42
Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Embed Size (px)

Citation preview

Page 1: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Schwarzschild Perturbations in the Lorenz Gauge

Leor Barack (Soton)Carlos Lousto (UTB)

Page 2: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Talk Plan

Why Lorenz Gauge?

Schwarzschild perturbations reformulated in the Lorenz gauge: Now both odd- and even- parity modes.

Code for time evolution of Lorenz-gauge perturbations from a point particle: Circular orbits in Schwarzschild.

Future work: Self-force calculations, generic orbits, Kerr black hole.

Page 3: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Gauge freedom in Perturbation Theory

hgg )bckgrnd( 10 functions, but only 2 “physical” dof

In particular, represent the same physical perturbation,

for any (“small”, differentiable) displacement field

);(2and hh

Useful gauges in black hole perturbation theory

Regge-Wheeler gauge: 0)4,3,2,1()()( ),(),( iiii

lmi

lmilmi hYhh tr

Radiation gauge: 0or0

nhlh

Lorenz (“harmonic”) gauge: 0;

h

Page 4: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Problem: Standard BH perturbation techniques give h in other gauges.

Solutions attempted:

Transform h (RW/Radiation) h (Lorenz), and evaluate contribution of difference to SF

Transform hS (Lorenz) hS (RW/Radiation), and try make sense of SF in RW/Rad gauges

Our approach: Step back; reformulate BH perturbation theory in Lorenz gauge.

Grav. self-force and gauge freedom

Lorenz gauge

Lorenz gauge

)03Whiting&Detweiler(lim

)97MSTQW(lim

S

dirself

hh

hhF

prtclx

prtclx

Page 5: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Why Lorenz gauge? (I)

Lorenz gauge:

Particle singularities look like particle singularities:

Pointlike and isotropic

Regge-Wheeler gauge:

Particle singularities are not isotropic. Field depends on direction of approach to singularity

Radiation gauge:

Typically, particle singularities are not even isolated!

Page 6: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

RW/Zerilli/Moncrief/Teukolsky variables are discontinuous at the particle. The (mode decomposed) Lorenz-gauge MP is continuous. No -function derivatives in the source term of the field equations.

No need to resort to complicated MP reconstruction procedures, as when working with Moncrief/Teukolsky variables.

In particular, no need to take derivatives of numerical integration variables – advantage in numerical implementation.

Field equations manifestly hyperbolic.

Price to pay: Field equations remain coupled.

Why Lorenz gauge? (II)

Page 7: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Schwarzschild perturbations in the Lorenz gauge: formulation

Page 8: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

1. Linearized Einstein equations in the Lorenz gauge

Page 9: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

2. Tensor-harmonic decomposition

Page 10: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

3. Make sure variables are suitable for numerical time-evolution

Page 11: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

4. Get separated equations for the h(i)’s

Page 12: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

ODD PARITY

EVEN PARITY

Page 13: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

5. Write gauge conditions in mode-decomposed form,

… and use them to reduce the system of field equations:

0

Page 14: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

EVEN PARITY

ODD PARITY

Circular equatorial orbit, Axially-symmetric (m=0) modes

Page 15: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

r/M

rp

fEH lr

Analytic solution for the axially-symmetric, odd-parity modes in the case of a circular orbit

Page 16: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

MP “reconstruction”

Page 17: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Code for time evolution of the MP Eqs

Circular geodesics in Schwarzschild

Page 18: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Grid for 1+1d numerical evolution

Grid size: At least 3-4 Torb

(>300M for r0=6M)

Resolution:

~1 grid pt/M2 for fluxes extraction

~106 grid pts/M2 (near particle) for SF extraction

Event

Hor

izon Null Infinity

Page 19: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Finite difference scheme (2nd order convergent)

0

hh

hh

[Demonstrated here for a scalar field – works similarly for our coupled MP Eqs]

Page 20: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 21: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 22: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 23: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 24: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Results: Scalar field

Page 25: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

---------------------------------------- [F_r(r0+)-F_r(r0-)]/(2L): ("A_r") -2.16430508258478D-002 -2.16430501533300D-002 -2.16430495556174D-002 ---------------------------------------- [F_r(r0+)+F_r(r0-)]/2: ("B_r") -1.07310613335618D-002 -1.07310600978665D-002 -1.07310599479544D-002 ---------------------------------------- ---------------------------------------- |F_r(r0+)-F_r(r0-)|/2-|A|*L: ("C_r") 6.76214094093648D-005 6.76204006326203D-005 6.76195040637838D-005 ---------------------------------------- F_r(REG): -9.90421617212026D-005 -9.90409250297095D-005 -9.90407736144393D-005 ---------------------------------------- F_t(r0): 1.09151357977453D-004 1.09149895091873D-004 1.09148592668721D-004 ----------------------------------------

Results: Scalar force (sample output, screen capture)

[leor@hercules scalar]$ ./a.out l=1 Evolution time (# of orbits)=5 Initial Resolution (steps per M in r*,t)=5 ITERATION # 1 ITERATION # 2 ITERATION # 3 ---------------------------------------- Phi(r0): Cycle # 2 : 0.136805155563096 Cycle # 3 : 0.136805162960639 Cycle # 4 : 0.136805163931519 ---------------------------------------- F_r(r0+): Cycle # 2 : -4.31956375723335D-002 Cycle # 3 : -4.31956353278614D-002 Cycle # 4 : -4.31956342813805D-002 ---------------------------------------- F_r(r0-): Cycle # 2 : 2.17335149052099D-002 Cycle # 3 : 2.17335151321284D-002 Cycle # 4 : 2.17335143854717D-002 ----------------------------------------

Page 26: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Sample results: Metric Perturbation (odd parity)

Page 27: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Sample results: Metric Perturbation (Even parity,l=m=2, rp=7M)

Page 28: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Sample results: MP (even parity,l=m=2, rp=7M)

Page 29: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Tests of Code

Page 30: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Test #1: 2nd-order Numerical Convergence

l=2,m=1r0=7M

Page 31: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

l=2,m=1r0=7M

Page 32: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

l=m=2

Page 33: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

l=m=2

Page 34: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Test #2: conservation of the gauge condition

Page 35: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

500

500500

Page 36: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

500

Page 37: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Test #3: Flux of energy radiated to infinity

Page 38: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

lmE

Page 39: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

What’s next?

Page 40: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Gravitational Self Force

• Getting the self force is now straightforward:

No need to take 3 derivatives, just one – as in scalar case

Modes l=0,1 given (almost) analytically, in the harmonic gauge

Most crucial: no gauge problem; mode-sum implemented as is:

• Two options:

Either decompose Ffull in Scalar harmonics & use the “standard” RP;

Or decompose Ffull in Vector harmonics and re-derive the RP accordingly.

Page 41: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Eccentric orbits in Schwarzschild

• Generalization is easy, as code is time-domain

Page 42: Schwarzschild Perturbations in the Lorenz Gauge Leor Barack (Soton) Carlos Lousto (UTB)

Orbits in Kerr

N. Hernandez (MSc Thesis, Brownsville 2005) shows promise of this approach