into a biodegradable polymer solution. The mixture is then cast into the mold of the desired shape. After the solvent is removed by evaporation or lyophilization, the salt particles are leached out by water to obtain a porous structure.

Solvent‐Casting and Particulate Leaching

It can be applied to any polymer that is soluble in a solvent such as chloroform or methylene chlorideAdvantages:

Simple operationAdequate control of pore size and porosity by salt/polymer ratioand particle size of the added salt, respectively

Limitations:cubic crystal shape of the saltThickness: 0.5‐2 mm

Page 13: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated
Page 14: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

The method consists of creating an emulsion by homogenization of a polymer solution (in an organic solvent) and water mixture, rapidly cooling the emulsion to lock in the liquid state structure, and removing the solvent and water by freeze‐drying.

Emulsion/Freeze‐Drying

Page 15: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Thermally induced phase occurs when the temperature is decreased. Once the phase‐separated system is stabilized, the solvent‐rich phase is removed by sublimation leaving behind the polymer as a foam. Phase separation, which avoids harsh chemical or thermal environments, has been utilized to incorporate small bioactive molecules into scaffolds. 

Phase Separation

Tf: freezing temperature of the solventTc: critical temperature

Page 16: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

One advantage of using phase separation is that the scaffolds often have good mechanical properties compared to salt‐leaching technique.

Oriented microtubular scaffolds can be made by inducing phase separation using a uniaxialtemperature gradient.

Phase Separation (cont.)

Page 17: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Organic solvents residues left behind from the process of solvent‐casting and particulate leaching can be toxic in vitroand elicit inflammatory responses in vivo. Gas‐foaming process usually uses CO2 as an agent for the pore formation. Solid polymer disks are exposed to high pressure CO2 to allow saturation of CO2 in the polymer. Thermodynamic instability is then created by reduction in pressure. This results in rapidly releasing CO2 from the polymer, followed by nucleation and growth of gas bubbles (i.e., pores) in the polymer. The disadvantage is that it yields mostly a nonporous surface and closed‐pore structure, with only 10‐30% of interconnected pores.

Gas‐Foaming Process

Page 18: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

The method involves the construction of a contour plot of the particular 3‐D shape. The shapes of the contours are cut from porous biodegradable membranes. A small amount of chloroform (binder) is then coated onto the contacting surfaces of adjacent membranes and a bond is formed. The desired 3‐D shape is constructed layer by layer.

Membrane Lamination

Page 19: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

In combination with the solvent‐casting technique, extrusion process can be used to fabricate 3‐D structure such as a tubular conduit.

Extrusion

Page 20: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

RP is a technology based on the advanced development of computer science and manufacturing industry. The main advantage is their ability to produce complex products rapidly from a computer‐aided design (CAD) model.

3‐D printing, one of the rapid prototyping techniques, generates components by ink‐jet printing a liquid binder on to sequential polymer powder layer. The position of the jet is controlled via a computer‐assisted design and manufacture (CAD/CAM) program. Intricate 3‐D shapes can be made layer by layer with a resolution. Salt can be added in the polymer powder layer to generate pores. The disadvantage is the resolution that is determined by the jet size; difficult to fabricate scaffolds with fine microstructures.

Rapid‐Prototyping (RP) Techniques

Page 21: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

In electrospinning (e‐spinning), a high voltage is applied to a polymer solution or melt that is pumped to a spinneret facing an grounded target. Upon reaching a critical voltage, the surface tension of the polymer at spinneret tip is counterbalanced by localized charges generated by the electrostatic force, and the droplet elongates and stretches into a (Taylor) cone where a continuous jet is ejected.

Electrospinning

Page 22: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Initially, the polymer jet travels toward the target, but statistical perturbations result in some deviation from the most direct path to the collector. As a charged entity moving across an electric field, a force that is perpendicular to the electric field is imparted on the polymer jet, resulting in a spiral trajectory. The polymer jet undergoes tremendous (up to five orders) reduction in diameter as it travels toward the target. Solvent evaporation or cooling or the polymer prior to landing at the target results in electrospun fibers with diameters typically b/w 200 nm and 5 μm (nanofibers).

Electrospinning (cont.)

The path of polymer jet and the forces involved with it are extremely dynamic and the collection is rapid. Such high speed, coupled with long spiraled traveling distances, make accurately controlled deposition of the electrospun fiber technically challenging.

Note:

Page 23: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Factors affecting e‐spinning can be divided into three categories:

Electrospinning (cont.)

Substrate‐related factorsPolymer type and concentrationSolution dielectric constantConductivity,Surface tension

Apparatus‐related factorsFlow rate of the solutionHydrostatic pressure in the spinneretApplied electric fieldTip‐collector distance

Environmental factorsTemperatureHumidityAir perturbation 

Page 24: Scaffold Design Fabrication - NCKUmyweb.ncku.edu.tw/~jjhu/te_wk10.pdf · ¾Vacuum forming ¾Compression molding ¾Extrusion ¾Injection molding. Vacuum forming ¾Procedures ¾heated

Electrospinning (cont.)

(a) Single ground(b) Rotating single ground(c) Dual bar(d) Dual ring(e) Single horizontal ring(f) E‐spinning in vitro onto cells(g) Dual spinneret electrospinning(h) E‐spinning cells with polymer e‐spinning‐e‐spraying with(i) Parallel and (j) perpendicular spinnerets.