42
PLATO 2.0 Science Conference Tarmina, 35 December 2014 Science Program, Abstracts, List of Participants

Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

 

PLATO  2.0    Science  Conference  Ta♉rmina,  3-­‐5  December  2014

   

     

Science  Program,  Abstracts,  List  of  Participants  

   

Page 2: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 2  

Contents    Scientific Program  .....................................................................................................................................................  5  Abstracts  ......................................................................................................................................................................  10  Session  A  -­‐  The  PLATO  Mission  and  Current  Status  ...............................................................................  10  Heras,  A.  &  Colangeli,  L.  -­‐  PLATO  as  M3  mission  in  ESA's  Cosmic  Vision  plan  .......................  10  Hatzes,  A.  -­‐  Exoplanets  in  the  2020’s  ........................................................................................................  10  Rauer,  H.  -­‐  The  PLATO  Mission  -­‐  Overview  ............................................................................................  10  Gondoin,  P.  -­‐  PLATO  spacecraft,  payload  and  mission  operation  concept  ...............................  10  Gizon,  L.  -­‐  PLATO  Data  Centre  ......................................................................................................................  10  

Session  B  -­‐  Planet  formation  and  evolution  ................................................................................................  11  Alibert,  Y.  -­‐  Planetary  system  formation  and  composition:  statistics  on  low  mass  planets  ...................................................................................................................................................................................  11  Nelson,  R.  P.  -­‐  Formation  and  orbital  evolution  of  planetary  systems  .......................................  11  Mardling,  R.  -­‐  The  star-­‐planet  tidal  link  ...................................................................................................  12  Laskar,  J.  -­‐  How  to  characterize  multi-­‐planet  systems  ......................................................................  12  Nascimbeni,  V.  -­‐  TTVs:  from  Observations  to  Understanding  .......................................................  12  Church,  R.P.  -­‐  Deducing  inclinations  of  transiting  multi-­‐planet  systems  ..................................  12  Mordasini,  C.  -­‐  Time:  a  new  dimension  of  constraints  for  planet  formation  and  evolution  theory  .....................................................................................................................................................................  13  Zwintz,  K.  -­‐  Stellar  structure  across  the  HR  diagram  .........................................................................  13  White,  T.R.  -­‐  What  Interferometry  will  do  for  PLATO  .......................................................................  13  

Session  C  -­‐  PLATO  Stars  and  Planets  .............................................................................................................  14  Piotto,  G.  -­‐  PLATO  target  and  field  selection  ..........................................................................................  14  Goupil,  M.  J.  -­‐  Asteroseismology  with  Plato  ............................................................................................  14  Cabrera,  J.  -­‐  The  planet  detection  pipeline  of  PLATO  2.0:  overview  and  challenges  ............  14  Deleuil,  M.  -­‐  PLATO  candidates  selection  and  ranking  ......................................................................  14  Udry,  S.  -­‐  PLATO  Follow-­‐Up  challenges  ...................................................................................................  15  Santos,  N.  C.  -­‐  Deriving  stellar  parameters  .............................................................................................  15  Gaidos,  E.  -­‐  Properties  of  Very  Cool  Stars  and  their  Planets:  The  Kepler  Experience  and  the  PLATO  Promise  ..........................................................................................................................................  15  Kolb,  U.  -­‐  Binary  population  models  of  PLATO  2.0  fields  .................................................................  15  Santerne,  A.  -­‐  Minimising  the  needs  of  follow-­‐up  observations  for  PLATO  :  the  central  role  of  planet-­‐validation  tool  .................................................................................................................................  16  

Session  D  -­‐  Giant  and  Terrestrial  Planets  ....................................................................................................  16  Sohl,  F.  -­‐  Terrestrial  planet  mass-­‐radius  and  composition  .............................................................  16  Guillot,  T.  -­‐  Giant  planet  mass  radius  relationship  and  their  compositions  .............................  17  Deeg,  H.J.  -­‐  Circumbinary  Planets  ...............................................................................................................  17  Kislyakova,  K.  -­‐  Star-­‐planet  interaction  and  planetary  characterization  methods  ...............  17  Ehrenreich,  D.  -­‐  Atmospheres  of  PLATO  planets  .................................................................................  18  Burleigh,  M.R.  -­‐  Eclipses,  transits  and  intrinsic  variability  of  white  dwarfs  with  PLATO  2.0  ...................................................................................................................................................................................  18  Haswell,  C.A.  -­‐  Do  extremely  close-­‐in  transiting  planets  hold  the  key  to  learning  exoplanet  compositions?  .....................................................................................................................................................  19  Noack,  L.  -­‐  Terrestrial  planets  vs.  water  worlds:  characterization  and  habitability  limitations  .............................................................................................................................................................  19  Szabó,  Gy.  M.  -­‐  An  occurrence-­‐weighted  searching  strategy  for  exomoons  ............................  20  

Page 3: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 3  

Rodríguez-­‐López,  C.  -­‐  CARMENES:  Radial  velocity  follow-­‐up  and  characterization  of  PLATO  targets  .....................................................................................................................................................  20  

Session  E  -­‐  Stellar  and  Other  Science  .............................................................................................................  21  Chaplin,  W.J.  -­‐  Prospects  for  studies  of  solar-­‐type  stars  with  PLATO  .........................................  21  Miglio,  A.  -­‐  Red-­‐Giants  and  Galactic  Structure  ......................................................................................  21  Tkachenko,  A.  -­‐  Binary  stars  in  the  era  of  space-­‐based  missions  .................................................  22  Campante,  T.  L.  -­‐  An  ancient  extrasolar  system  with  five  terrestrial-­‐size  planets  ................  22  Cassisi,  S.  -­‐  Improving  our  understanding  of  stellar  evolution  with  PLATO  ...........................  23  Nielsen,  M.  B.  -­‐  Constraints  on  the  radial  differential  rotation  for  six  Sun-­‐like  stars  ..........  23  Reese,  D.  R.  -­‐  SpaceInn  hare-­‐and-­‐hounds  exercise  .............................................................................  23  Ball,  W.  H.  -­‐  A  new  correction  of  stellar  oscillation  frequencies  for  near-­‐surface  effects  ..  24  Buldgen,  G.  -­‐  Asteroseismic  inversions  in  the  context  of  the  Plato  mission  ............................  24  

Session  F  -­‐  PLATO's  Contribution  to  Exoplanet  studies  ........................................................................  24  Pagano,  I.  -­‐  Synergy  with  other  facilities:  CHEOPS,  TESS,  JWST  and  E-­‐ELT  .............................  24  Sozzetti,  A.  -­‐  On  the  Gaia  -­‐  PLATO  Synergy  .............................................................................................  25  

Posters contributions  ..........................................................................................................................................  26  (A)  Alonso  R.  -­‐  The  phase  curve  of  Kepler-­‐7b  .......................................................................................  26  (B)  Ammler-­‐von  Eiff,  M.  -­‐  Low-­‐resolution  spectroscopy  in  the  ground-­‐based  follow-­‐up  of  planet  candidates  -­‐  lessons  learned  from  CoRoT  ................................................................................  26  (C)  Bensmaïa,  M.K.  -­‐  Time-­‐Dependent  Convection  asteroseismic  modelling  of  β  Hydri  ...  26  (D)  Bonfanti,  A.  -­‐  The  ages  of  stars-­‐hosting  planets  ...........................................................................  27  (E)  Boué,  G.  -­‐  On  the  origin  of  stellar  spin-­‐orbit  angle  in  extrasolar  systems  .........................  27  (F)  Cegla,  H.  M  -­‐  Disentangling  Low-­‐mass  Planetary  Signals  and  Stellar  Surface  Magneto-­‐convection  in  Spectroscopic  Observations  ............................................................................................  27  (G)  Corsaro,  E.  -­‐  Towards  an  efficient  full  asteroseismic  characterization  of  a  large  number  of  planet-­‐host  stars  .........................................................................................................................  28  (H)  Cosmovici,  C.  -­‐  Search  for  Water  in  exoplanetary  Systems  by  means  of  ground-­‐based  Radiospectrometry  ...........................................................................................................................................  28  (I)  Csizmadia,  Sz.  -­‐  Precise  planet  parameters  with  PLATO  ...........................................................  28  (J)  Cunha,  M.S.  -­‐  Oscillations  in  g-­‐mode  period  spacings  in  red  giants  as  a  way  to  determine  their  state  of  evolution  .............................................................................................................  29  (K)  de  Jong,  Roelof  S.  -­‐  4MOST  spectroscopic  host  star  characterisation  for  PLATO  ..........  29  (L)  do  Nascimento,  J.  D.  -­‐  Rotation  Periods  and  ages  of  solar  Twins  revealed  by  the  kepler  mission:  A  roadmap  for  PLATO  ages  ........................................................................................................  29  (M)  Debski,  B.  -­‐  Light  Curve  Morphology:  a  tool  for  PLATO  2.0  for  studying  extreme  close  binaries  ..................................................................................................................................................................  30  (N)  Di  Mauro,  M.  P.  -­‐  A  synergic  strategy  to  identify  habitable  exoplanets  .............................  30  (O)  García  Muñoz,  A.  -­‐  Steps  towards  the  interpretation  of  exoplanet  phase  curves  ..........  30  (P)  Garrido,  R.  -­‐  An  information  preserving  method  for  filling  gaps  in  time  series  .............  30  (Q)  Giuffrida,  G.  -­‐  Gaia  and  PLATO  2.0  in  ASDC  ....................................................................................  31  (R)  Iro,  N.  -­‐  Exoplanet  atmosphere  modelling  ......................................................................................  31  (S)  Janot-­‐Pacheco,  E.  -­‐  Atmospheric  Biosignatures  on  Earth  and  Exoplanets  by  Spectroscopic  Techniques  .............................................................................................................................  31  (T)  Klagyivik,  P.  -­‐  Cluster  formation  and  evolution  as  will  be  seen  by  PLATO:  experiences  with  eclipsing  binaries  in  NGC  2264  .........................................................................................................  32  (U)  Krticka,  J.  -­‐  High  precision  photometry  as  a  test  of  stellar  model  atmospheres  and  evolution  theory  ................................................................................................................................................  32  (V)  Mecheri,  R.  -­‐  A  convenient  system  of  first  order  ODEs  describing    the  oscillations  of  rapidly  rotating  stars  .......................................................................................................................................  33  

Page 4: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 4  

(W)  Morel,  T.  -­‐  Uncertainty  in  stellar  radii  for  PLATO2.0  targets  based  on  Gaia  data  ........  33  (X)  Nelson,  R.  P.  -­‐  Formation  and  orbital  evolution  of  planetary  systems  ...............................  33  (Y)  Norton,  A.  J.  -­‐  Detecting  non-­‐transiting  planets  in  transiting  planet  surveys  ..................  34  (Z)  Oshagh,  M.  -­‐  Effect  of  stellar  activity  on  the  high-­‐precision  transmission  spectra  .......  34  (AA)  Paetzold,  M.  -­‐  Wavelet  based  filter  methods  for  the  detection  of  small  transiting  planets:  application  to  Kepler  light  curves  ............................................................................................  34  (BB)  Paparo,  M.  -­‐  Impact  of  CoRoT  asteroseismology  to  Plato  planet-­‐hosting  stars.  Massive  sample  of  large  separations  in  Delta  Scuti  stars.  ...............................................................  35  (CC)  Peres,  G.  -­‐  The  residual  X-­‐ray  emission  in  Venus  shadow  .....................................................  36  (DD)  Ragazzoni,  R.  -­‐  PLATO  Telescope  Optical  Units:  design  and  evolution  ...........................  36  (EE)  Suran,  M.  D.  -­‐  ROMOSC  Asteroseismic  data  interpretation  pipeline  .................................  36  (FF)  Salmon,  S.  J.  A.  J.  -­‐  What  can  we  learn  from  the  asteroseismology  of  β  Cephei  stars  through  the  forward  approach  ....................................................................................................................  36  (GG)  Schou,  J.  -­‐  On  the  surface  effect  in  Sun-­‐like  stars  ......................................................................  37  (HH)  Sódor,  Á.  -­‐  Studying  hybrid  delta  Scuti-­‐gamma  Doradus  pulsators  by  space  photometry  ..........................................................................................................................................................  37  (II)  Turck-­‐Chièze,  S.  -­‐  Improving  stellar  modelling  ............................................................................  37  (JJ)  Valio,  A.  -­‐  Determination  of  Stellar  Rotation  through  starspots  ...........................................  38  (KK)  Voss,  H.  -­‐  Scientific  capabilities  of  the  Gaia  UB  team  applicable  to  PLATO  2.0  ............  38  

List of participants  .................................................................................................................................................  39  

Page 5: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 5  

Scientific Program

3 December 2014

09:15 - 09:30 Welcome and Introduction Session A - The PLATO Mission and Current Status (Chair: Don Pollacco)

Invited talks 09:30 - 09:50 ESA Overview L. Colangeli/A. Heras 09:50 - 10:20 Exoplanets in the 2020's Artie Hatzes 10:20 - 11:00 PLATO Overview Heike Rauer 11:00 – 11:20 Coffee

11:20 - 11:40 PLATO Payload Philippe Gondoin 11:40 - 12:00 PLATO Data Centre Laurent Gizon 12:00 - 12:30 Discussion (lead H. Rauer) 12:30 - 14:00 Lunch Session B - Planet formation and evolution (Chair: Stephane Udry) Invited talks 14.00 - 14:20 Planet population studies Yann Alibert 14:20 - 14:40 Evolution and Migration Richard Nelson 14:40 - 15:00 Short-period planetary systems and their secrets Rosemary Mardling 15:00 - 15:20 How to characterize multi-planet systems Jacques Laskar 15:20 - 15:40 TTVs: from Observations to Understanding Valerio Nascimbeni 15:40 - 16:00 Coffee Contributed talks 16:00 - 16:15 Deducing Inclinations of Transiting Multi-Planet

Systems Ross Church 16:15 - 16:30 Time: A New Dimension of Constraints for Planet

Formation and Evolution History Christoph Mordasini

Invited talks 16:30 - 16:50 Stellar structure across the HR diagram   Konstanze Zwintz

Contributed talks 16:50 - 17:05 What Interferometry Will Do for PLATO Timothy White 17:05 - 17:35 Discussion (lead R. Nelson)

Page 6: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 6  

17:45 - 19:30 PLATO 2.0 Board Meeting

4 December 2014 Session C - PLATO Stars and Planets (Chair: Isabella Pagano) Invited talks 09:00 - 09:20 The PLATO Input Catalogue Giampaolo Piotto 09:20 - 09:40 PLATO Asteroseismology Marie-Jo Goupil 09:40 - 10:10 Stellar Activity and transit Hunting J. Cabrera/A. F. Lanza 10:10 - 10:25 Candidate Selection/Ranking Magali Deleuil 10:25 - 10:45 Follow up of PLATO Planet Candidates Stephane Udry 10:45 - 11:05 Deriving stellar parameters Nuno Santos 11:05 -11:25 Coffee Contributed talks 11:25 - 11:40 Properties of Very Cool Stars and their Planets: The

Kepler Experience and the PLATO Promise Eric Gaidos 11:40 - 11:55 Binary Population Models of PLATO Fields Ulrich Kolb

11:55 - 12:10 Minimizing the Needs of Follow-up Observations for PLATO: The central Role of Planet Validation Tool Alexander Santerne

12:10- 12:40 Discussion (lead S. Udry) 12:40- 13:50 Lunch 13:50 – 15:30 Visit to the Taormina Ancient Greek Theatre Session D - Giant and Terrestrial Planets (Chair: Richard Nelson) Invited talks 15:30 - 15:50 Terrestrial planet mass-radius and composition Frank Sohl 15:50 - 16:10 Giant planet mass-radius and composition Tristan Guillot 16:10 - 16:30 Circumbinary Planets Hans Deeg 16:30 - 16:50 Star-planet interaction Kristina Kislyakova 16:50 - 17:10 Atmospheres of PLATO Planets David Ehrenreich 17:10 - 17:30 Coffee Contributed talks 17:30 - 17:45 Eclipses, Transits and Intrinsic variability of White

Dwarfs with PLATO Matthew Burleigh 17:45 - 18:00 Do extremely Close-in Transiting Planets Hold the Key

to Learning Exoplanet Compositions Carole Haswell 18:00 - 18:15 Terrestrial Planets vs. Water Worlds: Characterisation

and Habitability Limitation Lena Noack

18:15 - 18:30 An Occurrence Weighted Searching Strategy for Exomoons Gyula Szabó

Page 7: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 7  

18:30 - 19:00 Discussion (lead T. Guillot) 20:30 Social dinner

5 December 2014 Session E - Stellar and Other Science (Chair: Nuno Santos) Invited talks 09:30 - 10:00 Sun-like stars William Chaplin 10:00 - 10:15 Red-Giants and Galactic Structure Andrea Miglio 10:15 - 10:30 Binary Stars Andrew Tkachenko

Contributed talks 10:30 - 10:45 An Ancient extrasolar System with Five Terrestrial sized

planets Tiago Campante 10:45 - 11:05 Coffee 11:05- 11:20 Improving Our Understand of Stellar Evolution with

PLATO Santi Cassisi 11:20- 11:35 Constraints on the Radial Differential Rotation of Six Sun-

Like Stars Martin Bo Nielsen 11:35 -11:50 SpaceInn hare-and-hounds Exercise Daniel Reese 11:50 -12:05 A new Correction for Stellar Oscillation Frequencies for

surface effects Warrick Ball 12:05 -12:20 Asteroseismic Inversions in the Context of PLATO Gaël Buldgen 12:20 -12:50 Discussion (lead N. Santos) 12:50 -14:30 Lunch Session F - PLATO's Contribution to Exoplanet studies (Chair: Heike Rauer) Invited talks 14:30 - 15:10 Synergy with other facilities: CHEOPS, TESS, JWST

and E-ELT   Isabella Pagano

Contributed talks 15:10 - 15:30 Synergy with Gaia Alessandro Sozzetti 15:30 - 16:10 Discussion (lead PSAT) 16:10 - 16:30 Coffee 16:30 END

Page 8: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 8  

Poster Contributions

A. Alonso, R., et al., The phase curve of Kepler-7b

B. Ammler-von Eiff, M., et al., Low-resolution spectroscopy in the ground-based follow-up of planet candidates - lessons learned from CoRoT

C. Bensmaïa, M. K., et al., Time-Dependent Convection asteroseismic modelling of β Hydri

D. Bonfanti, A., et al., Analysis of the ages of the stars with planets

E. Boué, G., On the origin of stellar spin-orbit angle in extrasolar systems

F. Cegla, H. M., et al., Disentangling Low-mass Planetary Signals and Stellar Surface Magneto-convection in Spectroscopic Observations

G. Corsaro, E., et al., Towards an efficient full asteroseismic characterization of a large number of planet-host stars

H. Cosmovici, C., et al., Search for Water in exoplanetary Systems by means of ground-based Radiospectrometry

I. Csizmadia, Sz., Precise planet parameters with PLATO

J. Cunha, M.S., et al., Oscillations in g-mode period spacings in red giants as a way to determine their state of evolution

K. de Jong, Roelof S., et al., 4MOST spectroscopic host star characterisation for PLATO 2.0

L. do Nascimento, J.D., et al., Rotation Periods and ages of solar Twins revealed by the Kepler mission: A roadmap for PLATO ages

M. Debski, B., et al., Light Curve Morphology: a tool for PLATO 2.0 for studying extreme close binaries

N. Di Mauro, M. P., et al., A synergic strategy to identify habitable exoplanets

O. García Muñoz, A., Steps towards the interpretation of exoplanet phase curves

P. Garrido, R., et al., An information preserving method for filling gaps in time series

Q. Giuffrida, G., et al., Gaia and PLATO 2.0 in ASDC

R. (r) Iro, N., Exoplanet atmosphere modelling

S. Janot-Pacheco, E., et al., Atmospheric Biosignatures on Earth and Exoplanets by Spectroscopic Techniques

T. Klagyivik P., et al., Cluster formation and evolution as will be seen by PLATO: experiences with eclipsing binaries in NGC 2264

U. Krticka, J., et al., High precision photometry as a test of stellar model atmospheres and evolution theory

V. Mecheri, R., et al., A convenient system of first order ODEs describing the oscillations of rapidly rotating stars

W. Morel, T., Uncertainty in stellar radii for PLATO 2.0 targets based on Gaia data

X. Nelson R. P. ,et al., Formation and orbital evolution of planetary systems

Y. Norton, A. J,. et al., Detecting non-transiting planets in transiting planet surveys

Z. Oshagh, M., et al., Effect of stellar activity on the high-precision transmission spectra

AA. Paetzold, M., et al., Wavelet based filter methods for the detection of small transiting planets: application to Kepler light curves

Page 9: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 9  

BB. Paparo, M., Impact of CoRoT asteroseismology to PLATO 2.0 planet-hosting stars. Massive sample of large separations in Delta Scuti stars

CC. Peres, G., et al., The residual X-ray emission in Venus shadow

DD. Ragazzoni, R., et al., PLATO 2.0 Telescope Optical Units: design and evolution

EE. Salmon, S. J. A. J., et al., What can we learn from the asteroseismology of β Cephei stars through the forward approach

FF. Schou, J., On the surface effect in Sun-like stars

GG. Suran, M. D., et al., ROMOSC Asteroseismic data interpretation pipeline

HH. Sódor, Á., et al., Studying hybrid delta Scuti-gamma Doradus pulsators by space photometry

II. Turck-Chièze, S., et al., Improving stellar modelling

JJ. Valio, A., Determination of Stellar Rotation through starspots

KK. Voss H., et al., Scientific capabilities of the Gaia UB team applicable to PLATO 2.0

Page 10: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 10  

Abstracts Session  A  -­‐  The  PLATO  Mission  and  Current  Status

Heras,  A.  &  Colangeli,  L.  -­‐  PLATO  as  M3  mission  in  ESA's  Cosmic  Vision  plan  In  February  2014,  ESA  selected  PLATO  as  the  M3  mission  in  the  Cosmic-­‐Vision  2015-­‐2025  

plan  for  a  launch  in  2024.  Consequently,  a  Definition  study  was  initiated  with  the  purpose  to  consolidate  the  mission  requirements,  the  mission  design  and  the  development  plan.  Conditional  upon  a  successful  completion  of  the  Definition  phase,  the  mission  will  be  submitted  to  the  Science  Program  Committee  for  adoption  in  June  2016.    A  PLATO  Science  Advisory  Team  has  been  appointed  by  ESA  to  advise  on  the  scientific  aspects  of  the  mission,  such  as  the  consolidation  of  the  scientific  requirements  and  the  preparation  of  the  Science  Management  Plan,    and  to  provide  the  scientific  elements  of  the  Definition  study  report  (or  Red  Book).  

Hatzes,  A.  -­‐  Exoplanets  in  the  2020’s  I  will  look  into  my  crystal  ball  and  try  to  tell  you  what  the  future  has  in  store  for  

exoplanets  in  the  2020s.  

Rauer,  H.  -­‐  The  PLATO  Mission  -­‐  Overview  PLATO  has  been  selected  as  ESA’s  M3  mission  for  launch  in  2024.  Its  science  results  will  

revolutionize  our  understanding  of  extra-­‐solar  planets  through  its  discovery  and  bulk  characterization  of  planets  around  hundreds  of  thousands  of  stars.  In  addition,  the  precise  stellar  parameters  obtained  by  asteroseismic  studies  will  open  new  doors  to  better  understand  stellar  interiors  and  allow  us  to  constrain  poorly-­‐understood  physical  processes.  

Gondoin,  P.  -­‐  PLATO  spacecraft,  payload  and  mission  operation  concept  The  PLATO  space  mission  is  described  with  a  particular  emphasis  on  the  spacecraft,  

payload  and  mission  operation  concept.  

Gizon,  L.  -­‐  PLATO  Data  Centre  Co-authors: PLATO Consortium

The  PLATO  Data  Centre  (PDC)  is  a  core  element  of  the  PLATO  Mission,  and  has  the  major  responsibility  for  the  development,  implementation  and  operation  of  the  data  processing  ground  segment  for  PLATO.  The  PDC  will  generate  the  key  science  data  products  (DP)  from  the  PLATO  mission,  including:  DP1  the  science-­‐ready  light  curves  and  centroid  curves  for  each  star,  corrected  for  instrumental  effects;  DP2  transit  candidates  and  their  parameters;  DP3  asteroseismic  mode  parameters;  DP4  stellar  rotation  periods  and  stellar  activity;  DP5  

Page 11: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 11  

seismically-­‐determined  stellar  masses  and  ages,  and  DP6  the  list  of  confirmed  planetary  systems,  fully  characterized  by  combining  DP2-­‐5  and  follow-­‐up  observations.  The  PDC  is  structured  into  eight  main  work  packages:  WP31  system  architecture,  WP32  data  processing  algorithms,  WP33  data  processing  development,  WP34  input  catalogue,  WP35  preparatory  and  follow-­‐up  database  management,  WP36  stellar  

Session  B  -­‐  Planet  formation  and  evolution  

Alibert,  Y.  -­‐  Planetary  system  formation  and  composition:  statistics  on  low  mass  planets  We  present  in  this  contribution  planetary  system  formation  and  composition  models,  

coupled  with  internal  structure  models  allowing  the  determination  of  planetary  radius  distribution.  We  focus  here  on  the  properties  of  warm  to  cold  (up  to~  AU  from  their  star),  core-­‐dominated,  planets,  that  are  more  likely  to  potentially  harbour    habitable  conditions.  The  case  of  massive  planets  is  addressed  in  a  companion  abstract  by  C.  Mordasini.  Our  planetary  system  formation  models  include  the  following  effects:  planetary  growth  by  capture  of  solids  and  gas,  protoplanetary  disk  structure  and  evolution,  planet-­‐planet  and  planet-­‐disk  interactions.  In  addition,  we  compute  the  composition  of  the  solids  and  gas  in  the  protoplanetary  disk,  as  well  as  their  evolution  with  time.  The  formation  and  composition  models  allow  therefire  the  determination  of  the  composition  of  planets,  in  term  of  refractory  elements  (Mg,  Si,  Fe,  etc…)  as  well  as  volatile  elements  (water,  CO2,  CO,  NH3,  etc…),  in  a  way  self  consistent  with  the  formation  process  of  the  different  members  of  the  planetary  system.    Finally,  using  internal  structure  models,  we  compute  the  radius  distribution  of  planets  at  different  periods,  using  the  planetary  composition  provided  by  formation  models.  We  will  show  in  this  contribution  results  of  these  formation/composition  models,  and  we  will  demonstrate  how  the  simultaneous  determination  of  mass,  radius  and  period  of  a  statistical  number  of  warm  to  cold  earth  to  neptune-­‐mass  planets  can  be  used  to  constrain  the  formation  track  of  planets,  as  well  as  some  important  mechanism  that  may  occur  during  planet  formation,  like  volatile  transport  in  the  protoplanetary  disk,  stellar  irradiation,  interactions  between  planets  and  with  the  protoplanetary  disk.  Finally,  we  will  show  how  the  same  observations  (mass,  radius,  period),  coupled  with  the  knowledge  of  the  central  star  composition  and  2  bands  transit  observations  can  be  used  in  order  to  select  planets  that  are  best  suited  for  follow-­‐up  habitability  studies.  

Nelson,  R.  P.  -­‐  Formation  and  orbital  evolution  of  planetary  systems  Co-author: Coleman, G.

The  on-­‐going  discovery  of  extrasolar  planets  with  highly  diverse  properties  provides  a  formidable  challenge  to  our  ability  to  explain  how  planetary  systems  form  and  evolve.  The  core  accretion  scenario  of  plant  formation  is  based  on  a  sequential  picture  in  which  planetesimals  grow  into  planetary  embryos,  which  in  turn  accrete  to  form  systems  of  planets  whose  properties  depend  on  the  detailed  formation  history.    In  this  talk  I  will  present  the  results  of  recent  N-­‐body  simulation  of  planetary  system  formation  that  incorporate  the  most  up-­‐to-­‐date    prescriptions  for  migration,  gas  accretion  and  disc  evolution.  Among  other  issues,  I  will  discuss  how  well  these  models  are  able  to  account  

Page 12: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 12  

for  the  observed  extrasolar  planets,  and  the  areas  in  which  our  current  ideas  about  planet  formation  fall  short  of  being  able  to  provide  a  satisfactory  explanation  of  the  observed  planetary  population.    

Mardling,  R.  -­‐  The  star-­‐planet  tidal  link  The  exoplanet  revolution  is  a  direct  result  of  Nature’s  preference  for  short-­‐period  planets  

and  planetary  systems.  Without  such  a  bounty  we  would  surely  not  be  attending  the  PLATO  2.0  Science  Conference!  I  will  discuss  some  of  the  outstanding  questions  resulting  from  these  discoveries:    

-­‐  Why  are  most  planet  pairs  not  in  resonance?  -­‐  How  do  Hot  Jupiters  arrive  at  their  orbits?  -­‐  How  do  ultra-­‐short  period  low-­‐mass  planets  arrive  at  their  orbits?  -­‐  What  is  the  main  bloating  mechanism  for  Hot  Jupiters?  -­‐  What  is  the  main  mechanism  for  spin-­‐orbit  misalignment  of  Hot  Jupiters?  -­‐  Can  we  distinguish  between  mechanisms?  -­‐  How  are  tidal  disturbances  dissipated  inside  stars  and  planets?  

Laskar,  J.  -­‐  How  to  characterize  multi-­‐planet  systems  Co-authors: Correia, A.C.M.,Boué, G., Delisle, J.B.

TBD  

Nascimbeni,  V.  -­‐  TTVs:  from  Observations  to  Understanding  Transit  Time  Variation  (TTV)  is  a  powerful  dynamical  technique  to  measure  relative  

masses  within  a  multiple  planetary  system,  without  need  of  (or  in  synergy  with)  radial  velocity  measurements.  It  has  also  been  exploited  to  infer  the  presence  of  additional,  previously  unknown  bodies  in  the  same  system,  even  non-­‐transiting  ones.  I  will  review  the  basic  physical  principles  behind  TTVs,  the  computational  challenges  of  the  inverse  problem,  the  main  results  achieved  so  far  and  how  TTVs  could  help  the  science  case  of  PLATO.  

Church,  R.P.  -­‐  Deducing  inclinations  of  transiting  multi-­‐planet  systems  Co-authors: Davies, M.B., Johansen A.

For  individual  exoplanet  systems,  PLATO  2.0  will  measure  directly  the  orbital  periods  of  the  planets  but  not  their  inclinations  or  eccentricities.  We  discuss  how  the  distribution  of  exoplanet  orbital  inclinations  can  be  constrained  from  transit  data  alone,  by  making  use  of  the  relative  numbers  of  observed  one-­‐transit,  two-­‐transit  and  three-­‐transit  systems.  Applying  the  technique  to  the  Kepler  sample  we  find  that  the  observations  are  inconsistent  with  a  single  population  of  planetary  systems.  The  ratio  of  observed  two-­‐planet  to  three-­‐planet  systems  constrains  the  average  mutual  inclinations  to  be  no  more  than  a  few  degrees.  In  addition,  to  explain  the  observed  systems  there  must  be  a  second  population  of  massive  planets  that  do  not  have  companions  within  0.5  AU.  

Page 13: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 13  

Mordasini,  C.  -­‐  Time:  a  new  dimension  of  constraints  for  planet  formation  and  evolution  theory  Co-authors: Jin, S., Molliere, P., Alibert, Y., Benz, W.

A  distinctive  asset  of  the  PLATO  mission  compared  to  other  transit  missions  is  its  ability  to  measure  reliable  ages  of  the  host  stars  and  thus  planets.  This  adds  time  as  a  new  dimension  in  the  study  of  exoplanets  that  was  up  to  now  only  marginally  accessible  observationally.  I  will  present  how  this  new  dimension  opens  a  window  to  conceptually  new  observational  constraints  for  planet  formation  and  evolution  theory.  First,  observing  the  temporal  dimension  will  allow  to  directly  see  how  giant  planets  contract  in  time.  This  yields  essential  constraints  for  theoretical  models  of  the  planetary  interior  and  atmosphere  regarding  the  opacity  in  the  atmosphere,  the  physics  of  bloating  mechanisms,  and  the  energy  transport  in  the  interior.  These  informations  are  in  turn  key  constraints  for  planet  formation  models  regarding  the  enrichment  of  giant  planets  in  heavy  element  by  planetesimal  impacts  or  the  migration  mode  of  Hot  Jupiters  (disk  migration  versus  scattering  or  Kozai).  Second,  regarding  low-­‐mass  planets  it  will  allow  to  observe  for  the  first  time  directly  the  boundary  between  gas-­‐rich  and  solid  planets,  simply  because  gas-­‐rich  planets  contract  in  time,  while  the  radii  of  solid  planets  are  essentially  constant.  This  is  a  crucial  information  to  understand  the  nature  of  the  numerous  close-­‐in  low-­‐mass  planets,  and  the  key  to  understand  the  efficiency  of  H/He  accretion  during  the  formation  phase  as  well  as  its  loss  due  to  atmospheric  escape  during  evolution.  I  will  address  these  points  using  statistical  predictions  of  combined  planet  formation  and  evolution  models  for  the  planetary  mass-­‐mean  density  or  distance-­‐radius  relationship.    

Zwintz,  K.  -­‐  Stellar  structure  across  the  HR  diagram  Based  on  the  analysis  of  detected  stellar  oscillations,  stellar  structure  and  evolution  

models  could  be  improved  significantly  within  the  last  few  decades.  We  can  now  study  thousands  of  stars  across  the  HR  diagram  with  precisions  on  the  part-­‐per-­‐million  level.  Asteroseismology  has  also  been  able  to  unravel  details  of  the  internal  structure  for  different  types  of  stars  in  all  stages  of  their  evolution  from  the  pre-­‐main  sequence  to  the  final  phases.  The  masses,  radii,  and  ages  of  stars  that  were  determined  through  asteroseismic  investigations  can  serve  as  most  valuable  input  for  other  scientific  communities  such  as  exoplanet,  binary,  cluster,  and  galactic  archeology  research.  PLATO's  main  mission  and  its  complementary  science  program  are  expected  to  advance  our  knowledge  about  the  interior  structure  of  stars  even  further  by  addressing  some  of  the  still  open  questions,  such  as  the  role  of  internal  magnetic  fields,  the  mixing  of  chemical  species  or  internal  rotation,  with  emphasis  on  stellar  clusters  of  all  ages  and  metallicities.  

White,  T.R.  -­‐  What  Interferometry  will  do  for  PLATO  The  scientific  success  of  the  PLATO  Mission  depends  on  being  able  to  accurately  and  

precisely  determine  the  properties  of  stars.  Planetary  properties  can  only  be  as  well  constrained  as  the  properties  of  their  host  stars.  Many  of  the  methods  for  determining  stellar  properties  have  some  dependence  on  stellar  models,  and  direct  measurements  of  stellar  properties  are  required  to  verify  and  calibrate  these  methods.  Long-­‐baseline  optical  

Page 14: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 14  

interferometry  is  capable  of  sub-­‐milliarcsecond  resolution,  allowing  for  the  imaging  of  stellar  discs.  The  direct  measurement  of  angular  diameter  with  interferometry,  in  conjunction  with  measurements  of  parallax  and  bolometric  flux,  allows  stellar  radii  and  effective  temperatures  to  be  determined  with  little  model  dependence.  In  this  talk  I  will  discuss  the  crucial  role  these  measurements  will  play  in  calibrating  methods  to  determine  stellar  radii,  particularly  asteroseismic  scaling  relations.  Additionally  I  will  discuss  the  prospects  of  using  interferometry  to  test  theoretical  limb-­‐darkening  coefficients,  a  key  variable  in  modelling  the  light  curves  of  planetary  transits.  

Session  C  -­‐  PLATO  Stars  and  Planets  

Piotto,  G.  -­‐  PLATO  target  and  field  selection  Co-author: Nascimbeni, V.

TBD  

Goupil,  M.  J.  -­‐  Asteroseismology  with  Plato  I  will    first  discuss  the  seismic  performances  needed  to  characterize  the  Plato  planet  host  

stars  with  the  resquested.  Some    results  from  CoRoT  and  Kepler  will  be  used  as  illustrations  of  the  ability  of  seismology  to  reach  the  expected  performances  

Cabrera,  J.  -­‐  The  planet  detection  pipeline  of  PLATO  2.0:  overview  and  challenges  Co-author: Lanza, N.

The  planet  detection  pipeline  is  in  charge  of  detecting  planetary  candidates  in  the  light  curves  and  classify  them  according  to  their  properties,  before  they  proceed  to  further  characterization.  The  PLATO  2.0  planet  detection  pipeline  builds  on  the  expertise  of  the  space  borne  surveys  CoRoT  and  Kepler,  but  also  on  the  European  expertise  from  the  ground  (Super-­‐WASP,  NGTS).  On  the  one  hand,  PLATO  2.0  should  be  able  to  detect  planets  with  the  size  of  the  Earth,  around  solar-­‐like  stars,  with  one  year  orbital  period.  The  main  challenges  for  this  scientific  program  are  the  detection  of  the  planetary  signal  in  the  presence  of  stellar  activity  and  its  characterization  with  a  reduced  number  of  observations.  With  the  term  stellar  activity  we  refer  to  intrinsic  variability  of  the  stellar  targets  at  the  time  scales  characteristic  of  transits.  On  the  other  hand,  the  PLATO  2.0  pipeline  should  be  able  to  deal  simultaneously  with  a  large  number  of  targets  with  very  different  properties,  requiring  different  optimization  approaches,  for  example,  planets  around  eclipsing  binaries.  In  this  talk  we  will  give  an  overview  of  the  pipeline  design  in  the  M3  phase  and  the  strategies  considered  to  meet  the  challenges  of  PLATO  2.0  from  the  PSPM  point  of  view.  

Deleuil,  M.  -­‐  PLATO  candidates  selection  and  ranking  From  lessons  learnt  from  previous  missions,  CoRoT  and  Kepler,  I  will  review  what  is  

foreseen  for  PLATO  candidates  selection  and  ranking.  We  will  see  how  this  process  benefits  

Page 15: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 15  

the  long  duration  and  high  precision  light  curves  but  also  of  all  the  information  available  on  the  candidate’s  host  star  and  its  neighborhood.  For  the  shallower  transits  that  will  challenge  follow-­‐up  observations,  statistics  will  provide  valuable  complementary  information  to  the  ranking  process,  securing  or  rejecting  its  planetary  nature.  

Udry,  S.  -­‐  PLATO  Follow-­‐Up  challenges  TBD  

Santos,  N.  C.  -­‐  Deriving  stellar  parameters  In  this  talk  I  will  review  the  importance  of  deriving  precise  spectroscopic  stellar  

parameters  for  FGKM  type  stars  in  the  context  of  PLATO.  A  discussion  will  be  done  regarding  the  present  day  precision  as  well  as  some  of  the  challenges  in  this  field.  

Gaidos,  E.  -­‐  Properties  of  Very  Cool  Stars  and  their  Planets:  The  Kepler  Experience  and  the  PLATO  Promise  

Although  late  K  and  M  dwarf  stars  comprise  a  mere  3%  of  the  Kepler  target  star  catalog,  they  yielded  a  disproportionately  large  yield  of  small  (Earth-­‐size)  transiting  planet  detections,  especially  planets  that  experience  low  stellar  irradiances  and  that  may  have  surface  temperatures  permissive  of  liquid  water,  i.e.  "habitable".  However,  elucidating  the  precise  nature  of  these  objects  has  proven  difficult  because  the  host-­‐stars  stars  are  mostly  too  faint  to  measure  planet  masses  with  the  Doppler  radial  velocity,  and  mostly  too  far  away  for  precise  parallaxes  and  other  fundamental  stellar  parameters.    I  will  review  recent  work  in  improving  the  parameters  (temperature,  radius,  luminosity,  metallicity)  of  these  stars  through  spectroscopic  methods  calibrated  on  nearby  stars,  describe  the  statistical  properties  of  the  inferred  planet  population  around  these  stars,  predict  the  yield  of  future  PLATO  discoveries,  and  speculate  on  what  we  can  learn  about  their  composition,  formation,  and  evolution  of  Earth-­‐  to-­‐  Neptune-­‐size  planets.  

Kolb,  U.  -­‐  Binary  population  models  of  PLATO  2.0  fields  Co-authors: Rowden, P., Farrell, E., Farmer, R.

Assessing  the  expected  false  positive  rate  caused  by  blends  requires  a  stellar  population  model  of  PLATO  fields  that  takes  includes  self-­‐consistently  the  evolving  binary  star  content.  We  conducted  exploratory  simulations  probing  the  latitude  and  longitude  dependence  of  the  blend  signal  in  one  of  the  proposed  long-­‐look  PLATO  fields,  using  tools  we  successfully  deployed  in  the  past  towards  modeling  the  Kepler  field.  Our  analysis  reveals  the  physical  nature  of  the  main  blend  contributors  and  helps  predict  and  minimize  the  blend  rate.  But  crucially  it  also  delivers  constraints  on  physical  mechanisms  driving  binary  evolution,  such  as  wind  and  angular  momentum  loss  rates,  when  the  actually  observed  blend  statistics  is  understood  and  compared  against  these  population  predictions.  We  present  preliminary  results  and  discuss  the  steps  needed  to  fully  exploit  the  data  set  PLATO  will  deliver  for  the  

Page 16: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 16  

understanding  of  the  binary  star  physics,  including  binaries  that  display  an  asteroseismic  signal.    

Santerne,  A.  -­‐  Minimising  the  needs  of  follow-­‐up  observations  for  PLATO  :  the  central  role  of  planet-­‐validation  tool  Co-authors: Díaz, R.F., Almenara, J.M.

To  reach  its  scientific  objectives,  the  space-­‐based  photometric  observations  of  PLATO  need  to  be  followed  up  by  ground  based  observations.  Those  observations  are  needed  to  (1)  screen  out  non-­‐planetary  candidates,  and  (2)  characterise  the  mass,  radius  and  age  of  the  planet  down  to  a  few  percent.  Given  the  fact  that  PLATO  will  detect  thousands  of  potential  planets,  the  follow-­‐up  will  request  a  huge  amount  of  telescope  time.  Fortunately,  a  new  technique  has  been  developed  by  the  community  to  unveil  the  uncertain  nature  of  the  smallest  CoRoT  and  Kepler  candidates:  the  statistical  planet  validation.  In  this  presentation,  I  will  first  explain  the  method  of  validating  statistically  exoplanet  candidates.  Then,  I  will  present  why  this  technique  should  be  used  prior  to  ground-­‐based  observations,  (1)  to  estimate  the  probability  of  each  false-­‐positive  scenario,  (2)  to  constrain  the  parameter  space  of  the  most  likely  false-­‐positive  scenarios,  (3)  to  define  which  instrument  would  be  the  most  efficient  to  reject  all  false-­‐positive  scenarios.  By  doing  that,  it  would  be  possible  to  reduce  the  list  of  candidates  for  intensive  ground-­‐based  observations  only  to  the  bona-­‐fide  exoplanets.  I  will  also  discuss  how  the  same  tool  could  be  used  to  optimise  the  epoch  of  radial  velocity  observations  to  efficiently  constrain  the  orbit  and  mass  of  the  planet,  especially  in  case  of  eccentric  orbit.  

Session  D  -­‐  Giant  and  Terrestrial  Planets  

Sohl,  F.  -­‐  Terrestrial  planet  mass-­‐radius  and  composition  Co-authors: Wagner, F.W., Rauer, H.

The  characterization  of  terrestrial-­‐type,  solid  exoplanets  in  terms  of  internal  structure  and  atmospheric  composition  has  important  implications  on  their  formation,  orbital  evolution,  and  possible  habitability.  Structural  models  of  low-­‐mass  solid  exoplanets  transiting  their  host  stars  are  required  to  satisfy  the  planetary  masses  and  radii  as  provided  by  radial  velocity  and  photometric  observations.  These  models  are  constructed  by  using  equations  of  state  for  the  radial  density  distribution,  which  are  compliant  with  the  thermodynamics  of  the  high-­‐pressure  limit,  and  can  be  used  to  derive  mass-­‐radius  relationships  for  low-­‐mass  solid  exoplanets.  Structural  models  of  planetary  interiors  gain  some  insight  in  planet  bulk  composition  but  still  suffer  from  inherent  degeneracy  or  non-­‐uniqueness  problems,  mainly  due  to  the  incomplete  knowledge  of  the  degree  of  internal  separation  of  light  and  heavy  constituents,  the  occurrence  of  pressure-­‐induced  phase  transformations,  and/or  the  possible  presence  of  an  optically  thick  atmosphere.  In  this  paper,  we  will  present  an  overview  of  interior  models  of  selected  terrestrial  planets  and  confirmed  rocky  exoplanets.  

Page 17: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 17  

Guillot,  T.  -­‐  Giant  planet  mass  radius  relationship  and  their  compositions  Inferring  the  compositions  of  transiting  gaseous  planets  from  their  mass  and  radius  is  

possible,  but  hampered  by  two  issues:  (1)  The  inaccurate  determination  of  these  parameters;  (2)  The  presence  of  poorly  understood  mechanisms  to  inflate  or  slow  the  planetary  contraction.  By  providing  very  accurate  parameters  for  hot  and  warm  giant  planets  orbiting  bright  stars  thanks  to  their  asteroseismic  signatures,  PLATO  should  enable  distinguishing  these  inflation  mechanisms  and  constraining  the  compositions  of  gaseous  exoplanets.  For  the  closest  hot  Jupiters,  PLATO  should  detect  the  planets'  tidal  distortion,  providing  constraints  on  the  inner  density  profile.  Altogether,  this  will  provide  a  much  better  understanding  of  the  formation  of  planetary  systems.    

Deeg,  H.J.  -­‐  Circumbinary  Planets  Circumbinary  planets  (CBP)  are  planets  orbiting  both  components  of  a  binary  star.  They  

may  be  detected  by  a  variety  of  techniques  making  use  of  precise  photometry.  The  first  successful  technique  was  the  precise  timing  of  the  binary  eclipses,  finding  several  planets  with  decade-­‐long  orbital  periods.  More  recently,  detections  by  transits  have  been  successful,  all  from  data  of  the  Kepler  mission.  Transit  detections  constitute  now  the  majority  of  known  CBPs,  with  common  features  being  masses  in  the  Neptune-­‐range  and  periods  of  a  few  months  that  are  (with  one  exception)  close  to  the  innermost  limit  for  a  stable  orbit  around  the  central  binary.  A  few  CBPs  have  also  been  detected  by  direct  imaging.  Circumbinary  planets  are  an  interesting  test-­‐bed  for  planet  formation  models,  as  they  need  to  account  for  the  additional  perturbation  and  stability  issues  arising  from  the  binaries'  orbit.  The  current  sample  of  such  planets  is  however  still  very  small  and  the  true  parameter  space  for  their  existence  is  still  poorly  known,  of  note  being  a  likely  absence  of  CBPs  around  very  short-­‐periodic  binaries.  Current  CBPs  are  also  mostly  on  faint  stars  which  impedes  good  characterisation.  An  overview  over  our  current  knowledge  of  CBPs  will  be  given  and  the  potential  of  their  detection  by  PLATO  be  outlined,  which  is  the  subject  of  its  Work  Package  112510.  

Kislyakova,  K.  -­‐  Star-­‐planet  interaction  and  planetary  characterization  methods  Co-authors: Lammer, H., Holmström, M., Johnstone, C.P., Odert, P., Erkaev, N.V.

We  study  the  interactions  between  stellar  winds  and  the  extended  hydrogen-­‐dominated  upper  atmospheres  of  exoplanets.  We  consider  the  interaction  processes  for  close-­‐in  exoplanets  (“Hot  Jupiters”)  as  well  as  for  exoplanets  in  the  terrestrial  size-­‐mass  domain  (“Super-­‐Earths”).  As  a  result  of  the  interaction,  the  planetary  atmosphere  is  ionized  by  several  mechanisms:  ionization  by  the  stellar  wind  (electron  impact  ionization)  and  stellar  radiation,  and  charge-­‐exchange  between  the  neutral  atoms  in  the  planetary  exosphere  and  the  stellar  wind  protons.  The  intensity  of  the  interaction  depends  on  the  planetary  gravity  and  orbital  location  and  on  the  presence  and  strength  of  the  intrinsic  magnetic  field.  By  means  of  numerical  modelling,  we  model  the  high  energetic  and  thermal  particle  coronae  around  the  exoplanets  which  are  formed  by  charge-­‐exchange,  tidal  effects  and  radiation  pressure.  We  estimate  the  resulting  escape  of  planetary  pick-­‐up  ions,  which  are  swept  away  by  the  stellar  wind.  The  particle  code  is  based  on  Direct  Simulation  Monte  Carlo  (DSMC)  method  and  includes  stellar  wind  protons  and  atmospheric  neutrals  presented  by  metaparticles.  We  also  summarize  how  one  can  estimate  the  Ly-­‐alpha  attenuation  produced  by  neutral  hydrogen  

Page 18: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 18  

clouds  around  an  exoplanet  and  show  on  an  example  of  the  “Hot  Jupiter”  HD  209458b  how  this  method  can  be  used  as  a  means  to  estimate  the  stellar  plasma  environment  at  the  orbital  location  and  the  planetary  magnetic  moment.  Finally,  we  discuss  how  PLATO  observations  of  exoplanets  orbiting  bright  stars  can  be  used  to  reconstruct  stellar  wind  properties,  upper  atmosphere  structure  and  escape,  as  well  as  to  test  the  magnetosphere  hypotheses.  

Ehrenreich,  D.  -­‐  Atmospheres  of  PLATO  planets  The  field  of  exoplanet  atmospheres  is  now  booming  thanks  to  (low-­‐resolution)  space-­‐

borne  spectrographs  and  high-­‐resolution  (narrow-­‐ranged)  NIR  spectrographs  on  ground-­‐based  8m-­‐class  telescopes.  These  instruments  allow  observers  to  constrain  atmospheric  properties  on  a  limited  set  of  objects.  In  this  talk,  I  will  review  the  current  state-­‐of-­‐the-­‐art  in  exoplanetary  atmospheres  and  the  upcoming  instrumental  and  theoretical  perspectives  that  will  set  the  stage  for  the  launch  of  PLATO.  PLATO  will  act  as  a  game  changer,  turning  a  target-­‐starved  field  into  a  discipline  dominated  by  survey  studies,  where  statistical  studies  of  planetary  atmospheres  become  possible.  I  will  discuss  possible  paths  towards  new  approaches  for  target  selection  and  characterisation  of  planetary  atmospheres  during  the  PLATO  era.  

Burleigh,  M.R.  -­‐  Eclipses,  transits  and  intrinsic  variability  of  white  dwarfs  with  PLATO  2.0  Co-author: Braker, I.

The  similar  size  of  a  white  dwarf  (WD)  star  to  Earth  implies  that  any  sub-­‐stellar  or  gas  giant  companion  at  suitable  orbital  inclination  will  completely  eclipse  it,  while  terrestrial  bodies  smaller  than  the  Moon,  including  asteroids,  will  still  produce  transits  that  are  detectable  in  high  signal/noise  light-­‐curves.  Intriguingly,  WDs  even  possess  a  habitable  zone  extending  from  0.005AU  to  0.02AU  and  periods  from  4  -­‐  30  hours.  Whether  such  planets  actually  exist  around  WDs  is  an  open  question.  Those  caught  within  the  expanding  envelope  of  an  AGB  star  will  be  destroyed.  But  the  presence  of  debris  disks  around  a  few  %  of  Wds  and  accreted  metals  in  the  photospheres  of  a  surprisingly  large  fraction  of  such  stars  demonstrates  that  surviving  asteroids  and  terrestrial  planets  must  be  perturbed  into  orbits  that  take  them  close  to  the  central  WD,  where  they  are  tidally  disrupted.  Even  so,  it  appears  dynamically  difficult,  though  not  impossible,  to  perturb  them  into  stable,  circularised  orbits  within  the  WD  HZ.  Alternatively,  2nd  generation  planets  may  be  created  from  material  ejected  after  the  AGB  phase.    The  PLATO  2.0  mission  is  an  ideal  opportunity  to  search  the  HZs  of  a  statistically  significant  (500  -­‐  1000)  sample  of  WDs  for  terrestrial  planets.  Any  discovery  would  provide  vital  data  and  a  significant  challenge  to  dynamicists  and  theoreticians,  just  as  the  unexpected  discovery  of  hot  Jupiters  did  in  the  1990s.  A  single  detection  would  then  open  the  exciting  possibility  of  studying  the  atmosphere  of  a  nearby  terrestrial  world  through  spectroscopy.    We  will  present  simulations  of  the  expected  signature  of  transits  and  eclipses  of  WDs  by  nearby  planets  in  PLATO  2.0  data.  We  will  also  present  exciting  data  from  the  few  WDs  observed  by  the  Kepler  mission  that  shows  a  surprisingly  large  fraction  appear  to  be  low  amplitude,  periodically  variable.  In  some  cases  this  may  be  due  to  the  presence  of  starspots  in  the  convective  atmospheres  of  WDs  with  appreciable  magnetic  fields.  But  in  other  stars  the  origin  is  less  obvious,  but  may  be  related  to  the  accretion  of  circumstellar  rocky  material.  

Page 19: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 19  

Haswell,  C.A.  -­‐  Do  extremely  close-­‐in  transiting  planets  hold  the  key  to  learning  exoplanet  compositions?  Co-authors: Fossati, L, Bochinski, J, Staab, D., Barnes, J., Anglada-Escude, G.

We  studied  an  extremely  close-­‐in  hot  Jupiter  exoplanet,  WASP-­‐12b,  using  HST  to  detect  absorption  from  dozens  of  species  in  the  extended  exosphere  of  the  planet.  Surprisingly,  we  also  discovered  that  the  entire  planetary  system  is  shrouded  in  diffuse  gas  lost  from  the  heavily  irradiated  planet.  WASP-­‐12's  gas  shroud  produces  noticeable  absorption  in  the  strongest  lines  of  abundant  species:  we  first  noted  it  in  Mg  II  h&k,  and  found  a  similar  signature  in  the  Ca  II  H&K  lines.  Meanwhile,  the  Kepler  mission  has  revealed  evidence  for  dozens  of  small  rocky  bodies  orbiting  their  host  stars  with  sub-­‐day  periods.  In  this  context  we  are  working  on  identifying  some  very  interesting  close-­‐in  exoplanetary  bodies  orbiting  nearby  stars.  Once  identified,  these  systems  will  permit  exquisite  quality  observations  revealing  their  compositions  in  unprecedented  detail.  

Noack,  L.  -­‐  Terrestrial  planets  vs.  water  worlds:  characterization  and  habitability  limitations  Co-authors: Heistracher C., Zimov N., Hoening D., Rivoldini A., Van Hoolst T., Lammer H., Bredehoeft J.-H.

The  upcoming  PLATO  mission  will  be  able  to  deliver  measurements  of  mass  and  radius  of  the  detected  exoplanets  with  a  high  accuracy.  It  has  been  calculated  that  an  error  in  radius  of  2%  and  an  error  in  mass  of  4-­‐10%  can  be  expected  [Rauer  et  al.,  in  review,  "The  PLATO  2.0  mission"].  In  our  study  we  investigated  how  well  these  measurements  can  constrain  the  interior  of  a  planet  and,  assuming  that  water  is  present  at  the  surface  of  the  planet,  discuss  additional  habitability  constraints  typically  assumed  for  water-­‐arm  and  water-­‐rich  planets.    We  concentrate  only  on  small-­‐mass  exoplanets  of  up  to  10  Earth  masses  or  2  Earth  radii.  We  explore  how  the  radius  of  a  planet  depends  on  the  planet's  mass  and  its  composition  assuming  an  Earth-­‐like  iron  core,  a  silicate  mantle  and  a  possible  water-­‐ice  layer  (hereafter  referred  to  as  ocean  layer)  to  investigate  how  well  terrestrial  planets  without  (or  with  negligible  amounts  of)  water  can  be  distinguished  from  water  worlds  with  ocean  layers  several  hundreds  of  kilometers  deep.  Water-­‐arm  planets  (terrestrial  planets)  are  typically  defined  to  be  habitable  if  they  are  in  the  habitable  zone  and  if  surface  temperatures  suitable  for  liquid  water  are  present.  This  requires  a  long-­‐term  stable  atmosphere,  and  can  be  constrained  by  the  evolution  of  volcanic  outgassing  and  the  possible  plate  tectonics  history.  We  have  shown  that  (at  least  for  an  Earth-­‐size  planet)  both  outgassing  and  likelihood  of  plate  tectonics  strongly  depend  on  the  interior  structure  of  terrestrial  planets  and  therefore  on  their  composition  [Noack  et  al.,  PSS,  2014,  "Can  the  interior  structure  influence  the  habitability  of  a  rocky  planet?"].  Planets  with  a  small  iron  core  will  likely  be  in  the  stagnant-­‐lid  regime  and  develop  a  dense,  Venus-­‐like  atmosphere.  Planets  with  a  core  of  approximately  half  to  three  quarters  of  the  planet  size  tend  to  be  in  the  plate  tectonics  regime.  A  larger  core,  on  the  other  hand,  leads  to  ceasing  of  outgassing  (possibly  inhibiting  a  secondary  atmosphere)  and  again  a  stagnant  lid.  A  water-­‐rich  planet  on  the  other  hand  may  be  called  habitable  if  the  ocean  layer  is  molten  directly  above  the  silicate  shell.  Another  factor  is  the  possible  delivery  of  cometary  material  including  pre-­‐biotic  material  to  the  ocean.  However,  if  a  water  world  contains  a  large  amount  

Page 20: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 20  

of  water,  a  deep  ocean  layer  (containing  water  and/or  ice)  forms,  which  is  most  likely  frozen  from  a  specific  depth  on.  This  depth  depends  mainly  on  the  mass  and  radius  of  the  planet  as  well  as  the  ocean  surface  temperature.  We  find  that  local  remelting  of  the  high-­‐pressure  ice  at  the  ocean-­‐mantle  boundary  is  possible  for  ice  layers  of  intermediate  thickness  (again  depending  on  the  mass  and  radius  of  the  planet).  However,  such  a  second  ocean  layer  might  freeze  out  during  the  thermal  evolution  of  the  planet  depending  on  the  heat  flux  out  of  the  silicate  mantle  [Noack  et  al.,  in  review,  "Water  worlds:  how  life-­‐friendly  is  an  ocean  deeper  than  on  Earth?"].  Ocean  planets,  that  can  be  clearly  detected  as  such,  contain  a  large  amount  of  water  (to  significantly  reduce  the  average  density  of  the  planet)  and  are  likely  to  have  a  thick  high-­‐pressure  ice  layer  which  cannot  be  molten  from  beneath  -­‐  these  planets  might  therefore  not  be  habitable.  When  it  comes  to  the  detection  of  a  possibly  habitable  planet,  terrestrial  planets  seem  to  be  more  suitable  candidates  than  ocean  planets  since  the  classification  of  the  latter  would  likely  imply  a  thick,  partly  frozen  ocean  layer.  A  planet  with  a  terrestrial-­‐like  average  density  can  still  contain  a  thin  ocean  layer,  but  would  still  be  classified  as  habitable.  

Szabó,  Gy.  M.  -­‐  An  occurrence-­‐weighted  searching  strategy  for  exomoons Co-authors: Simon, A. E., Charnoz, S.

In  the  past  decade,  the  quest  for  exomoons  concerned  the  detection  methods  and  their  performance.  The  central  question  was  whether  the  largest  exomoons  can  be  somehow  detected  by  photometry  or  spectroscopy,  and  which  are  the  most  effective  tools  for  such  a  detection.  These  tools  favoured  large  moons  at  large  orbital  distance.  The  photometric  methods  were  extensively  tested  in  Kepler  data,  which  led  to  negative  results  to  date,  suggesting  that  1)  the  S/N  ratio  of  Kepler  targets  (which  were  fainter  stars  in  the  most  cases)  were  suboptimal  for  such  a  detection,  and  2)  the  presumed  Earth-­‐size  or  even  super-­‐Earth-­‐size  moons  likely  do  not  exist  even  around  the  most  massive  exoplanets.  An  alternative  to  point  2)  is  that  Earth-­‐sized  exomoons  are  not  likely  to  survive  around  planets  close  to  their  star  or  around  evolved  stars.  Therefore,  the  detection  studies  must  rely  BOTH  on  observability  and  occurrence  considerations  -­‐  the  observation  strategy  must  be  pointed  to  the  effective  detection  of  moons  that  are  more  likely  to  exist.  In  this  contribution  we  will  concentrate  on  this  complex  issue.  Along  the  recognition  that  SUCCESS  RATE  ~  OBSERVABILITY  x  OCCURRENCE,  we  propose  the  unification  of  satellite  formation  and  stability  studies  on  one  side,  and  instrumentation  and  evaluation  studies  on  the  other  side,  to  estimate  and  optimize  the  success  rate  of  an  exomoon  discovery.  We  propose  and  estimator  that  helps  identify  the  most  promising  systems  hosting  an  observable  exomoon,  and  demonstrate  how  the  occurrence  considerations  influence  the  target  selection  strategy.  

Rodríguez-­‐López,  C.  -­‐  CARMENES:  Radial  velocity  follow-­‐up  and  characterization  of  PLATO  targets  Co-authors: Amado, R. L., the CARMENES consortium

This  contribution  will  provide  an  overview  of  the  CARMENES  instrument,  of  the  survey  that  will  be  carried  out  with  it  during  the  first  years  of  operation  and  of  its  potential  as  a  follow-­‐up  facility  for  PLATO.  CARMENES  (Calar  Alto  high-­‐Resolution  search  for  M  dwarfs  with  Exoearths  with  Near-­‐infrared  and  optical  Echelle  Spectrographs)  is  a  next-­‐generation  radial-­‐

Page 21: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 21  

velocity  instrument  under  construction  for  the  3.5m  telescope  at  the  Calar  Alto  Observatory  by  a  consortium  of  eleven  Spanish  and  German  institutions.  The  CARMENES  instrument  consists  of  two  separate  Echelle  spectrographs  covering  the  wavelength  range  from  0.55  to  1.7  mum  at  a  spectral  resolution  of  R  =  82,000,  fed  by  fibers  from  the  Cassegrain  focus  of  the  telescope.  The  spectrographs  are  housed  in  vacuum  tanks  providing  the  temperature-­‐stabilized  environments  necessary  to  enable  a  1  m/s  radial  velocity  precision  employing  a  simultaneous  calibration  with  an  emission-­‐line  lamp  or  with  a  Fabry-­‐Perot  etalon.  For  mid-­‐M  to  late-­‐M  spectral  types,  the  wavelength  range  around  1.0  mum  (Y  band)  is  the  most  important  wavelength  region  for  radial  velocity  work.  Therefore,  the  efficiency  of  CARMENES  has  been  optimized  in  this  range.  The  CARMENES  instrument  consists  of  two  spectrographs,  one  equipped  with  a  4k  x  4k  pixel  CCD  for  the  range  0.55  -­‐  0.95  mum,  and  one  with  two  2k  x  2k  pixel  HgCdTe  detectors  for  the  range  from  0.95  -­‐  1.7mum.  Each  spectrograph  will  be  coupled  to  the  3.5m  telescope  with  two  optical  fibers,  one  for  the  target,  and  one  for  calibration  light.  The  front  end  contains  a  dichroic  beam  splitter  and  an  atmospheric  dispersion  corrector,  to  feed  the  light  into  the  fibers  leading  to  the  spectrographs.  Guiding  is  performed  with  a  separate  camera;  on-­‐axis  as  well  as  off-­‐axis  guiding  modes  are  implemented.  Fibers  with  octagonal  cross-­‐section  are  employed  to  ensure  good  stability  of  the  output  in  the  presence  of  residual  guiding  errors.  The  fibers  are  continually  actuated  to  reduce  modal  noise.  The  spectrographs  are  mounted  on  benches  inside  vacuum  tanks  located  in  the  coudé  laboratory  of  the  3.5m  dome.  Each  vacuum  tank  is  equipped  with  a  temperature  stabilization  system  capable  of  keeping  the  temperature  constant  to  within  +/-­‐0.01°C  over  24  hours.  The  visible-­‐light  spectrograph  will  be  operated  near  room  temperature,  while  the  near-­‐IR  spectrograph  will  be  cooled  to  ~  140  K.  The  CARMENES  instrument  passed  its  final  design  review  in  February  2013.  The  MAIV  phase  is  currently  ongoing.  First  tests  at  the  telescope  are  scheduled  for  early  2015.  Completion  of  the  full  instrument  is  planned  for  the  fall  of  2015.  At  least  600  usable  nights  have  been  allocated  at  the  Calar  Alto  3.5m  Telescope  in  the  time  frame  until  2018  to  conduct  an  exoplanet  survey  targeting  ~  300  M  dwarfs  with  the  completed  instrument.  A  data  base  of  M  stars  (dubbed  CARMENCITA)  has  been  compiled  from  which  the  CARMENES  sample  can  be  selected.  CARMENCITA  contains  information  on  all  relevant  properties  of  the  potential  targets.  Dedicated  imaging,  photometric,  and  spectroscopic  observations,  as  part  of  the  science  preparation,  are  underway  to  provide  crucial  data  on  these  stars  that  are  not  available  in  the  literature.    

Session  E  -­‐  Stellar  and  Other  Science    

Chaplin,  W.J.  -­‐  Prospects  for  studies  of  solar-­‐type  stars  with  PLATO  In  this  talk  I  will  review  our  current  understanding  of  the  internal  structure  and  dynamics  

of  solar-­‐type  stars,  making  reference  in  particular  to  results  from  Kepler  and  CoRoT.  I  will  then  discuss  the  exciting  possibilities  for  detailed  studies  that  will  be  made  possible  by  data  from  PLATO.  

Miglio,  A.  -­‐  Red-­‐Giants  and  Galactic  Structure  In  this  presentation  I  will  recall  why  ageing  stars  and  their  pulsations  are  key  to  the  

PLATO  mission.    The  pulsation  frequencies  of  red-­‐giant  stars  may  be  used  to  place  tight  constraints  on  their  fundamental  properties,  including  radius,  mass,  evolutionary  state,  and  

Page 22: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 22  

age.  Thanks  to  the  early  achievements  with  CoRoT  and  Kepler,  Galactic  archeology  has  now  been  included  as  one  of  the  major  scientific  goals  of  ESA’s  PLATO  2.0,  which  will  supply  seismic  constraints  for  stars  over  a  significantly  larger  fraction  of  the  sky  (and  volume)  compared  to  CoRoT,  Kepler,  and  K2.  By  detecting  solar-­‐like  oscillations  in  ∼85,000  nearby  dwarfs  and  an  even  larger  number  of  giants,  PLATO  2.0  will  provide  a  revolutionary  complement  to  Gaia’s  view  of  the  Milky  Way.    In addition to providing constraints on stellar populations, ageing stars will also play a fundamental role in PLATO's core science.

Planets orbiting red giants have now been detected in a few Kepler targets, and seismic constraints on their host stars were key to the accurate characterisation of planetary systems, including inferences on spin-orbit misalignments. Finally, oscillations modes detected in ageing stars may be used to test stellar models (e.g. transport of angular momentum and of chemical species), leading to a better understanding of stellar evolution in earlier phases as well.

Tkachenko,  A.  -­‐  Binary  stars  in  the  era  of  space-­‐based  missions  Complementary  observations  of  binary  stars  allow  the  determination  of  fundamental  

stellar  quantities,  and  are  a  principal  source  of  stellar  masses.  As  such,  binary  stars  are  irreplaceable  for  probing  models  of  stellar  structure  and  evolution.  Besides  that,  the  interactions  between  two  stars  within  a  binary  system  allow  us  to  test  and  further  develop  theories  of  tidal  evolution  and  angular  momentum  transport  under  extreme  physical  conditions  that  cannot  be  reproduced  in  our  labs.  Dynamical  tides  are  also  known  to  be  effective  in  resonant  excitation  of  stellar  pulsations  but  magnetic  fields  in  binaries  are  expected  to  strongly  affect  the  transfer  of  mass  and  angular  momentum  as  well  as  the  global  properties  of  stellar  oscillations.  The  interplay  between  stellar  magnetic  fields,  binarity,  and  oscillations  has  yet  to  be  investigated  in  detail,  and  will  provide  a  further  insight  into  the  tidal  evolution  theory.  The  development  of  modern  instrumentation  with  high  spectral  and  spatial  resolution  and  the  amazing  precision  of  on-­‐board  detectors  operational  in  space  on  the  one  hand,  and  new  modern  analysis  techniques  on  the  other  hand,  now  make  it  possible  to  surpass  the  barrier  of  1%  accuracy  on  the  stellar  parameters,  allowing  studies  on  a  much  more  detailed  scale.  

Campante,  T.  L.  -­‐  An  ancient  extrasolar  system  with  five  terrestrial-­‐size  planets  The  chemical  composition  of  stars  hosting  small  exoplanets  appears  to  be  more  diverse  

than  that  of  gas-­‐giant  hosts,  which  tend  to  be  metal-­‐rich.  This  implies  that  small,  including  Earth-­‐size,  planets  may  have  readily  formed  at  earlier  epochs  in  the  Universe's  history  when  metals  were  more  scarce.  We  report  Kepler  observations  of  KOI-­‐3158,  a  metal-­‐poor  Sun-­‐like  star  from  the  old  population  of  the  Galactic  thick  disk,  which  hosts  five  planets  with  sizes  between  Mercury  and  Venus.  We  used  asteroseismology  to  measure  an  age  of  11.2+/-­‐1.0  Gyr  (~9%  precision)  for  the  host  star,  indicating  that  KOI-­‐3158  formed  when  the  Universe  was  less  than  20%  of  its  current  age  and  making  it  the  oldest  known  system  of  terrestrial-­‐size  planets.  We  thus  show  that  Earth-­‐size  planets  have  formed  throughout  most  of  the  Universe's  13.8-­‐billion-­‐year  history,  leaving  open  the  possibility  for  the  existence  of  ancient  life  in  the  Galaxy.  The  discovery  of  such  a  system  encapsulates  many  of  the  science  goals  set  for  ESA’s  future  PLATO  mission,  namely,  the  precise  characterization  of  a  system  of  terrestrial-­‐size  

Page 23: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 23  

planets  around  a  bright  Sun-­‐like  star  whose  fundamental  properties  have  been  tightly  constrained  by  asteroseismology.  The  interdisciplinary  approach  adopted  in  the  analysis  of  this  unique  system  could  thus  serve  as  the  archetype  of  the  analysis  procedure  of  future  PLATO  targets.    

Cassisi,  S.  -­‐  Improving  our  understanding  of  stellar  evolution  with  PLATO  Nowadays,  the  huge  improvements  in  asteroseismic  analysis  allow  us  to  determine  the  

mass  and  radius  of  large  sample  of  stars  with  an  approach  -­‐largely-­‐  independent  of  stellar  model  computations.  This  notwithstanding,  some  evolutionary  parameters,  such  as  the  stellar  age  -­‐  a  pivotal  information  also  in  planetary  system  analysis  -­‐  we  need  to  rely  on  theoretical  model  predictions.  Depending  of  the  stellar  mass  range  and  evolutionary  stage,  these  theoretical  predictions  can  be  significantly  affected  by  not  negligible  uncertainties  mainly  related  to  our  poor  knowledge  of  some  important  physical  processes  such  as  convection,  rotation  (and  related  mixing  processes),  magnetic  fields,  mass  loss,  etc.  We  will  briefly  review  the  most  important  shortcoming  in  current  generation  of  stellar  models  and  make  some  prediction  on  how  PLATO  is  expected  to  largely  improve  the  our  understanding  of  stellar  evolution.  

Nielsen,  M.  B.  -­‐  Constraints  on  the  radial  differential  rotation  for  six  Sun-­‐like  stars  Co-authors: Gizon, L., Schunker, H., Schou, S.

Asteroseismology  has  the  potential  to  constrain  differential  rotation  in  Sun-­‐like  stars.  We  have  analyzed  six  high  signal-­‐to-­‐noise  Sun-­‐like  stars  in  the  Kepler  field,  in  order  to  constrain  their  radial  differential  rotation.  We  measure  the  rotational  frequency  splitting  from  the  acoustic  oscillation  power  spectrum.  We  use  a  Markov  chain  Monte  Carlo  method  to  fit  independent  sections  of  the  p-­‐mode  envelope.  This  allows  us  to  search  for  differences  in  the  splittings  across  a  range  in  frequency,  spanning  up  to  8  radial  orders.  For  all  six  stars  we  find  that  the  measured  splittings  are  consistent  with  solid-­‐body  rotation,  but  also  that  the  differential  rotation  cannot  be  larger  than  ~1-­‐1.5muHz.  Furthermore,  we  determined  the  rotation  period  from  the  starspot  signal  and  compared  this  to  the  mean  asteroseismic  periods.  We  find  that  the  periods  are  consistent,  indicating  that  they  both  trace  rotation  in  the  same  region  of  the  star.  

Reese,  D.  R.  -­‐  SpaceInn  hare-­‐and-­‐hounds  exercise  Co-authors: Chaplin, W. J., Davies, G. R., Miglio, A., et al.

With  the  advent  of  high-­‐precision  space  photometry  missions  and  the  forthcoming  PLATO  mission,  different  methods  have  been  and  are  being  developed  for  inferring  stellar  properties  from  pulsation  frequencies.  As  described  in  Gough  (1985),  these  include  the  so-­‐called  "forward  modelling"  approach  which  consists  in  searching  for  an  optimal  stellar  model  in  a  parameter  space,  analytical  methods  based  on  matching  patterns  in  the  pulsation  spectrum,  and  inverse  methods  which  seek  to  correct  a  reference  model  so  as  to  reproduce  observations.  Given  this  variety  of  methods,  it  then  becomes  crucial  to  compare  them  and  assess  their  ability  at  reproducing  stellar  properties.  In  the  present  talk,  I  will  describe  an  

Page 24: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 24  

ongoing  SpaceInn  hare-­‐and-­‐hounds  exercise  which  seeks  to  test  how  accurately  one  can  retrieve  general  stellar  properties  as  well  as  the  depth  of  the  convection  zone  in  main-­‐sequence  solar-­‐like  pulsators,  from  a  set  of  individual  frequencies.  This  exercise  is  also  designed  to  compare  convection  zone  depths  obtained  from  the  forward  modelling  approach  with  those  obtained  from  an  independent  analysis  based  on  acoustic  glitches.  In  a  future  round  of  exercises,  we  plan  to  test  how  accurately  the  He  ionisation  zone  can  be  located,  the  He  abundance  determined,  and  the  properties  of  a  small  convective  core  (if  present)  estimated.  

Ball,  W.  H.  -­‐  A  new  correction  of  stellar  oscillation  frequencies  for  near-­‐surface  effects  Co-author: Gizon, L.

A  key  component  of  the  PLATO  mission  is  to  exploit  asteroseismology  to  constrain  the  properties  of  planet  hosting  stars,  as  is  currently  possible  for  a  handful  of  stars  observed  by  CoRoT  and  Kepler.  However,  current  stellar  models  have  inaccuracies  near  the  surface  that  introduce  systematic  differences  in  the  oscillation  frequencies.  These  so-­‐called  surface  effects  must  be  corrected  to  reduce  the  amount  of  error  induced  on  the  underlying  model  parameters.  We  introduce  two  parametrizations  of  the  surface  effect.  We  first  show  that  these  parametrizations  accurately  correct  model  frequencies  for  two  calibrated  solar  models,  and  then  use  them  to  fit  parameters  for  the  planet-­‐hosting  CoRoT  target  HD  52265.  Our  results  give  similar  parameters  to  the  widely-­‐used  correction  by  Kjeldsen  et  al.  (2008),  but  the  new  parametrizations  fit  the  mode  frequencies  significantly  better.  We  finally  present  preliminary  results  of  fits  to  other  stars,  consolidating  the  usefulness  of  the  new  parametrizations.  

Buldgen,  G.  -­‐  Asteroseismic  inversions  in  the  context  of  the  Plato  mission  Co-­‐author:  Reese,  D.,  Dupret,  M-­‐A.  

The  determination  of  stellar  characteristics  such  as  the  mass,  the  age  or  the  radius,  is  crucial  when  studying  both  stellar  evolution  and  exoplanetary  systems.  In  the  context  of  the  Plato  mission,  the  high  quality  data  allows  us  to  reach  a  new  level  of  accuracy  and  model-­‐independence  for  stellar  characterization  by  using  inversion  techniques.  In  this  study,  we  will  use  the  SOLA  method  (F.  Pijpers  and  M.  J.  Thompson  1994),  known  for  its  successes  in  helioseismology,  and  show  how  it  can  offer  us  new  insights  into  the  structure  of  observed  stars.  We  will  present  results  for  the  mean  density,  building  on  the  approach  of  Reese  et  al.  2012,  and  other  custom-­‐made  structural  characteristics  constraining  the  outer  layers  of  stars  and  the  chemical  content  of  their  cores.  We  will  show  that  inversions  can  determine  these  characteristics  within  0.5%,  a  significant  improvement  over  the  capabilities  of  the  classical  forward  modelling  process.  Consequently,  such  inversions  lead  to  better  stellar  models  and  help  us  obtain  more  accurate  fundamental  parameters  such  as  the  age,  mass  or  radius.    

Session  F  -­‐  PLATO's  Contribution  to  Exoplanet  studies      

Pagano,  I.  -­‐  Synergy  with  other  facilities:  CHEOPS,  TESS,  JWST  and  E-­‐ELT  With  a  launch  planned  in  2024,  PLATO  2.0  will  start  his  survey  for  small  planets  around  

bright  stars  at  a  time  when  CHEOPS,  TESS  and  JWST  will  have  completed  their  excellent  job  

Page 25: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 25  

discovering  and  characterising  internal  structure  and  atmospheres  of  an  important  number  of  exoplanets  orbiting  close-­‐by  stars.  What  are  we  expecting  more  by  a  mission  like  PLATO  2.0?  This talk is about why we need PLATO2.0 after CHEOPS, TESS and JWST, and about the synergies with them and with E-ELT, the European Extremely-Large telescope that will see the first light when PLATO 2.0 is launched.

Sozzetti,  A.  -­‐  On  the  Gaia  -­‐  PLATO  Synergy  I  will  discuss  Gaia's  two-­‐tiered,  synergistic  contribution  to  PLATO  2.0  in  terms  of  a)  its  

data  products  of  fundamental  importance  for  the  realization  of  the  PLATO  2.0  Input  Catalogue  and  b)  the  combination  of  Gaia  and  PLATO  2.0  data  for  improved  understanding  of  the  architecture  of  planetary  systems.  

Page 26: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 26  

Posters contributions (A)  Alonso  R.  -­‐  The  phase  curve  of  Kepler-­‐7b  Co-author: Rebollido-Vázquez, I.  

We  perform  an  analysis  of  the  complete  Kepler  data  set  for  the  star  Kepler-­‐7b,  known  to  host  a  5d-­‐period,  1.6Rj  planet  with  the  highest  albedo  measured  for  a  giant  exoplanet,  of  about  0.3.  We  apply  different  detrending  techniques  to  produce  the  phase  curves,  and  describe  a  method  to  discern  properties  about  the  rotation  of  the  planet.  

(B)  Ammler-­‐von  Eiff,  M.  -­‐  Low-­‐resolution  spectroscopy  in  the  ground-­‐based  follow-­‐up  of  planet  candidates  -­‐  lessons  learned  from  CoRoT  Co-author: Sebastian D., Guenther E.W., Stecklum B.

We  present  results  of  low-­‐resolution  spectroscopic  observations  (R  about  1,000)  conducted  within  the  ground-­‐based  follow-­‐up  of  CoRoT  planet  candidates.  We  also  discuss  recent  efforts  to  study  the  stellar  content  of  CoRoT  target  fields  using  multi-­‐object  spectroscopy.  We  address  the  specific  requirements  of  PLATO  and  discuss  the  role  of  Gaia  and  future  multi-­‐object  spectroscopic  facilities.  Low-resolution spectroscopy helps to identify eclipses of giant stars due to low-mass stars which can mimick a planetary transit of a Sun-like star. It is important to exclude such false positives before the start of the expensive ground-based radial velocity (RV) measurements. Experience from CoRoT shows that spectral classification based on low-resolution spectra helps to find the giant stars among faint candidates (V=13-16). In addition, early-type targets are identified which are often excluded from further RV follow-up. On the other hand, low-resolution reconnaissance spectroscopy ensures that good planet candidates are kept that would otherwise be discarded based on photometric spectral type alone. Multi-object spectroscopy, in particular, has proven extremely efficient and also allows one to study other stars in the target field in addition to the actual candidates. This way it is possible to study the stellar environment and the frequency of planetary systems in detail and to draw conclusions about the main galactic factors of planet formation.

(C)  Bensmaïa,  M.K.  -­‐  Time-­‐Dependent  Convection  asteroseismic  modelling  of  β  Hydri  Co-author: Grigahcène, A., Damerdji, Y., Dupret, M. A., Scuflaire, R., Garrido, R.

The  success  of  helioseismology  in  improving  our  understanding  of  solar  interior  had  a  big  impact  on  stellar  physics  as  well.  Conversely,  the  study  of  Sun-­‐like  stars  provides  a  better  understanding  of  the  Sun  itself.  The  subgiant  star  β  Hydri,  which  is  considered  as  probable  future  Sun,  shows  solar-­‐like  oscillations  that  allow  its  study  using  asteroseismology.  Recently,  it  has  been  shown  that  Time-­‐Dependent  Convection  models  are  the  most  appropriate  for  this  type  of  investigation.  In  this  work  we  use  TDC  models  to  better  constrain  structure  models  and  estimate  the  global  parameters  of  β  Hydri  using  the  atmospheric  and  astroseismic  available  information.    Our  best  model  reproduces  the  observed  frequencies  with  unprecedented  high  precision:  among  the  33  observed  modes,  18  frequencies  are  reproduced  with  difference  <  1  micro  

Page 27: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 27  

Hertz,  10  frequencies  with  difference  <  2  micro  Hertz  and  the  rest  with  <  2.4  micro  Hertz.  More,  the  model  gives  a  mass  of  1.0710  Msun  and  an  age  of  7.6643  Gyr.  

(D)  Bonfanti,  A.  -­‐  The  ages  of  stars-­‐hosting  planets  Co-author: Ortolani, S.  

We  determined  the  age  of  planet-­‐hosting  stars  (SWP)  through  stellar  tracks  and  isochrones  computed  with  the  Padova  &  Trieste  Stellar  Evolutionary  Code  (PARSEC).  We  developed  algorithms  based  on  two  different  techniques  to  determine  the  ages  of  field  stars:  isochrone  placement  and  Bayesian  estimation.  Their  application  on  a  synthetic  sample  of  coeval  stars  shows  that  the  Bayesian  computation  of  the  modal  age  tends  to  select  the  outmost  age  values  in  the  isochrones  grid.  Therefore,  we  used  the  isochrone  placement  technique  to  measure  the  ages  of  317  stars  with  planets  (SWP).  We  found  that  ~6%  of  SWP  has  an  age  lower  than  0.5  Gyr.  The  age  distribution  peaks  in  the  interval  [1.5,  2)  Gyr,  then  it  decreases.  However  ~7%  of  the  stars  are  older  than  11  Gyr.  The  Sun  results  to  be  a  common  star-­‐hosting  planets  regarding  its  evolutionary  stage.    Our  SWP  age  distribution  is  less  peaked  and  slightly  shifted  towards  lower  ages  if  compared  with  the  ages  in  the  literature,  based  on  the  isochrone  fit.  In  particular,  there  are  no  ages  younger  than  0.5  Gyr  in  the  literature.  

(E)  Boué,  G.  -­‐  On  the  origin  of  stellar  spin-­‐orbit  angle  in  extrasolar  systems  Two  different  paths  may  lead  to  hot  Jupiters  :  migration  in  the  protoplanetary  disk  and  

dynamical  interaction  with  other  planets  or  with  a  stellar  binary  companion.  These  two  scenarios  predict  different  stellar  spin-­‐orbit  angle  distributions.  Hence,  several  works  have  been  dedicated  to  the  study  of  spin-­‐orbit  measurements  in  order  to  disentangle  the  two  scenarios.  However,  other  mechanisms  like  chaotic  star  formation  or  magnetic  interaction  with  the  disk  are  also  susceptible  to  produce  spin-­‐orbit  misalignments.  In  this  talk,  I  will  show  how  PLATO  2.0  can  lift  the  veil  on  the  origin  of  stellar  obliquity  and  bring  valuable  information  on  planetary  systems  early  evolution.  

(F)  Cegla,  H.  M  -­‐  Disentangling  Low-­‐mass  Planetary  Signals  and  Stellar  Surface  Magneto-­‐convection  in  Spectroscopic  Observations  Co-authors: Watson, C. A., Shelyag, S., Mathioudakis, M.

Magnetic  activity  and  variability  inherent  to  solar-­‐type  stars  naturally  limits  the  level  of  precision  attainable  for  radial  velocity  (RV)  measurements.  Even  magnetically  quiet  stars,  with  a  convective  envelope,  still  exhibit  RV  variability  on  the  several  tens  of  cm/s  level  due  to  oscillations  and  stellar  surface  magneto-­‐convection  (i.e.  granulation).  This  is  especially  significant  at  the  Earth-­‐analogue  level  as  the  astrophysical  noise  completely  swamps  the  9  cm/s  planet  signal.  Our  aim  is  to  understand  the  physical  processes  behind  granulation  in  order  to  disentangle  its  effects  from  observed  stellar  absorption  lines.  To  do  so,  we  start  with  a  state-­‐of-­‐the-­‐art  3D  magnetohydrodynamic  simulation  of  the  solar  surface.  Motivated  by  computational  constraints  and  a  desire  to  breakdown  the  physics,  we  define  the  parameters  the  granulation  signal  from  these  simulations  and  use  it  to  construct  model  Sun-­‐as-­‐a-­‐star  observations.  We  present  our  granulation  parametrisation  across  the  stellar  disc  (including  a  quantitative  measure  of  the  RV  signature  due  solely  to  the  corrugated  nature  of  granulation),  

Page 28: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 28  

alongside  the  current  results  from  our  Sun-­‐as-­‐a-­‐star  simulations.  We  find  several  line  diagnostics  correlate  with  the  induced  RV  shifts.  In  particular,  our  proxy  for  brightness  measurements  is  one  of  the  best-­‐suited  diagnostics  for  reducing  convective  noise  in  the  simulations.  Accordingly,  simultaneous  space-­‐based  photometry,  from  missions  such  as  PLATO  2.0,  could  be  key  in  reaching  a  sufficient  precision  for  the  RV  confirmation  of  habitable,  Earth-­‐like  worlds.  

(G)  Corsaro,  E.  -­‐  Towards  an  efficient  full  asteroseismic  characterization  of  a  large  number  of  planet-­‐host  stars  Co-authors: De Ridder J., Garcia R. A.

Characterizing  planet-­‐host  stars  with  solar-­‐like  oscillations  is  proving  to  be  a  key  step  to  improve  our  understanding  about  planetary  formation  and  evolution,  and  about  stellar  physics  in  general.  However,  to  fully  analyze  the  asteroseismic  properties  of  individual  oscillation  modes,  several  challenges  arise  in  terms  of  computational  power  and  efficiency.  This  is  mainly  related  to  the  high  number  of  parameters  involved  in  the  models  fitting  the  observations  and  to  the  high  quality  light  curves  now  available  from  the  NASA  Kepler  mission.  Sophisticated  and  robust  statistical  analysis  tools  are  a  prerequisite  to  conduct  this  type  of  analysis.  In  this  talk  we  present  a  recently  developed  Bayesian  code  termed  DIAMONDS,  which  is  able  to  perform  a  fast  inference  based  on  the  use  of  the  nested  sampling  algorithm.  We  show  the  potential  of  DIAMONDS  in  the  asteroseismic  analysis  of  a  challenging  F-­‐type  star  observed  by  Kepler  for  more  than  four  years.  Finally,  we  focus  on  the  possibility  to  automatize  the  entire  process  for  a  large  number  of  targets  thanks  to  the  high  capabilities  of  the  method  introduced.  This  advance  in  data  analysis  will  be  greatly  needed  for  the  analysis  of  tens  of  thousands  pulsating  stars  that  are  expected  to  be  observed  by  the  ESA  PLATO  mission.  

(H)  Cosmovici,  C.  -­‐  Search  for  Water  in  exoplanetary  Systems  by  means  of  ground-­‐based  Radiospectrometry  Co-authors: Pluchino, S., Montebugnoli, S., Pogrebenko, S., Bianchi, G., Schillirò, F., Bartolini, M.

The  ITASEL  project  (Italian  Search  for  Extraterrestrial  Life)  started  1999  and  was  supported  and  financed  by  ASI  with  the  main  purpose  to  develop  a  modern  technology  for  the  detection  of  life  bearing  molecules  in  Comets  and  Exoplanetary  systems  by  means  of  ground-­‐based  radiospectrometry.  In  particular  the  22  GHz  (1.35  cm)  water  MASER  emission  was  used,  after  its  discovery  during  the  Comet  Shoemaker-­‐Levy  9  catastrophic  impact  with  Jupiter  in  July  1994,  as  a  diagnostic  tool  for  the  search  of  water  in  habitable  planets  up  to  50  light  years  from  Sun.  35  exoplanetary  systems  were  investigated  using  2  new  FFT  spectrometers  (SPECTRA-­‐1  and-­‐2).  In  5  of  them  we  could  detect,  using  the  Radiotelescopes  of  Medicina  and  Noto,  the  Maser  emission  with  a  S/N  ratio  >  4  in  different  periods.  Special  attention  was  devoted  to  the  Epsilon  Eridani  exoplanetary  system  because  of  its  close  distance  to  Sun  and  the  presence  of  a  huge  cloud  of  comets  surrounding  the  hosting  star.  Here  we’ll  present  the  observations  carried  out  up  to  now  and  discuss  the  results  and  possible  future  plans.  

(I)  Csizmadia,  Sz.  -­‐  Precise  planet  parameters  with  PLATO  PLATO  aims  at  measuring  planetary  radii  with  2%  accuracy.  In  this  poster  we  review  what  

requirements  is  needed  to  reach  this  ambitious  goal  and  how  one  can  reach  it.  

Page 29: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 29  

(J)  Cunha,  M.S.  -­‐  Oscillations  in  g-­‐mode  period  spacings  in  red  giants  as  a  way  to  determine  their  state  of  evolution  Co-authors: Stello, D., Avelino, P. P., Christensen-Dalsgaard, J.

Sharp  structural  variations  in  the  radiative  inner  layers  of  red  giant  stars  may  influence  the  stars'  oscillation  periods,  producing  a  signature  in  their  period  spacings.  These  signatures  are  expected  to  be  found  in  the  data  for  a  number  of  red  giant  stars  that  will  be  observed  by  the  PLATO  2.0  mission,  revealing  not  only  details  of  their  inner  structure,  but  also  their  precise  evolutionary  status.  In  this  work  we  describe  the  main  characteristics  of  the  signature  imprinted  in  the  period  spacings  by  glitches  in  the  buoyancy  frequency  lying  inside  the  g-­‐mode  propagation  cavity  and  explain  under  which  conditions  that  signature  is  expected  to  exist.  Based  on  the  analysis  of  the  period  spacings  for  a  large  grid  of  models,  we  further  identify  regions  along  the  red  giant  evolution  where  the  signature  may  be  found.  

(K)  de  Jong,  Roelof  S.  -­‐  4MOST  spectroscopic  host  star  characterisation  for  PLATO  Co-author: the 4MOST collaboration

4MOST  is  ESO's  next  generation  spectroscopic  survey  facility  for  the  VISTA  telescope  with  a  first  light  planned  in  2020.  In  its  initial  5  year  survey  4MOST  is  expected  to  deliver  spectra  for  >20  million  objects  spread  over  a  large  fraction  of  the  southern  sky.  Of  particular  interest  for  PLATO  will  be  that  4MOST  can  obtain  resolution  R~20,000  spectra  for  a  large  fraction  of  the  stars  to  be  observed  by  PLATO  in  the  10-­‐15th  mag  range.  Such  spectroscopic  observations  would  identify  double  line  spectroscopic  binaries,  provide  exo-­‐planet  host-­‐star  characterisation  yielding  birth  place  information  by  identifying  stellar  families  in  abundance  and  dynamics  space,  and  support  the  astro-­‐seismology  investigations  such  that  much  more  accurate  masses  and  ages  of  stars  can  be  obtained.  Repeat  observations  could  furthermore  yield  single  line  spectroscopic  binaries,  but  would  require  a  modification  of  the  survey  strategy  as  currently  planned.  

(L)  do  Nascimento,  J.  D.  -­‐  Rotation  Periods  and  ages  of  solar  Twins  revealed  by  the  kepler  mission:  A  roadmap  for  PLATO  ages  Co-authors: Meibom, S., Barnes, S., Garcia, R., Mathur, S.

The  Sun  is  a  benchmark  in  stellar  astrophysics  research  and  establishing  a  sample  of  solar  analog  stars  is  important  to  map  its  past,  present  and  future,  and  to  understand  how  representative  it  is  for  stars  with  the  same  mass  and  age.  We  present  a  new  sample  of  solar-­‐type  field  stars  that  contain  at  least  fifteen  solar  analogs  and  possibly  even  solar  twins.  Using  long-­‐cadence  (Q0-­‐Q16)  light  curves  from  NASA's  Kepler  mission  we  determine  the  stellar  rotation  periods  and  ages.  We  analyze  the  properties  of  unevolved  solar  analogs  and  twin  candidates  and  determine  their  gyrochronology  ages.  From  our  results  we  present  the  comparison  between  the  gyro-­‐ages  and  ages  from  asteroseismology  for  solar  analogs.  We  summarize  that  searching  for  solar  twins  will  be  an  important  roadmap  for  age  determinations  in  future  missions  like  PLATO.  

Page 30: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 30  

(M)  Debski,  B.  -­‐  Light  Curve  Morphology:  a  tool  for  PLATO  2.0  for  studying  extreme  close  binaries  Co-author: Zola, S.

The  continuous  high  precision  photometry  is  essential  for  understanding  the  processes  governing  the  short-­‐time  scale  activity  in  extreme  close  binaries.  The  analysis  of  the  evolution  signal  of  such  light  curve  parameters  like  the  O'Connell  effect  and  the  separation  of  the  brightness  maxima  is  a  powerful  tool  for  studying  the  evolution  of  the  activity  of  the  binary  system.  We  present  Light  Curve  Morphology  Analysis,  which  fits  perfectly  to  the  outcome  data  of  the  PLATO  2.0  mission.  The  Analysis  may  offer,  inter  alia,  the  most  precise  and  useful  description  of  the  observed  known  and  newly  discovered  binaries.  

(N)  Di  Mauro,  M.  P.  -­‐  A  synergic  strategy  to  identify  habitable  exoplanets    Co-authors: Ventura, R., Claudi, R., Mura, A., Mangano, V.

We  will  present  a  new  approach  to  characterize  habitability  of  exoplanets  by  using  properties  of  the  host-­‐star  as  obtained  by  Asteroseismology  and  by  modelling  conditions  of  stability  of  the  planetary  atmosphere  as  developed  for  the  planets  of  our  Solar  System.  

(O)  García  Muñoz,  A.  -­‐  Steps  towards  the  interpretation  of  exoplanet  phase  curves  PLATO  will  enable  the  investigation  of  exoplanet  atmospheres  through  the  accurate  

analysis  of  planet  phase  curves.  Just  as  for  the  Solar  System  planets,  phase  curves  contain  unique  yet  blended  information  on  the  dynamical  and  thermal  state,  composition  (gas,  cloud,  haze),  and  horizontal/vertical  structure  of  the  planets’  envelopes.  In  preparation  for  the  interpretation  of  PLATO  and  other  space  mission  phase  curves,  I  have  been  re-­‐visiting  the  problem  of  phase  curve  interpretation  in  the  Solar  System,  paying  special  attention  to  Earth,  Titan,  and  Venus.  The  observational  data  are  collected  from  space  missions  (Messenger,  Cassini)  and  ground-­‐based  observations.  These  three  objects  are  vastly  different,  but  together  they  encompass  some  of  the  configurations  (broken/continuous  cloud/haze  cover)  that  will  surely  occur  on  exoplanets.  In  my  presentation,  I  will  summarize  these  ongoing  efforts.  Incorporating  the  lessons  learned  from  decades  of  Solar  System  exploration  will  surely  help  characterize  exoplanet  atmospheres  and  decide  what  steps  are  needed  next.  

(P)  Garrido,  R.  -­‐  An  information  preserving  method  for  filling  gaps  in  time  series  Co-authors: Pascual-Granado, J., Suárez, J. C.

Invalid  flux  measurements,  introduce  aliases  in  the  periodogram  and  wrong  amplitudes.  It  has  been  demonstrated  that  replacing  such  invalid  data  with  a  linear  interpolation  is  not  harmless.  On  the  other  side,  using  power  spectrum  estimators  for  unevenly  sampled  time  series  is  not  only  less  computationally  efficient  but  it  leads  to  difficulties  in  the  interpretation  of  the  results.  Therefore,  even  when  the  gaps  are  rather  small  and  the  duty  cycle  is  high  enough  the  use  of  gap-­‐filling  methods  is  a  gain  in  frequency  analysis.  However,  the  method  must  preserve  the  information  contained  in  the  time  series.  We  present  a  gap-­‐filling  method  based  on  autoregressive  moving-­‐average  modelling  of  the  data  that  make  no  assumptions  about  the  analyticity  of  the  signal.  In  this  contribution  we  give  a  short  description  of  the  method  and  show  some  results  when  applying  it  to  CoRoT  seismo  

Page 31: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 31  

light  curves.  We  show  that  this  method  remove  the  aliased  periodogram  making  unnecessary  any  pre  whitening  technique  for  asteroseismic  analysis.  This  technique  can  be  extended  to  the  time  series  supplied  by  PLATO  when  necessary.  

(Q)  Giuffrida,  G.  -­‐  Gaia  and  PLATO  2.0  in  ASDC  Co-authors: Marrese, P. M., Marinoni, S., Verrecchia, F., Buonanno, R., Castellani, M.

The  number  of  stars  that  Plato  2.0  can  follow  will  be  limited  by  telemetry  bandwidth,  and  is  considerably  smaller  than  the  total  number  of  stars  in  Plato's  field  of  view  (FOV),  therefore  the  selection  of  the  optimal  targets  (i.e.  the  preparation  on  the  Plato  Input  Catalogue)  is  a  fundamental  task  for  the  mission.  The  implementation  of  Plato  Input  Catalogue  (PIC)  is  developed  and  managed  at  the  ASI  Science  Data  Center  (ASDC),  one  of  the  PLATO  Data  Processing  Centre,  following  the  scientific  inputs  of  the  Target/Field  Characterization  team  (leader  G.  Piotto).    ASDC  has  the  responsibility  for  the  delivery  and  maintenance  of  the  final  input  catalogue.  ASDC  is  also  responsible  in  DPAC-­‐CU9  for  the  cross  match  of  the  Gaia  catalog  with  big  Optical/IR  surveys.  The  cross-­‐match  tables  with  PPMXL,  GSC2.3,  AllWISE,  2MASS,  SDSS  DR10  and  UCAC4  will  be  part  of  the  first  official  Gaia  catalog  release  (mid-­‐2016).  Several  other  catalogs  will  be  added  in  future  releases  (Pan-­‐STARRS,  the  ESO-­‐surveys  ….)  This  big  set  of  data  will  constitute  the  foundation  of  the  Plato  Input  Catalog.  ASDC  (www.asdc.asi.it),  a  facility  of  the  Italian  Space  Agency  (ASI),  is  a  multi-­‐mission  science  operations,  data  processing  and  data  archiving  center  that  provides  support  to  several  scientific  space  missions  such  as  Plato,Gaia,  Herschel,  Planck,  Swift,  AGILE,  Fermi  and  NuSTAR.    

(R)  Iro,  N.  -­‐  Exoplanet  atmosphere  modelling  With  the  discovery  of  an  increasing  number  of  planets  outside  our  Solar  System,  we  are  

becoming  familiar  with  physical  conditions  and  atmospheric  compositions  that  span  a  much  wider  range  that  what  covered  by  the  planets  of  our  solar  system.  Non-­‐exhaustive  examples  are  equilibrium  temperatures  ranging  from  50K  (Neptune)  to  over  3000K  (WASP-­‐12b,  WASP18b);  orbital  eccentricity,  ranging  from  0-­‐0.1  for  solar  system  planets  (except  Mercury)  and  circularized  close-­‐in  hot  Jupiters  to  HD80606b  (e=0.93).  Other  parameters  relevant  for  atmospheric  dynamical  features  are  also  quite  diverse:  the  Rhines  length  and  Rossby  length  are,  e.g.,  much  smaller  than  the  planet  radii  for  Solar  system  planets,  while  they  are  comparable  to  the  planetary  radii  for  hot  Jupiters  and  Neptunes,  meaning  that  in  the  latter  case  typical  circulation  features  are  global.  It  seems  timely  and  urgent  to  try  to  frame  in  a  common  framework  our  understanding  of  such  a  large  variety  of  atmospheric  conditions.  Here we present VIPER, the Versatile Interactive PlanetSimulator for Extrasolar Research. This project, under development, aims at developing the Planet Simulator, an already flexible climate model to a new level of modularity.

(S)  Janot-­‐Pacheco,  E.  -­‐  Atmospheric  Biosignatures  on  Earth  and  Exoplanets  by  Spectroscopic  Techniques  Co-authors: Bendjoya, P., Bernardes, L. Lage, C.

Page 32: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 32  

The  new  generation  of  ground  based  astronomical  instruments  (ALMA,VLT-­‐SPHERE,VLT-­‐MATISSE,E-­‐ELT)  and  the  latest  and  future  space  missions  (e.g.  CoRoT,  Kepler,  PLATO)  bring  us  to  a  crucial  turnover  in  our  knowledge  on  the  exoplanetary  science  domain.  New  exoplanetary  systems  are  being  detected  almost  each  day  and  we  will  in  a  few  years  be  able  to  make  direct  images  of  the  exoplanets  and  hence  to  analyze  their  atmospheres.  Since  the  discovery  of  the  first  exoplanet  in  1995,  this  field  of  research  has  become  a  major  one  in  astronomy  and  astrophysics.  This  is  not  surprising  since  this  field  is  related  to  a  fundamental  and  ancient  question  of  humanity  on  the  possibility  to  discover  other  worlds.  Once  the  existence  of  these  new  planetary  systems  have  been  proved,  the  next  crucial  question  is  “Is  there  any  life  on  these  new  worlds?”.  The  ultimate  subject  of  this  project  is  to  study  theoretical  and  instrumental  tools  that  will  help  answering  these  questions.  In  order  to  reach  these  goals  we  will  use  the  only  planet  at  our  disposal  on  which  we  know  that  life  is  fully  developed:  Earth.  We  will  consider  Earth  and  life  on  Earth  as  the  ideal  laboratory  to  experiment  strategies  for  the  detection  of  life  signatures  by  spectroscopic  techniques  not  only  qualitatively  but  also  quantitatively.  Life-­‐related  molecules  are  quite  complex.  One  of  the  main  teaching  concerning  life  on  Earth  is  that  biodiversity  is  a  phenomenal  reality  that  has  not  been  quantitatively  estimated  due  to  the  huge  amount  of  species  and  individuals  in  each  species.  When  considering  the  whole  biodiversity  (from  vegetables  to  animals,  passing  through  microbes  and  viruses)  it  seems  obvious  that  life  has  “polluted”  our  atmosphere  continuously  in  a  non  negligible  way  since  at  least  3  Gyr.  We  intend  to  systematize  the  detection  of  this  non  negligible  part  of  “pollution”  of  our  atmosphere  by  the  biosphere.  From  the  results  it  will  then  be  possible  to  adapt  detection  strategies  and  to  envisage  the  instrumental  developments  for  the  atmospheric  bio-­‐signature  detection  in  planets  of  the  solar  system  and  finally  in  exoplanets  as  soon  as  their  own  spectra  will  be  accessible  with  the  proper  resolution.    

(T)  Klagyivik,  P.  -­‐  Cluster  formation  and  evolution  as  will  be  seen  by  PLATO:  experiences  with  eclipsing  binaries  in  NGC  2264  Co-author: Csizmadia Sz.

Using  ground-­‐based  measurements  we  found  an  extremely  high  fraction  of  eclipsing  binaries  in  the  area  of  the  very  young  open  cluster  NGC  2264  (Klagyivik  et  al.  2013).  This  observation  can  be  explained  only  if  all  the  orbital  planes  are  nearly  edge-­‐on  inside  the  cluster  while  it  is  isotropically  distributed  in  the  field,  which  has  an  implication  on  cluster  formation  and  evolution.  Thanks  to  its  large-­‐sky  accessibility,  PLATO  2.0  will  be  an  excellent  instrument  for  evolutionary  tracing  of  binary  systems  in  open  clusters  observing  a  large  number  of  open  clusters  at  different  ages  of  different  richness  of  clusters.  Combining  these  data  with  the  results  of  the  Gaia  satellite,  the  beginning  of  a  new  era  of  binary  star  and  cluster  formation  studies  is  foreseen.  

(U)  Krticka,  J.  -­‐  High  precision  photometry  as  a  test  of  stellar  model  atmospheres  and  evolution  theory  Co-authors: Mikulasek, Z., Janik, J., Prvak, M.

Chemically  peculiar  stars  represent  a  large  class  of  upper  main  sequence  stars.  The  processes  of  radiative  diffusion  and  gravitational  settling  in  their  atmospheres  give  rise  to  pronounced  deviations  in  the  chemical  composition  of  these  stars  from  the  solar  value.  Some  chemically  peculiar  stars  show  inhomogeneous  surface  distribution  of  chemical  elements  on  

Page 33: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 33  

their  surface.  The  uneven  surface  distribution  of  various  elements,  together  with  radiative  flux  redistribution  and  rotation,  is  the  origin  of  these  stars'  light  variability.    The  comparison  of  the  predicted  light  variability  (derived  from  model  atmospheres  using  surface  abundance  maps)  with  observed  light  variability  provides  a  very  precise  test  of  model  atmospheres.  Moreover,  the  periodical  light  variability  may  serve  as  a  very  precise  clock  that  is  able  to  detect  even  very  minute  changes  of  rotational  period.  Therefore,  space-­‐based  photometry  may  serve  as  test  of  internal  structure  and  evolutionary  models  of  the  stars  with  global  magnetic  field.  

(V)  Mecheri,  R.  -­‐  A  convenient  system  of  first  order  ODEs  describing    the  oscillations  of  rapidly  rotating  stars  Co-author: Roxburgh, I. W.

In  this  contribution  we  present  a  new  simplified  form  of  the  equations  of  hydrodynamics  describing  the  oscillations  of  rapidly  rotating  stars.  It  is  obtained  first  from  an  expansion  of  the  perturbation  quantities  into  a  multiple  summation  of  spherical  harmonics  and  then  a  truncation  of  the  equations  at  a  certain  order.  After  lengthy  algebraic  manipulations  of  the  equations  in  a  surface  fitted  system  of  coordinates,  the  resulting  equations  consist  of  a  set  of  first  order  linear  Ordinary  Differential  Equations  (ODEs)  representing  an  eigenvalues  problem  which  can  be  solved  numerically  using  the  appropriate  boundary  conditions  at  the  center  and  at  the  surface  of  a  rotating  (non-­‐spherical)  star.  This  set  of  equations  is  a  generalization  of  the  very  familiar  ODEs  system  known  in  the  case  of  a  non-­‐rotating  (spherical)  star.  This  model  can  be  used  for  the  exploitation  of  the  future  PLATO  asteroseismic  data.  

(W)  Morel,  T.  -­‐  Uncertainty  in  stellar  radii  for  PLATO2.0  targets  based  on  Gaia  data  Planets  orbiting  red  giants  have  now  been  detected  in  a  few  Kepler  targets,  and  seismic  

constraints  on  their  host  stars  were  key  to  the  accurate  characterisation  of  planetary  systems,  including  inferences  on  spin-­‐orbit  misalignments.  Finally,  oscillations  modes  detected  in  ageing  stars  may  be  used  to  test  stellar  models  (e.g.  transport  of  angular  momentum  and  of  chemical  species),  leading  to  a  better  understanding  of  stellar  evolution  in  earlier  phases  as  well.  

(X)  Nelson,  R.  P.  -­‐  Formation  and  orbital  evolution  of  planetary  systems  Co-author: Coleman, G.

The  on-­‐going  discovery  of  extrasolar  planets  with  highly  diverse  properties  provides  a  formidable  challenge  to  our  ability  to  explain  how  planetary  systems  form  and  evolve.  The  core  accretion  scenario  of  plant  formation  is  based  on  a  sequential  picture  in  which  planetesimals  grow  into  planetary  embryos,  which  in  turn  accrete  to  form  systems  of  planets  whose  properties  depend  on  the  detailed  formation  history.  In  this  talk  I  will  present  the  results  of  recent  N-­‐body  simulation  of  planetary  system  formation  that  incorporate  the  most  up-­‐to-­‐date    prescriptions  for  migration,  gas  accretion  and  disc  evolution.  Among    other  issues,  I  will  discuss  how  well  these  models  are  able  to  account  for  the  observed  extrasolar  planets,  and  the  areas  in  which  our  current  ideas  about  planet  formation  fall  short  of  being  able  to  provide  a    satisfactory  explanation  of  the  observed  planetary  population.  

Page 34: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 34  

(Y)  Norton,  A.  J.  -­‐  Detecting  non-­‐transiting  planets  in  transiting  planet  surveys  Co-author: Lohr, M. E.

Wide  field  photometric  surveys,  epitomized  by  SuperWASP  at  the  present  time  and  by  PLATO  in  the  future,  detect  vast  numbers  of  eclipsing  binary  stars  and  pulsating  stars  as  a  by-­‐product  of  their  main  purpose.  Any  regularly  repeating  fiducial  marker  such  as  an  eclipse  or  a  pulse  can  be  used  to  monitor  dynamical  changes  in  a  stellar  system.  So  circumbinary  planets  in  eclipsing  binaries  and  planets  orbiting  pulsating  stars  can  in  principle  be  detected  from  cyclical  eclipse  timing  variations  and  pulse  timing  variations  respectively,  caused  by  light  travel  time  delays  induced  by  an  orbiting  exoplanet.  I  present  some  recent  work  in  this  area  from  SuperWASP  data  and  look  ahead  to  the  prospects  for  such  detections  with  PLATO.  

(Z)  Oshagh,  M.  -­‐  Effect  of  stellar  activity  on  the  high-­‐precision  transmission  spectra  Co-authors: Santos, N. C.; Ehrenreich, D.; Haghighipour, N.; Figueira, P.; Santerne, A.; Montalto, M.

Transmission spectroscopy during planetary transits, which is based on the measurements of the variations of planet-to-star radius ratio as a function of wavelength, is a powerful technique to study the atmospheric properties of transiting planets. One of the main limitation of this technique is the effects of stellar activity, which up until now, have been taken into account only by assessing the effect of non-occulted stellar spots on the estimates of planet-to-star radius ratio. In this paper, we study, for the first time, the impact of the occultation of a stellar spot and plage on the transmission spectra of transiting exoplanets. We simulated this effect by generating a large number of transit light curves for different transiting planets, stellar spectral types, and for different wavelengths. Results of our simulations indicate that the anomalies inside the transit light curve can lead to a significant underestimation or overestimation of the planet-to-star radius ratio as a function of wavelength. At short wavelengths, the effect can reach to a difference of up to 10% in the planet-to-star radius ratio, mimicking the signature of light scattering in the planetary atmosphere. Atmospheric scattering has been proposed to interpret the increasing slopes of transmission spectra toward blue for exoplanets HD 189733b and GJ 3470b. Here we show that these signatures can be alternatively interpreted by the occultation of stellar plages. Results also suggest that the best strategy to identify and quantify the effects of stellar activities on the transmission spectrum of a planet is to perform several observations during the transit epoch at the same wavelength. This will allow for identifying the possible variations in transit depth as a function of time due to stellar activity variability.

(AA)  Paetzold,  M.  -­‐  Wavelet  based  filter  methods  for  the  detection  of  small  transiting  planets:  application  to  Kepler  light  curves  Co-author: Grziwa, S.

The  space  telescopes  CoRoT  and  Kepler  provided  a  huge  number  of  high-­‐resolution  stellar  light  curves.  These  light  curves  are  searched  for  transit  signals  which  may  be  produced  by  planets  when  passing  in  front  of  the  stellar  disc.  Stellar  flux  variations  caused  by  star  spots,  pulsation,  flares,  glitches,  hot  pixels  etc.,  however,  dominate  the  stellar  light  curves  and  may  mask  faint  transit  signals  in  

Page 35: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 35  

particular  those  of  small  exoplanets.  This  may  lead  to  missed  candidates  or  a  high  rate  of  false  detections.  The  Rheinisches  Institut  für  Umweltforschung  (RIU-­‐PF)  as  one  of  the  CoRoT  detection  teams  has  developed  the  two  model  independent  wavelet  based  filter  techniques  VARLET  and  PHALET.  These  two  filters  are  used  to  reduce  the  flux  variability  in  order  to  improve  the  search  for  transits.    The  VARLET  filter  separates  the  large-­‐scale  variations  from  the  white  noise  without  using  a-­‐priori  information  of  the  target  star.  The  transit  feature,  however,  is  not  extracted  and  is  still  contained  in  the  residual  (filtered)  time  series  which  makes  it  now  much  easier  to  search  for  transits  by  the  search  routine  EXOTRANS  (Grziwa  et  al.,  2012).  The  PHALET  filter  is  used  to  separate  periodic  disturbances  with  well-­‐known  periods  independent  of  their  shape,  e.g.  disturbances  caused  by  the  spacecraft  motion  in  the  Earth  orbit.  The  main  purpose  Of  PHALET,  however,  is  to  extract  already  detected  transits  in  order  to  search  for  multi-­‐planet  systems  that  are  transits  from  additional  planets  in  the  stellar  light  curve.  RIU-­‐PF  searched  all  publicly  available  Kepler  light  curves  for  planetary  transits  by  including  VARLET  and  PHALET  in  the  detection  pipeline.  The  results  of  that  search  are  compared  with  the  official  Kepler  candidate  list.  About  93%  of  the  2232  entries  in  the  recent  Kepler  candidate  list  could  be  confirmed;  together  with  a  number  of  newly  detected  candidates  including  20  new  multi-­‐planet  systems.  The  huge  number  of  available  light  curves  can  only  be  handled  and  processed  with  fully  automated  filtering  and  detection  algorithms  running  on  computer  clusters.  This  will  become  even  more  important  for  future  missions  like  PLATO  and  TESS.  

(BB)  Paparo,  M.  -­‐  Impact  of  CoRoT  asteroseismology  to  Plato  planet-­‐hosting  stars.  Massive  sample  of  large  separations  in  Delta  Scuti  stars.  

The  detailed  investigation  of  exoplanets  needs  information  on  the  planet-­‐hosting  stars.  Asteroseismology  allows  unique  information  on  the  stars  orbiting  by  planets.  The  large  separation  between  the  consecutive  radial  orders  and  the  small  separation  of  modes  with  different  l  values  are  well-­‐known  and  useful  parameters  for  characterizing  solar  type  oscillation.  Determinations  of  large  separation  in  Delta  Scuti  stars  were  obtained  from  ground-­‐based  data  (Handler  et  al.,  1997,  Breger  et  al.,  1999,  2009),  from  space  data  (Matthews,  2007-­‐MOST,  Garcia  Hernandez  et  al.  2009,  2013,  Mantegazza  et  al,  2012-­‐CoRoT  and  Hernandez  et  al.  2013-­‐Kepler),  but  only  for  limited  number  of  stars.  Mostly  the  Fourier  transform  technique  and  the  histogram  of  frequency  differences  were  used.  The  CoRoT  target,  102749568  was  a  case,  where  individual  frequencies  in  shifted  regular  patterns  were  localized  (Paparo  et  al.  2013).  As  a  continuation  of  this  method,  96  Delta  Scuti  stars  on  the  first  CoRoT  long  run  were  checked  for  regular  patterns.  86  Delta  Scuti  stars  showed  regular  (not  equidistant)  patterns.  The  method  seems  to  be  robust  not  only  for  finding  single  patterns  but  shifted  patters,  too.  The  distribution  of  patters:  24  stars  showed  -­‐  single  pattern,  32  stars  -­‐  two,  17  stars  -­‐  three,  8  stars  -­‐four,  4  stars  -­‐  five  and  1  star  showed  -­‐  six  shifted  patters.  No  more  than  60  frequencies  per  a  single  star  was  used,  in  average  30  frequencies/star.  In  50  stars  40-­‐60  %  of  the  frequencies  were  included  in  one  of  the  patterns.  Averaging  the  individual  frequency  differences  of  the  patterns,  the  large  separation  of  86  Delta  Scuti  stars  were  determined  with  

Page 36: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 36  

high  precision.  Two  peaks  exist::  33  stars  showed  large  separation  between  25-­‐30  microHz  and  22  stars  exhibited  separation  between  30-­‐40  microHz..  The  other  values  distributed  around  the  two  peaks.  The  shifts  between  the  patterns  (analogy  of  the  small  separation)  showed  also  systematic  values.  The  same  "magic  numbers"  appeared  from  star  to  star.  The  localization  of  independent  frequencies  in  the  shifted  patterns  allows  a  relative  mode  identification.  A  systematic  survey  on  the  other  CoRoT  runs  and  Kepler  data  could  give  huge  improvement  in  charactherizing  of  planet-­‐hosting    stars.  

(CC)  Peres,  G.  -­‐  The  residual  X-­‐ray  emission  in  Venus  shadow  Co-authors: Afshari, M., Reale, F., Gambino, A.

We  take  advantage  of  Venus  transit  on  the  Sun  disk  to  measure  the  x-­‐ray  and  UV  residual  emission.  We  provide  evolution  and  spatial  structure  of  this  X-­‐ray  and  UV  shadows  and  comment  these  preliminary  analysis.  

(DD)  Ragazzoni,  R.  -­‐  PLATO  Telescope  Optical  Units:  design  and  evolution  Co-author: the PLATO TOU Team

PLATO  (Planetary  Transits  and  Oscillations  of  stars)  is  the  Cosmic  Vision  Programme  M3  mission  selected  for  launch  in  January  2024  by  ESA.  The  main  goal  of  the  PLATO  mission  is  to  detect  terrestrial  exoplanets  in  the  habitable  zone  of  solar-­‐type  stars  and  to  characterize  their  bulk  properties.  The  payload  concept  is  based  on  a  multi-­‐Camera  approach,  involving  34  cameras,  looking  at  4  partially  overlapping  areas  on  the  sky.    The  many  eyes  of  PLATO  are  based  on  a  fully  dioptric  design  (6-­‐lenses),  working  in  an  extended  visible  light  range  and  are  able  to  observe  a  very  large  field.  Here  we  highlight  the  main  features  of  the  Telescope  Optical  Units  (TOU),  starting  from  the  optical  design,  through  the  main  analysis  which  are  on-­‐going  at  the  moment  of  this  writing,  to  its  prototyping  activities,  aimed  to  validate  several  different  aspect  of  the  overall  design.  

(EE)  Suran,  M.  D.  -­‐  ROMOSC  Asteroseismic  data  interpretation  pipeline    Co-author: Pricopi, D.

We  present  our  data  interpretation  pipeline  ROMOSC  which  will  be  used  for  asteroseismic  characterization  of  the  stars  hosting  exoplanetary  systems  observed  by  PLATO  Mission.  

(FF)  Salmon,  S.  J.  A.  J.  -­‐  What  can  we  learn  from  the  asteroseismology  of  β  Cephei  stars  through  the  forward  approach  Co-authors: Montalban, J., Miglio, A., Noels, A., Eggenberger, P., Dupret, M-A., Briquet, M.

The  beta  Cephei  pulsating  stars  present  a  unique  opportunity  to  test  and  probe  our  knowledge  on  the  interior  of  massive  stars.  The  information  we  can  obtain  depends  on  the  quality  and  number  of  observational  constraints,  both  seismic  and  classical  ones.  The  asteroseismology  of  beta  Cephei  stars  proceeds  by  a  forward  approach,  which  often  result  in  multiple  solutions,  without  clear  indication  on  the  level  of  confidence.  We  seek  a  method  to  derive  confidence  intervals  on  stellar  parameters  obtained  by  forward  

Page 37: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 37  

approach  and  investigate  how  these  latter  behave  depending  the  seismic  data  accessible  to  the  observer.    We  realise  forward  modelling  with  help  of  a  grid  of  pre-­‐computed  models  and  use  Monte-­‐Carlo  simulations  to  build  confidence  intervals  on  the  inferred  stellar  parameters.  We  apply  and  test  this  method  in  a  series  of  hare  and  hound  exercises  on  a  subset  of  theoretical  models  simulating  observed  stars.    Results  show  that  a  set  of  5  frequencies  (with  knowledge  of  their  associated  angular  degree)  yields  good  seismic  constraints.  In  particular,  presence  of  mixed  modes  provides  a  strong  diagnosis  on  the  evolutionary  state  of  the  star.  Significant  errors  on  the  determination  of  the  extent  of  the  central  mixed  region  appear  when  the  theoretical  models  do  not  present  the  same  chemical  mixture  as  the  observed  star.  

(GG)  Schou,  J.  -­‐  On  the  surface  effect  in  Sun-­‐like  stars  The  so-­‐called  surface  effect  continues  to  be  a  cause  of  problems  in  helio-­‐  and  astero-­‐

seismology,  especially  for  stars  with  the  narrow  range  of  frequencies  typically  observed  in  intensity  by  missions  such  as  CoRoT,  Kepler  and  Plato.  Here  I  will  investigate  some  of  the  likely  causes  of  the  surface  effect,  in  particular  the  effects  of  the  near  surface  convection.  I  will  also  briefly  touch  on  other  observable  consequences  of  near-­‐surface  convection  on  the  oscillation  modes.    

(HH)  Sódor,  Á.  -­‐  Studying  hybrid  delta  Scuti-­‐gamma  Doradus  pulsators  by  space  photometry  Co-authors: Sódor, Á., Bognár, Zs., Paparó, M.

We  have  the  opportunity  to  study  the  full  interior  of  the  genuine  hybrids  by  asteroseismic  means,  because  both  low-­‐order  p-­‐  and  high-­‐order  g-­‐modes  are  self-­‐excited  at  the  same  time  in  these  objects.  Therefore,  the  asteroseismic  importance  of  such  genuine  hybrids  is  very  high.  However,  a  few  other  physical  processes  can  also  be  responsible  for  the  observed  low-­‐-­‐frequency  light  variations,  e.g.,  binarity  and  surface  inhomogeneities.  The  discrimination  between  the  different  scenarios  is  often  not  straightforward.  Usually,  ground-­‐based  follow-­‐up  spectroscopy  is  necessary,  which  will  be  more  affordable  and  more  effective  for  the  bright  PLATO  hybrid  candidates.  Our  future  goal  is  to  devise  reliable  methods  for  discriminating  between  genuine  hybrids  and  other  possible  objects  showing  low-­‐frequency  light  variations  together  with  delta  Scuti  pulsations.  Here  we  present  our  preliminary  results  from  our  ongoing  hybrid-­‐candidate  studies  based  on  space  photometry,  emphasizing  its  relevance  to  the  PLATO  project.  

(II)  Turck-­‐Chièze,  S.  -­‐  Improving  stellar  modelling  Co-authors: LePennec, M., Ducret, J.E., Ribeyre, X, Salmon, S., Blancard, C., Cosse, P., Faussurier, G., Mondet, G., Colgan, J., Fontes, C., Kilcrease, D.

We  present  in  this  poster  different  activities  that  we  are  performing  to  improve  the  microscopic  description  of  solar-­‐like  stars  and  massive  stars  in  order  to  better  interpret  the  present  asteroseismic  observations  of  stars  from  KEPLER.  This  activity  will  largely  benefit  also  to  the  future  PLATO  mission.  

Page 38: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 38  

(JJ)  Valio,  A.  -­‐  Determination  of  Stellar  Rotation  through  starspots  During  the  eclipse  of  a  star  by  its  orbiting  planet,  spots  and  other    features  on  the  surface  

of  the  host  star  may  be  occulted.  This    will  cause  small  variations  in  the  star  light  curve.  Detailed    analysis  of  these  variations  during  planetary  transits  provides  a    wealth  of  information  about  starspot  properties.  If  observation  of  multiple  transits  is  available,  it  may  be  possible    to  detect  the  same  spot  on  different  transits  and  thus  determine    the  stellar  rotation.  Assuming  a  rotation  profile  of  the  star  with  latitude,  it  may  also  be  possible  to  estimate  stellar  differential  rotation.  This  study  is  performed  using  a  method  that  simulates  the  passage  of  a  planet  (dark  disk)  in  front  of  a  star  with  multiple  spots  of  different  sizes,  intensities,  and  positions  on  its  surface.  The  light  curves  of  known  planets  detected  by  the  CoRoT  and  Kepler  satellite  are  analyzed  and  the  estimates  of  stellar  rotation  and  differential  rotation  presented.    

(KK)  Voss,  H.  -­‐  Scientific  capabilities  of  the  Gaia  UB  team  applicable  to  PLATO  2.0  Co-authors: Carrasco, J. M., Julbe, F., Jordi, C., Torra, J.

The  knowledge  and  understanding  about  the  character  and  features  of  the  photometric,  spectro-­‐photometric  and  spectroscopic  data  of  the  ESA  Gaia  mission  gained  during  its  processing  and  validation  should  be  applied  during  the  PLATO  target  star  selection  process  to  allow  optimal  transit  search  results.  Our  team  at  the  Universitat  de  Barcelona  currently  working  on  Gaia  has  an  extensive  expertise  in  space-­‐based  photometry  that  could  be  very  useful  for  the  preparation  and  execution  of  the  PLATO2.0  mission.  Additional  Gaia  derived  information  about  stellar  parameters,  positions,  proper  motions  and  parallaxes  should  be  incorporated  in  the  target  star  selection  as  well  as  2D  analysis  of  crowded  regions  obtained  with  Gaia.  Gaia  data  will  become  available  stepwise  with  the  different  catalogue  releases.  Our  role  in  these  releases  can  help  to  get  the  maximum  profit  of  the  Gaia  data  to  the  PLATO2.0  mission  as  soon  as  they  become  available  step  by  step.  

Page 39: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 39  

List of participants     Surname Name   Affiliation   Country  

1   Adibekyan Vardan CAUP Portugal  2   Affer Laura INAF - Osservatorio Astronomico di Palermo Italy 3   Alibert Yann University of Bern Switzerland 4   Alonso Roi Instituto de Astrofísica de Canarias Spain

5  Ammler-von Eiff Matthias Max Planck Institute for Solar System Research Germany

6   Appourchaux Thierry Institut d'Astrophysique Spatiale France 7   Baglin Annie LESIA Observatoire de Paris France 8   Ball Warrick Institut für Astrophysik Göttingen Germany 9   Ballot Jérôme IRAP France 10   Barrado David Centro de Astrobiología Spain 11   Baudin Frédéric IAS France 12   Belkacem Kevin LESIA - Paris Observatory France 13   Bellassai Giancarlo INAF OACT Italy 14   Bigot Lionel Lagrange - Observatoire de la Côte d'Azur France 15   Bognar Zsofia MTA CSFK, Konkoly Observatory Hungary 16   Bonfanti Andrea Università degli Studi di Padova Italia 17   Bonomo Aldo Stefano INAF - Osservatorio Astrofisico di Torino Italy 18   Borsa Francesco INAF - Osservatorio Astronomico di Brera Italy 19   Borsato Luca Università degli Studi di Padova - DFA Italy 20   Boué Gwenaël IMCCE France 21   Bourrier Vincent Observatoire de Genève Suisse 22   Brown David University of Warwick / Queen's University Belfast UK  23   Buldgen Gaël University of Liège Belgium 24   Burleigh Matthew University of Leicester UK 25   Burston Raymond MPS Germany 26   Cabrera Juan DLR Germany 27   Camilletti Adam Airbus DS UK UK 28   Campante Tiago University  of  Birmingham   UK  29   Cassisi Santi INAF - Osservatorio Astronomico Teramo Italia

30   Cegla Heather Cegla Queen's University Belfast

United Kingdom

31   Chaplin William University of Birmingham United Kingdom

32   Church Ross Lund Observatory Sweden

33   Colangeli Luigi ESA The Netherlands

34   Corsaro Enrico Service d'Astrophysique, IRFU/DSM/CEA Saclay France  35   Cosentino Rosario INAF-FGG Spagna 36   Cosmovici Cristiano INAF-IAPS Italy  37   Csizmadia Szilard DLR-EPA Germany 38   Cunha Margarida Centro de Astrofísica da Universidade do porto Portugal 39   D'Arrigo Paolo Airbus DS UK

Page 40: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 40  

    Surname Name   Affiliation   Country  40   Damasso Mario INAF-OATo Italy 41   Davies Guy Rhys University of Birmingham UK 42   de Jong Roelof Leibniz-Institut für Astrophysik Potsdam (AIP) Germany

43   Debski Bartlomiej Astronomical Observatory of the Jagiellonian University Polska

44   Deeg Hans Instituto de Astrofísica Canarias Spain 45   Deleuil Magali LAM France 46   Demangeon Olivier Laboratoire D'Astrophysique de Marseille (LAM) France

47  do Nascimento José-Dias

Harvard-Smithsonian Center for Astrophysics (CfA) & Univ. F. do Rio do Rio Grande do Norte (UFRN) USA  

48   Dreyer Claudia DLR Germany 49   Ehrenreich David University of Geneva Switzerland 50   Gaidos Eric University of Hawaii USA

51   Gandolfi Davide Landessternwarte Königstuhl - University of Heidelberg Germany

52  García Muñoz Antonio ESA Netherlands

53   Garrido Rafael IAA-CSIC Spain 54   Giuffrida Giuliano ASDC-INAF Italy 55   Gizon Laurent Max Planck Institute for Solar System Research Germany

56   Gondoin Philippe ESA The Netherlands

57   Goupil Marie-Jo observatoire de Paris France 58   Granata Valentina University of Padova Italy 59   Grenfell John Lee Dept. Exoplanets and Atmospheres, DLR Berlin Germany 60   Guillot Tristan Obs. Cote d'Azur France 61   Hassani Sheida Sharif University of Technology Iran  62   Haswell Carole The  Open  University   UK 63   Hatzes Artie Thueringer Landessternwarte Tautenburg Germany 64   Helled Ravit Tel-Aviv University Israel  

65   Heras Ana M. ESA/ESTEC The Netherlands

66   Hodgkin Simon Institute of Astronomy, Cambridge University UK 67   Iro Nicolas Univ. hamburg Germany  

68  Janot-Pacheco Eduardo University of São Paulo Brazil

69   Jones Geraint MSSL, University College London, UK UK

70   Kislyakova Kristina Space Research Institute, Austrian Academy of Sciences, Graz   Austria  

71   Klagyivik Peter Instituto de Astrofísica de Canarias Spain 72   Kolb Ulrich The Open University UK

73   Krticka Jiri Masaryk University Czech Republic

74   Lanza Antonino F. INAF - Osservatorio Astrofisico di Catania Italy 75   Lanzafame Alessandro Università di Catania Itay 76   Laskar Jacques Observatoire de Paris France 77   Leto Giuseppe INAF-OACT Italy

Page 41: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 41  

    Surname Name   Affiliation   Country  78   Ligi Roxanne Observatoire de la Côte d'Azur France 79   Lignieres Francois IRAP France

80   Lund Mikkel Stellar Astrophysics Centre (SAC), Aarhus University, DK UK

81   Marcadon Frédéric Institut d'astrophysique spatiale France 82   Mardling Rosemary Monash University Australia 83   Martinetti Eugenio INAF OACT Italy 84   Mecheri Redouane CRAAG Algeria 85   Messina Sergio INAF OACT Italy 86   Michel Eric Observatoire de Paris- LESIA France

87   Miglio Andrea University of Birmingham United Kingdom

88   Mordasini Christoph MPIA Germany 89   Morel Thierry ULg, Liege, Belgium Belgium 90   Musella Riccardo Observatoire de Paris France 91   Nascimbeni Valerio INAF-OAPD Italy 92   Nelson Richard Queen Mary University of London U.K. 93   Nielsen Martin Bo Institute for Astrophysics, Goettingen Germany 94   Noack Lena ROB, Royal Observatory of Belgium Belgium 95   Norton Andrew The Open University UK 96   Paetzold Martin RIU-Planetenforschung Germany 97   Pagano Isabella INAF - Catania Astrophysical Observatory Italia 98   Paparo Margit Konkoly Observatory Hungary

99   Peres Giovanni Universita` di Palermo, Dip. FIsica e Chimica - Specola Universitaria Italy

100   Pilbratt Göran ESA The Netherlands

101   Pinçon Charly LESIA (Observatoire de Paris) France 102   Pino Lorenzo Università degli studi di Padova Italy 103   Piotto Giampaolo Universita' di Padova Italia 104   Pollacco Don University of Warwick UK 105   Pricopi Dumitru Astronomical Institute of the Romanian Academy Romania 106   Prisinzano Loredana INAF-OAPA Italy 107   Ragazzoni Roberto INAF - Osservatorio Astronomico di Padova Italia

108   Ramsay Gavin Armagh Observatory United Kingdom

109   Rauer Heike DLR Germany

110   Reese Daniel University of Birmingham United Kingdom

111   Remus Francoise OBSPM-LUTh France 112   Ribas Ignasi ICE (CSIC-IEEC) Spain 113   Salmon Sébastein CEA Saclay France

114   Santerne Alexandre Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto Portugal

115   Santos Nuno Centro de Astrofísica, Univ. Porto Portugal  116   Scandariato Gaetano INAF-OACT Italia

Page 42: Science&Program,&Abstracts,& List&of&Participants& · PLATO&2.0!! Science&Conference! Ta♉rmina,’3"5"December"2014!!!!! Science&Program,&Abstracts,& List&of&Participants&!!

PLATO 2.0 Science Conference, Ta♉rmina, 3-5 December 2014  

 42  

    Surname Name   Affiliation   Country  117   Schalinski Cornelius OHB System Germany 118   Schou Jesper Max Planck Institute for Solar System Research Germany 119   Schweitzer Mario OHB System Germany 120   Silva Aguirre Victor Aarhus University Denmark 121   Silvotti Roberto INAF-OATo Italy  122   Sódor Ádám Konkoly Observatory Hungary 123   Sohl Frank DLR Institute of Planetary Research Germany 124   Sozzetti Alessandro INAF - Osservatorio Astrofisico di Torino Italy 125   Spinella Salvatore OACT - INAF Italy

126   Strassmeier Klaus G. AIP Germany  

127   Suran Marian Doru Astronomical Institute of the Romanian Academy of the Romanian Academy Romania  

128   Szabo Robert MTA CSFK, Konkoly Observatory, Budapest, Hungary Hungary

129   Szabó M. Gyula Konkoly Observatory Hungary 130   Tkachenko Andrew Institute of Astronomy, KU Leuven Belgium 131   Udry Stéphane University of Geneva Switzerland 132   Valio Adriana Mackenzie University Brazil

133   Ventura Rita Inaf - Osservatorio Astrofisico di Catania Italia

134   Voss Holger Institut d'Estudis Espacials de Catalunya (IEEC)/Universitat de Barcelona (UB) Spain

135   Wheatley Peter University of Warwick UK 136   White Timothy University of Göttingen Germany 137   Wuchterl Günther Thüringer Landessternwarte Germany 138   Zwintz Konstanze Institute of Astronomy, KU Leuven Belgium