84
Scale Analysis by the Continuous Wavelet Transform Felix Herrmann, ERL-MIT

Scale Analysis by the Continuous Wavelet Transformfelix/Teaching/Wavelets/IMA/Lecture_23... · Scale Analysis by the Continuous Wavelet Transform Felix Herrmann, ERL-MIT

  • Upload
    vancong

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Scale Analysis by the Continuous WaveletTransform

Felix Herrmann, ERL-MIT

Goal:

To characterize the local and global singularity

structure of sedimentary records and seismic data.

To understand the relation between the medium’s

singularity structure and that of the wavefield.

Means:

Multiscale analysis by the Continuous Wavelet

Transform.

Accomplishment:

Precise information on the local and global regularity.

Set up

� Define the continuous wavelet transform

[29, 30, 17, 18, 19, 24, 26, 7, 8, 1, 22, 25].

� Local regularity estimates by Holder exponents [17, 18, 22, 25].

� Mallat’s wavelet transform modulus maxima lines (WTMML)

[24, 25, 22].

� Global regularity estimates by multifractal [27, 32] singularity

spectra

� introduction basic concepts (multi-)fractality

[23, 27, 28, 6, 36, 1, 18]

� introduction of multifractal functions [1, 20, 21]

� important exponents

� importance regularity wavelet

� link to Besov norms [33, 20, 21, 35, 4, 5]

� Introduction of generalized transition models [11, 14, 12, 15, 16].

Multiscale analysis

Continuous Wavelet Transform

Definition CWT:

Wff; g(�; x) , hf; �;xi =Z

f(x0)1

� (x0 � x

)dx0

or

Wff; g(�; x) , (f � �)(x) with �(x0) =1

� (�x0

�)

whereZ +1

�1

xq (x)dx = 0 for q �M ^M > 0:

Multiscale analysis

−15 −10 −5 0 5 10 15−1

−0.5

0

0.5

1

1.5

2

t

13

;�8

1;0

3;3

Multiscale analysis

multiscale differential operatorWff; g(�; x) , �ndn

dxn(f � ��)(x)

= �n(f �dn

dxn��)(x)

with

���(x0) =1

��(�x0

�) ^

Z�dx 6= 0 ^

Zj�jdx <1

and

(x0) = (�1)ndn

dx0n�(x0) 8x0 2 R ; j (x0)j �

cm

1 + jx0jm

^m 2 N :

Multiscale analysis

scale derivative operator

Smoothing operatorSff; �g(�; x) = (f � ���)(x)

with �� 2 S(R ) ^ � > 0, ��(x0) = 1

��(x0

� ).

Scale differential operator

Wff; g(�; x) , ��@�(f � ��)(x)

= (f � �)(x)

with �(x0) = 1

� (x0

� ) and (x0) = (1 + x0@x0)�(x0).

Wavelet transform example

0 240 480 720 960 1200 1440 1680 1920 2160 2400

0 240 480 720 960 1200 1440 1680 1920 2160 2400

0 240 480 720 960 1200 1440 1680 1920 2160 24001.5

3

4.5

(c)

log�

x3[m]

(b)

log�

x3[m]

cp

x3[m]

Reconstruction

f(x) =

1c�

Z +1

�1

Z +1

0

Wff; g(�; x)�(�; x)d�

�dx

� 2 L1(R ) \ L2(R ), 0 < c� =R1

0

^ �(��)^�(�) d��

< c

� bilinear form: � =

f(x) =

1c

Z +1

�1

Z +1

0

Wff; g(�; x) (�; x)d�

�dx

� linear

f(x) =

1c

Z +1

0

Wff; g(�; x)d�

Reconstruction holds modulo polynomials if f 2 S 0(R ).

Multiscale analysis

continuous MRA [3]

f(x) =

1c lim

�!0Sff; �g(�; x)

=

1c [Sff; �g(�; x)| {z }smooth

+Z �

0

detailsz }| {

Wff; �g(�0; x)d�0

�0]

� smoothing coefficients contain detail upto the scale �,

i.e. approximations of f at scale �.

� wavelet coefficients give details at scale �.

Holder regularity

Definition 0.1 (Lipschitz/Holder regularity [24, 25])

� A function f is pointwise Lipschitz/H”older � � 0 at �, if there

exist K > 0, and a polynomial p� of degree m = b�c such

that

8 t 2 R ; jf(t)� p�(t)j � Kjt� �j�:

� A function f us uniformly Lipschitz/Holder � over [a; b] if it

satiesfies Eq. 0.1 for all � 2 [a; b], with a constant K that is

independent of �.

� The Lipschitz/Holder regularity of f at � over [a; b] is the sup

of the � such that f is Lipschits/H”older �.

Holder regularity

� Holder exponents measures the remainder of a Taylor

expansion, i.e.j"�(t)j = jf(t)� p�(t)j � Kjt� �j�:

� Characterize the local scaling properties.

� Measure the local regularity/differentiability.

� Is linked to the decay rate of the Fourier and wavelet

coefficients.

� Vanishing moment property of wavelets

Wff; g(�; t) =Wf"� ; g(�; t)

detrends the data!!!!

Simply speaking

Lipschitz/Holder exponents measure

jf(t+�t)� f(t)j � Kj�j�

for K finite.

Measures the local differentiability:

� � � 1, f(t) is continuous and differentiable.

� 0 < � < 1, f(t) is continuous but non-differentiable.

� �1 < � � 0, f(t) is discontinuous and non-differentiable.

� � � �1, f(t) is not longer locally integrable ) tempered

distribution, e.g. Delta Dirac for � = �1.

Multiscale analysis

WTMML’S

Continuous wavelet transform is redundant.

Definea a connected curve of local modulus maxima, i.e. points

where jWff; g(�; x)j is locally maximum at x = x0,

@xWff; g(�; x0) = 0:

This curve is called a modulus maxima line, a WTMML.

Analyze behavior of wavelet coefficients along the WTMML’s and

within the cone of influence, i.e. for the ith WTMML analyze

Wff; g(�; x) for x 2 fXi(�)g ^ jx� xij � C�

a1 per cone of influence

More precisely

Definition 0.2 (Wavelet transform modulus maxima [24, 25])

Let Wff; g(�; x) be the wavelet transform of a function f(x).

� A local extremum is any point (�0; x0) for which

@xWff; g(�; x) has a zero-crossing at x = x0, when x

varies.

� Call a wavelet transform modulus maximum, a WTMM, any point

(�0; x0) such that jWff; g(�0; x)j < jWff; g(�0; x0)j

when x belongs to either the right or the left neighbourhood of

x0, and jWff; g(�0; x)j � jWff; g(�0; x0)j when x

belongs to the other side of the neighbourhood of x0.

� Call a wavelet transform modulus maxima line, a WTMML, any

connected curve in the scale space (�; x) along which all

points are modulus maxima.

Multiscale analysis

local analysis

For a wavelet with a support [�C;C] one finds for the ith

WTMML [24, 25]

jWff; g(�; x)j � A�� for x 2 fXi(�)g

and this gives information on the local Holder/Lipschitz regularitya of

the tempered distribution f . Equivalent to

log jWff; g(�; x)j � logA+ � log � for x 2 fXi(�)g:

aExcluding oscilatory singularities.

Multiscale analysis

example WTMML’s [24]

f(x)

(a) x

Wff;�g(� 0;x

)

(b) x

Wff; g(� 0;x

)

(c) x

jWff; g(� 0;x

)j

(d) xWTMML’S: x 2 fXi(�)g

Multiscale analysis

example WTMML’s [24]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

3

3.5

4

1.5 2 2.5 3 3.5

3

4

5

6

7

8

2 3 4 2 3 4 2 3 4

f(x)

log�

log �

jlogW

TMMLj

log � log � log �

(a) x

(b) x

(c)

WTMML’S: x 2 fXi(�)g

Multiscale analysis

Algebraic singularities:��+(x) ,

8<:

0 x � 0

x�

�(�+1) x > 0;

and

���(x) ,8<

:�x�

�(�+ 1)

x � 0

0 x > 0;

Multiscale analysis

Procedure 0.1 (Measurement and detection of isolated singularities)

Local regularity estimation of non-oscilatory singularities:

1. Select the proper analyzing wavelet (see below)

2. Compute the CWTof f with respect to the wavelets.

3. Find WTMML’s with definition, i.e. create a set

L = f1; 2; : : : ; lg of l curves, parameterized by

fX(�)gm2L.

4. Study the behaviour of function,

Wff; g(�;Xm(�));

on the curves Xm(�) 2 L as � ! 0.

5. Use the linear relationship to fit slope.

Multiscale analysis

1 2 3 4 5 6

0

2

4

6

8

10

12

1 2 3 4 5 6

0

2

4

6

8

10

12

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)

jlog

WT

MM

L j

log �

v.m. : 2

reg. : 1

��est : �1

(f)

jlog

WT

MM

L j

log �v.m. : 2

reg. : 1

��est : 0:02

(b)

log�

x (e)

log�

x

(a)

f(x

)

x (d)

f(x

)

x

Multiscale analysis

1 2 3 4 5 6

0

2

4

6

8

10

12

1 2 3 4 5 6

0

2

4

6

8

10

12

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)

jlog

WT

MM

L j

log �

v.m. : 2

reg. : 1

��est : 0:47

(f)

jlog

WT

MM

L j

log �v.m. : 2

reg. : 1

��est : �0:52

(b)

log�

x (e)

log�

x

(a)

f(x

)

x (d)

f(x

)

x

Multiscale analysis

1 2 3 4 5 6 7 815

17.5

20

22.5

25

1 2 3 4 5 6 7 815

17.5

20

22.5

25

1 2 3 4 5 6 7 815

17.5

20

22.5

25

1 2 3 4 5 6 7 815

17.5

20

22.5

25

0 240 480 720 960 1200 1440 1680 1920 2160 2400

1

2

3

4

5

6

7

8

0 240 480 720 960 1200 1440 1680 1920 2160 24001000

2000

3000

4000

5000

� = 0:2063

(c)

log(

WTM

ML )

log �

� = �0:8344

(d)

log(

WTM

ML )

log �

� = �0:006437

(e)

log(

WTM

ML )

log �

� = 0:5208

(f)

log(

WTM

ML)

log �

(b)

log�

x3[m]

(a)

c p

x3[m]

Estimation � using ln jWff; gg(ln�; x)j � lnC + � ln�

Scaling regimes

1 2 3 4 5 6 7 82

3

4

5

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

5

10

x 10−3

(c)

jlo g

WT

MM

L j

log �

Vanishing moments: 2

Smoothness wavelet: 1

Singularity �small : 0:01668

Singularity �large : �0:963

(b)

log�

x

(a)

f(x

)

x

Scaling regimes

1 2 3 4 5 6 7 8−2

0

2

4

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

5

10

15

x 10−3

(c)

jlo g

WTM

ML j

log �

Vanishing moments: 2

Smoothness wavelet: 1

Singularity �small : 1:927Singularity �large : �0:9658

(b)

log�

x

(a)

f(x

)

x

Scaling regimes

Box car:�(�) =

8<:

0 as � ! �0

�1 as � ! +1:

Gaussian bellshape:

�(�) =8<

:M as � ! �0

�1 as � ! +1:

Formally regularity statements can only be made as � ! 0.

Practically: Statements on regularity depend on the scale you

look at!! (see also discussions in [11, 13, 25])

Observations

� WTMML’s point to the singularities.

� Local scaling exponent varies, i.e.

jf(t+�t)� f(t)j � Kj�j�(t)

for K finite and � varying .... randomly

� The densification of the singularities makes it difficult to

estimate the local regularity ) interferring singularities

(bifurcations of WTMML’s).

Wavelet properties

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5−1

0123456

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

(c)

jlog

WTM

ML j

log �

Vanishing moments: 0

Smoothness wavelet: 1

Singularity �mean : �1:985

(b)

log�

x

(a)

f(x

)

x

Wavelet properties

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5−1

0123456

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

(c)

jlog

WTM

ML j

log �

Vanishing moments: 0

Smoothness wavelet: 0

Singularity �mean : �1

(b)

log�

x

(a)

f(x

)

x

Global multiscale analysis

(Multi-)fractals are examples of constructs with infinitely many

singularities.

Typically generated by some iterative non-linear operation.

Examples are the Cantor set, fractional Brownian motions and

binomial multifractals.

Characterized by fractal dimensions.

Fractal dimensions

Definition 0.3 (Fractal box-dimension or capacity [23, 27, 28])

The box dimension of a set A � Rp is given by,

DB , lim�#0

logN�

log ��1;

where N� is the minimum number of p-dimensional �-sized

neighbourhoods needed to cover the set A. The parameter � refers

to the size of the boxes, the length of their “gauge”.

DB = limj!1

log 2j

log 3j=log 2

log 3= 0:6309 � � � :

Fractal dimensions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

Z x0

d�(x)

Fractal dimensions

Definition 0.4 (Hausdorff dimension and Hausdorff measure [9, 27, 28])

Consider a covering of the subset A � Rp by p-dimensional

neighbourhoods of linear size �i. The Hausdorff dimension dimH

is the critical dimension for which the Hausdorff measure Hd(�)

takes a finite value,

Hd(�) , lim�#0infX

i

�di =8>><

>>:0 d > dimH ;

finite d = dimH ;

1 d < dimH ;

and where the infimum extends over all possible coverings subject

to the constraint that �i � �.

Fractal dimensions

Definition 0.5 (Generalized or Renyi dimensions Dq [34, 27, 10, 32])

To define the generalized dimensionsDq partition the measure

using a grid with a lattice constant � and subsequently introduce the

multiscale partition function as

Z�(q) ,

X8xi2A�[B�(xi)]q =

X8xi2Apiq;

where pi = �[B�(xi)] ,R

B�(xi)d�(x) is the total measure

within the ith box, at position xi and of linear size �. The set of

generalized dimensions Dq is then defined by,

(q � 1)Dq , �(q) , lim�#0

logZ�(q)

log �

;

implying a scaling behaviour for the partition function Z�(q), for

small �,Z�(q) / ��(q)

and where �(q) is the mass exponent function.

Fractal dimensions

For the binomial multifractal the partition function for the kth

iteration equals

Z�=2�k(q) = (pq1 + pq2)k = �(q)k;

with �(q) the generator, i.e. the partition function after the first

iteration.

Generalized dimensions Dq :

(q � 1)Dq = � log2 �(q) = � log2(pq

1 + pq2);

which are – by nature of the self-similar construction – fully

determined by the generator.

Fractal dimensions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10123

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10123

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

1

2

binomial multifractal

Fractal dimensions

Definition 0.6 (Local scaling exponent of a measure [6, 36, 1, 18])

The local scaling exponent or local fractal dimension of a measure

� is defined as

�(x0) , lim�#0inflog �(B�(x0))

log �

where B�(x0) is a �-box centered at x0.

� Notice the similarity with the definition of local Holder regularity.

� Original multifractal framework build on measure theoretical

arguments.

Fractal dimensions

Theorem 0.1 (Singularity spectrum and generalized dimensions [6, 18])

The singularity spectrum and the generalized fractal dimensions are

related via a Legendre transforms8<:

�(q) = q�� f(�)

q = @�f(�)and conversely, 8<

:f(�) = q�� �(q)

� = @q�(q):

Fractal dimensions

Hausdorff dimensions f(�) can be associated with the subsets

A� � A according tof(�) , lim

�#0�logN�(�)

log �

which is equivalent to the following scaling behaviour

N�(�) / ��f(�)���

�#0:

By summing over A�:

Z�(q) =X

Xx2A�

�[B�(x)]q /Z

�q��f(�)d�;

Fractal dimensions

Definition 0.7 (Singularity spectrum of a measure [6, 32, 1, 18])

The singularity spectrum of a measure �(x) is the function f(�)

such that

f(�) , dimHfx j �[B�(x)] / ��j�#0g;

where dimH denotes the Hausdorff dimension and B�(x) is a

�-box centered at x.

Fractal dimensions

For binomial multifractal:

�(q) = � log2[pq

1 + pq2]; Dq =

�(q)

q � 1

and the singularity spectrum reads

f(�) = �c(�) log2 c(�)� (1� c(�)) log2(1� c(�));

with c(�) = (�� �min)=(�max � �min) and

�min = � log2 p1; �max = � log2 p2.

Fractal dimensions

−20 0 200

0.5

1

1.5

2

−20 0 20−60

−40

−20

0

20

0 1 20

0.5

1

q

Dq

q

�(q)

f(�)

Fractal dimensions

So far analysis limited to measures.

Extension to multifractal functions:

f(x) ,Z x

0

d�(x0) + Pn(x);

where �(x) 2M and Pn(x) a polynomial of arbitrary but finite

order n.

Multiscale analysis

Theorem 0.2 (Generalized fractal dimensions of a function by the WTMML [1])

Let � 2 M. Let Pn(x) be a polynomial of the order n and

f(x) =R x

0

d�(x0) + Pn(x). Let be an analyzing wavelet with

M > n vanishing moments, i.e. 8k; 0 � k � n;R

xk (x)dx = 0.

Let Z�f�; g(p; q) be the corresponding partition function

Z�ff; g(p; q) = j�j�pX

j2J( sup

x=Xj(�)jhf; �;xij)q; q 2 R ;

where fXj(�)gj2J is the set of WTMML’s. Then, for all q 2 R , �(q) is

the transition exponent such that

p < �(q) ) lim�#0Z�ff; g(p; q) = 0

p > �(q) ) lim�#0Z�ff; g(p; q) =1:

Singularity spectrum

Definition 0.8 (Singularity spectrum of a function Bacry93,Holschneider95)

A singularity spectrum of a function f(x) is the function f(�),

� 2 Hf , the set of finite Holder exponents of f , such that

f(�) = dimHfx0 2 R j�(x0) = �g;

where dimH denotes the Hausdorff dimension.

Isolated singularities

0 2 4 6−60

−25

10

45

80

−5 −2.5 0 2.5 5−3

−1.5

0

1.5

3

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

2

4

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

10

20

30

40

(c)

Z(�;q)

(d)

�(q)

(e)

f(�)

(b)

log�

(a)

f(x

)

log � q �x

x

0 2 4 6−40

−20

0

20

40

−5 −2.5 0 2.5 5−3

−1.5

0

1.5

3

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

2

4

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

(c)

Z(�;q)

(d)

�(q)

(e)

f(�)

(b)

log�

(a)

f( x

)

log � q �x

x

White noise and Brownian motion

0 1 2 3 4 50

25

50

75

100

0 1 2 3 4 5 6 7−2

−0.8

0.4

1.6

2.8

4

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−5

0

5

10

15

(c)

Z(�;q)

(d)

�(q)

(e)

f(�)

(b)

log�

(a)

f(x

)

log � q �x

x

0 1 2 3 4 50

20

40

60

0 1 2 3 4 5 6−4

−3.2

−2.4

−1.6

−0.8

0

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

(c)

Z( �;q)

(d)

�( q)

(e)

f(�)

(b)

log�

(a)

f(x

)

log � q �x

x

fractional Brownian motions

Partition function:

Z�(q) / ��1

2

q�1;displays a trivial (in q) scaling behavior =) monofractal.

Binomial multifractal

1 2 3 4 50

10

20

30

40

−5 −3 −1 1 3 5−10

−6

−2

2

6

10

−2 −1 0 1 2 3 40

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

(c)

Z(�;q)

(d)

�(q)

(e)

f(�)

(b)

log�

(a)

f(x

)

log � q �x

x

1 2 3 4 55

8

11

14

17

20

−5 −3 −1 1 3 5−10

−6

−2

2

6

10

−2 −1 0 1 2 3 40

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.8

2.6

3.4

4.2

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.02

0.04

0.06

(c)

Z( �;q)

(d)

�(q)

(e)

f(�)

(b)

log�

(a)

df( x)

dx

log � q �x

x

Important exponents

� conservation of the mean (index fbm)

H , f�(q)gq=1 + 1;

� endpoints f(�)�min =max , f@q�(q)gq!�1:

� information dimension

�1 , f@q�(q)gq=1 with D1 = f(�1)

� dimension singular support

�0 , f@q�(q)gq=0 with D0 = f(�0)

Multiscale analysis

1 2 3 4 5 6 7 8−200

−100

0

100

200

300

−9 −4.4 0.2 4.8 9.4 14−20

−16

−12

−8

−4

0

−1 −0.4 0.2 0.8 1.4 2−0.5

0

0.5

1

1.5

0 240 480 720 960 1200 1440 1680 1920 2160 2400

1

2

3

4

5

6

7

8

0 240 480 720 960 1200 1440 1680 1920 2160 24001000

2000

3000

4000

5000(c)

logZ

(�;q

)

(d)

�(q)

(e)

f( �)

(b)

log�

(a)

c p

log � q �x[m]

x[m]

Estim. �(q), f(�) using ln jZ(ln�; q)j � lnC + �(q) ln�.

Estimates important exponents

well-data

� inertial range: � 2 [�5m;�160m]

� q-range: q 2 [�9; 14]

� conservation of the mean (index fbm): H = 0:35

� endpoints f(�): �min = �0:18 and �max = 1:63

� information dimension (where the measure is concentrated):

f(�1) = 0:93 with �1 = 0:27

� dimension singular support: f(�0) = 1:06 with �0 = 0:50

Multiscale analysis

Global analysis cp well data

2 4 6

−100

0

100

200

300

−5 0 5 10−10

−5

0

0 0.5 10

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2.2

3.4

4.6

5.8

7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c)

logZ(�;q

)

(d)

�(q)

(e)

f(�)

(b)

log�

(a)

r(t)

Multiscale analysis

Global analysis cs well data

2 4 6

−100

0

100

200

300

−5 0 5 10−10

−5

0

0 0.5 10

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2.2

3.4

4.6

5.8

7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c)

Z(�;q)

(d)

�(q)

(e)

f(�)

(b)

log�

(a)

r(t)

Multiscale analysis

Global analysis � well data

2 4 6

−100

0

100

200

300

−5 0 5 10−15

−10

−5

0

0 0.5 1 1.50

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2.2

3.4

4.6

5.8

7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c)

Z(�;q)

(d)

�(q)

(e)

f(�)

(b)

log�

(a)

r(t)

Multiscale analysis

comparison cp, cs and � data

0 200 400 600 800 1000 1200 1400 1600 1800 20002000

4000

6000

x

c p

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2000

4000

x

c s

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2000

4000

x

ρ

−10 −5 0 5 10 15−15

−10

−5

0

q

τ(q)

−0.5 0 0.5 1 1.5 2−0.5

0

0.5

1

1.5

α

f(α)

Multiscale analysis

comparison different wells

0 500 1000 1500 2000 2500 3000 3500 40000

5000

x

c p

Well A

0 200 400 600 800 1000 1200 1400 1600 1800 20002000

4000

6000

x

c p

Well B

−10 −5 0 5 10 15−15

−10

−5

0

q

τ(q)

−0.5 0 0.5 1 1.5 2−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

α

f(α)

Multiscale analysis

Global analysis reflection coefficients

2 4 6

0

100

200

−5 0 5 10−20

−10

0

10

−1 −0.5 0

0

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2.2

3.4

4.6

5.8

7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c)

Z(�;q)

(d)

�(q)

(e)

f(�)

(b)

log�

(a)

r(t)

Multiscale analysis

Global analysis seismic reflection data

1 2 3 4

−50

0

50

100

150

−4 0.5 5−20

−16

−12

−8

−4

0

−2.5 −1.625−0.75 0.125 1−0.5

−0.25

0

0.25

0.5

0.75

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.7

2.4

3.1

3.8

4.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

O6 O6 O6

O6

O6

(c)

Z(�;q

)

(d)

�(q )

(e)

f(�)

(b)

log�

(a)

r(t)

Estimates important exponents

reflection-data

� inertial range: � 2 [0:008 s; 0:09 s]

� q-range: q 2 [�4; 5]

� endpoints f(�): �min = �2:22 and �max = 0:43

� information dimension (where the measure is concentrated):

f(�1) = 0:80 with �1 = 1:76

� dimension singular support: f(�0) = 0:98 with �0 = 1:35

Properties

� Differentiation shifts the singularity spectrum to the left, i.e.@�f : f(�) := f(�+ �)

� Integration shifts the singularity spectrum to the right, i.e.

I�f = @��f : f(�) := f(�� �)

� Observation range singularities (� 2 (�min; �max)) depends

on smoothness and number of vanishing moments.

Wavelet properties

−1 0 1−2

−1

0

1

2

−2 −1 0 1 2−2

−1

0

1

2

−1 0 1−2

−1

0

1

2

−2 −1 0 1 2−2

−1

0

1

2

−1 0 1−2

−1

0

1

2

−2 −1 0 1 2−2

−1

0

1

2

−1 0 1−2

−1

0

1

2

−2 −1 0 1 2−2

−1

0

1

2

Gaussian f(�) Derivative Gaussian f(�)

Boxcar f(�) Poor Man f(�)

Multiscale analysis

Global analysis seismic reflection data

1 2 3 4 5−10

0102030405060

−5 −3 −1 1 3 5−20

−14

−8

−2

4

10

−2 −1 0 1 2 3 40

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.8

2.6

3.4

4.2

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

(c)

Z(�;q

)

(d)

� (q)

(e)

f(�)

(b)

log�

(a)

R f(x)

d x

log � q �x

x

Multiscale analysis

Global analysis seismic reflection data

1 2 3 4 5−30

−15

0

15

30

−5 −3 −1 1 3 5−10

−6

−2

2

6

10

−2 −1 0 1 2 3 40

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.8

2.6

3.4

4.2

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

(c)

Z(�;q

)

(d)

� (q)

(e)

f(�)

(b)

log�

(a)

R f(x)

d x

log � q �x

x

Multiscale analyis

Besov Norms [20, 33]

A function f belongs to the homogeneous Besov space Bs;qp if

Z +1

0

[1

�skWff; g(�; �)kLp ]q d�

<1

with s 2 R and p; q > 0. Hence

�(p) = supfs : F 2 Bs=p;pp g = supfs : f 2 Lp;s=pg

with f 2 Ls;p () f 2 Lp ^ @sxf 2 Lp.

Multiscale analysis

Besov norm, measurability, differentiability ....

� Besov norm is finite if sp < �(p) + 1 iff s < M with M# van.

mom. and regularity wavelet [35].

� When �1 = limp!1 @p�(p) < 0 f is not bounded!

� Besov norm is related to the global (ir)-regularity.

� Singularities ly dense, i.e. f(�) is smooth, there is no phase

transition.

Of course this is all “true” if one assumes that the discete data

constitute samples from a “continuous” function/functional!

Multiscale analyis

Besov Brownian motion, white noise

0 5 10−0.5

0

0.5

1

1.5

2

2.5

3

p

τ(p)

0 5 100.5

0.51

0.52

0.53

p

τ(p)

/p+

1/p

Brownian Motion

0.45 0.5 0.55 0.60.9

0.95

1

1.05

1.1

1.15

1.2

α

f(α)

0 2 4 6−4

−3.5

−3

−2.5

−2

−1.5

−1

p

τ(p)

0 2 4 6−0.48

−0.478

−0.476

−0.474

−0.472

−0.47

−0.468

p

τ(p)

/p+

1/p

White Noise

−0.5 −0.48 −0.46

0.98

1

1.02

1.04

α

f(α)

Multiscale analyis

Besov Devil Staircase

0 2 4 6−0.5

0

0.5

1

1.5

2

p

τ(p)

0 2 4 60.5

0.6

0.7

0.8

0.9

1

p

τ(p)

/p+

1/p

Devil staircase

0.2 0.4 0.6 0.8−0.2

0

0.2

0.4

0.6

0.8

α

f(α)

0 2 4 6−3.5

−3

−2.5

−2

−1.5

−1

−0.5

p

τ(p)

0 2 4 6−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

p

τ(p)

/p+

1/p

Devil Staircase distribution

−0.8 −0.6 −0.4 −0.2−0.2

0

0.2

0.4

0.6

0.8

α

f(α)

Multiscale analyis

Besov Well

0 5 10 15−3

−2.5

−2

−1.5

−1

−0.5

p

τ(p)

0 5 10 15−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

p

τ(p)

/p+

1/p

Well−log

−0.2 0 0.20

0.2

0.4

0.6

0.8

1

α

f(α)

0 5 10 15−20

−15

−10

−5

0

p

τ(p)

0 5 10 15−1.3

−1.2

−1.1

−1

−0.9

−0.8

p

τ(p)

/p+

1/p

Reflection

−1.5 −1 −0.5−0.2

0

0.2

0.4

0.6

0.8

1

α

f(α)

Multiscale analyis

Besov Seismic

0 5 10 15−2.5

−2

−1.5

−1

−0.5

p

τ(p)

0 5 10 15−0.2

−0.1

0

0.1

0.2

0.3

0.4

p

τ(p)

/p+

1/p

Well−log

−0.2 0 0.2 0.4−0.2

0

0.2

0.4

0.6

0.8

1

α

f(α)

0 2 4 6−12

−10

−8

−6

−4

−2

p

τ(p)

0 2 4 6−2

−1.9

−1.8

−1.7

−1.6

−1.5

p

τ(p)

/p+

1/p

Reflection

−2.5 −2 −1.5−0.4

−0.2

0

0.2

0.4

0.6

0.8

α

f(α)

Besov

� Regularity information can be used for linear inverse problems

(See Jonathan Kane’s SEG abstract and [4, 5, 31, 2])

� We know in what functional space the medium lies.

� We know in what functional space the reflection data lies.

� Multifractality means heterogeneous scaling:

jf(t+�t)� f(t)j � Kj�j�(t)

Observations

from the data

Both well and seismic data display multifractal behavior

� Well-data is, except for a sparse set of singularities, close to

continuous but not differentiable.

� Reflection data (both reflection coefficients and reflectivity)

are almost everywhere discontinuous and everywhere

non-differentiable.

Implications

There exists an unique solution for@xp(x; t) + �(x)@tv(x; t) = 0

@xv(x; t) + �(x)@tp(x; t) = 0

Iff

0 < �0 � �(x) � �1 <1

0 < �0 � �(x) � �1 <1

Is that true given the multiscale analysis findings?

Implications

More importantly

ddt

Zx2D(t)�vdx0 =

Zx2D(t)�Dtvdx0

was used requiring

@t�(x; t) + @x(�(x; t)v(x; t)) = 0

implying �(x; �) 2 C1 which is not the case, i.e. �(x; �) =2 C1!!

Moreover many asymptotic approaches break down due to a lack of

a separation of scales!

Conclusions

well-data and seismic data

� Well and reflection data display a multifractal, heterogeneous

scaling behavior.

� Well-log are apparent non-smooth and even discontinuous.

� Singularity structure more or less shared by different physical

parameters.

� Singularity structure different wells is comparable.

� Reflection data are almost everywhere discontinuous and

certainly non-differentiable.

� Singularity spectra provide a priori information.

References[1] E. Bacry, J. F. Muzy, and A. Arneodo. Singularity spectrum of fractal signals from

wavelet analysis: Exact results. Journal of Statistical Physics, 70(3/4):635–674, 1993.

[2] K. Berkner, M. Gormish, and E. Schwartz. Multiscale sharpening and smoothing

in besov spaces with applications to image enhancement. Appl. Comput. Harmon.

Anal., 2001. to appear March/June 2001.

[3] R. Carmona, W. Hwang, and B. Torresani. Practical time-frequency analysis. Aca-

demic Press, 1998.

[4] H. Choi and R. G. Baraniuk. Wavelet statistical models and besov spaces. In Pro-

ceedings of SPIE Technical Conference on Wavelet Applications in Signal Processing

VII, 1999.

[5] H. Choi and R. G. Baraniuk. Information-theoretic analysis of besov spaces. In Pro-

ceedings of SPIE Technical Conference on Wavelet Applications in Signal and Image

Processing VIII, 2000.

[6] P. Collet. Dynamical Systems 1986, chapter Haussdorff dimension of the singularities

for invariant measures of expanding dynamical systems. Springer-Verlag, 1986.

[7] I. Daubechies. Ten lectures on wavelets. SIAM, Philadelphia, 1992.

81-1

[8] J. M. Ghez and S. Vaienti. Integrated wavelets on fractal sets: II. The generalized

dimensions. Nonlinearity, 5:791–804, 1992.

[9] F. Hausdorff. Dimension und außeres maß. Math. Analen, 79:157–179, 1918.

[10] H. G. E. Hentschel and I. Procaccia. The infinite number of generalized dimensions

of fractals on strange attractors. Physica D, 8:435–444, 1983.

[11] F. Herrmann. A scaling medium representation, a discussion on well-logs, fractals

and waves. PhD thesis, Delft University of Technology, Delft, the Netherlands, 1997.

http://wwwak.tn.tudelft.nl/�felix.

[12] F. Herrmann. Evidence of scaling for acoustic waves in multiscale media and its

possible implications. In Expanded Abstracts, Tulsa, 1998. Soc. Expl. Geophys.

[13] F. Herrmann. Multiscale analysis of well and seismic data. In S. Hassanzadeh, edi-

tor, Mathematical Methods in Geophysical Imaging V, volume 3453, pages 180–208.

SPIE, 1998.

[14] F. Herrmann. Singularity Characterization by Monoscale Analysis: Application to Seis-

mic Imaging. Appl. Comput. Harmon. Anal., 2001. to appear March/June 2001.

[15] F. Herrmann and C. Stark. Monoscale analysis of edges/reflectors using fractional

differentiations/integrations. In Expanded Abstracts, Tulsa, 1999. Soc. Expl. Geophys.

http://www-erl.mit.edu/�felix/Preprint/SEG99.ps.gz.

81-2

[16] F. Herrmann and C. Stark. A scale attribute for texture in well- and

seismic data. In Expanded Abstracts, Tulsa, 2000. Soc. Expl. Geophys.

http://www-erl.mit.edu/�felix/Preprint/SEG00.ps.gz.

[17] M. Holschneider. On the wavelet transform of fractal objects. Journal of Statistical

Physics, 50(5/6):963–993, 1987.

[18] M. Holschneider. Wavelets an analysis tool. Oxford Science Publications, 1995.

[19] S. Jaffard. Exposants de Holder en points donnes et coefficients d’ondelettes. C. R.

Acad. Sci. Paris, 308:79–81, 1989.

[20] S. Jaffard. Multifractal formalism for functions part I: Results valid for all functions.

SIAM J. Mathematical Analysis, 28(4):944–970, July 1997.

[21] S. Jaffard. Multifractal formalism for functions part II: Self-similar functions. SIAM J.

Mathematical Analysis, 28(4):971–998, July 1997.

[22] S. Jaffard and Y. Meyer. Wavelet Methods for Pointwise Regularity and Local Oscilla-

tions of Functions, volume 123. American Mathematical Society, september 1996.

[23] A. N. Kolmogorov. Local structure of turbulence in an incompressible liquid for very

large Reynolds numbers. Dokl. Akad. Nauk., 30:299–303, 1941.

[24] S. Mallat and L. Hwang. Singularity detection and processing with wavelets. IEEE

Transactions on Information Theory, 38(2):617–642, 1992.

81-3

[25] S. G. Mallat. A wavelet tour of signal processing. Academic Press, 1997.

[26] S. G. Mallat and S. Zhong. Characterization of signals from multiscale edges. IEEE

Trans. Patt. Anal. Mach. Intell., 14:710–732, 1992.

[27] B. B. Mandelbrot. Intermittent turbulence in self-similar cascades: divergence of high

moments and dimension of the carrier. J. Fluid Mechanics, 62:331, 1974.

[28] B. B. Mandelbrot. The fractal geometry of nature. Freeman and Co., 1982.

[29] J. Morlet, G. Arens, E. Fourgeau, and D. Giard. Wave propagation and sampling

theory-Part I: Complex signal and scattering in multilayerd media. Geophysics,

V(47):203–221, 1982.

[30] J. Morlet, G. Arens, E. Fourgeau, and D. Giard. Wave propagation and sampling

theory-Part II: Complex signal and scattering in multilayerd media. Geophysics,

V(47):222–236, 1982.

[31] R. Neelamani, H. Choi, and R. Baraniuk. Wavelet-based deconvolution for

ill-conditioned systems. IEEE Transactions on Image Processing. submitted,

www-dsp.rice.edu/�neelsh/publications.

[32] G. Parisi and U. Frisch. Turbulence and predictability in geophysical fluid dynamics

and climate dynamics, chapter A multifractal model of intermittency, pages 84–88.

North Holland, 1985.

81-4

[33] V. Perrier and C. Basdevant. Besov norms in terms of the continuous wavelet transfor-

m, application to structure functions. to appear in Mathematical Models and Methods

in the Applied Sciences (M3AS), 6(6), 1996.

[34] A. Renyi. Probability theory. North Holland, 1970.

[35] R. Riedi, M. Crouse, V. Ribeiro, and G. Baraniuk. A multifractal wavelet model with

application to network traffic. IEEE Transactions on Information Theory, 1998.

[36] A. P. Siebesma. Multifractals in condensed matter. PhD thesis, Rijksuniversiteit

Groningen, 1989.

81-5