244
Search and Observation of the Decay D *+ s D + s e + e - and Measurement of the Ratio of Branching Fractions B (D *+ s D + s e + e - )/B (D *+ s D + s γ ) at the CLEO-c Experiment Souvik Das ([email protected]) Anders Ryd ([email protected]) March 1, 2011 Abstract The branching fraction for a previously unobserved decay D *+ s D + s e + e - is pre- dicted theoretically in this document to be 0.65% of the branching fraction for the decay D *+ s D + s γ . We conduct a search for the D *+ s D + s e + e - in 586 pb -1 of e + e - collision data collected with the CLEO-c detector at the Cornell Electron Stor- age Ring (CESR) operating at a center of mass energy of 4170 MeV and observe it with a significance of 6.39σ over estimated backgrounds. The ratio of branching fractions B(D *+ s D + s e + e - )/B(D *+ s D + s γ ) is measured to be 0.72 ±0.14(stat) ±0.06(syst)%, which is within one standard deviation of uncertainty from the predicted value. The absolute branching fractions for D *+ s D + s γ , D *+ s D + s π 0 and D *+ s D + s e + e - are re-evaluated in light of this observation and measurement. CBX2010-018 March 1, 2011 1

Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Search and Observation of the Decay D∗+s → D+

s e+e−

and Measurement of the Ratio of Branching FractionsB(D∗+

s → D+s e

+e−)/B(D∗+s → D+

s γ) at the CLEO-cExperiment

Souvik Das ([email protected])Anders Ryd ([email protected])

March 1, 2011

Abstract

The branching fraction for a previously unobserved decay D∗+s → D+

s e+e− is pre-dicted theoretically in this document to be 0.65% of the branching fraction for thedecay D∗+

s → D+s γ. We conduct a search for the D∗+

s → D+s e+e− in 586 pb−1 of

e+e− collision data collected with the CLEO-c detector at the Cornell Electron Stor-age Ring (CESR) operating at a center of mass energy of 4170 MeV and observe it witha significance of 6.39σ over estimated backgrounds. The ratio of branching fractionsB(D∗+

s → D+s e+e−)/B(D∗+

s → D+s γ) is measured to be 0.72±0.14(stat)±0.06(syst)%,

which is within one standard deviation of uncertainty from the predicted value. Theabsolute branching fractions for D∗+

s → D+s γ, D∗+

s → D+s π0 and D∗+

s → D+s e+e− are

re-evaluated in light of this observation and measurement.

CBX2010-018March 1, 2011

1

Page 2: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Contents

1 Introduction 5

2 Theory 62.1 Rate for D∗+

s → D+s γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Rate for D∗+s → D+

s e+e− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Analysis Strategy for MeasuringB(D∗+s → D+

s e+e−)/B(D∗+

s → D+s γ) 12

4 Backgrounds for D∗+s → D+

s e+e− 14

5 Selection Criteria for Measuring B(D∗+s → D+

s e+e−) 15

5.1 Track Quality Requirements for the Soft e+e− Pair . . . . . . . . . . . . . . 155.2 mD+

s, the mass of the D+

s Meson . . . . . . . . . . . . . . . . . . . . . . . . . 155.3 mBC of the D∗+

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165.4 δm between the D∗+

s and the D+s . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5 ∆d0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165.6 ∆φ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175.7 Interdependence of Kinematic variables . . . . . . . . . . . . . . . . . . . . . 17

6 Selection Criteria for Measuring B(D∗+s → D+

s γ) 186.1 Shower Criteria on the γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Datasets Used 207.1 Generic Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207.2 Continuum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Reprocessing for Electron-fitted Tracks 228.1 Dataset 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248.2 Dataset 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248.3 Dataset 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248.4 Dataset 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248.5 Dataset 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258.6 Dataset 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 Validation of Generated Signal Monte Carlo 26

10 Optimization of Selection Criteria for Measuring B(D∗+s → D+

s e+e−) 28

10.1 D+s → K+K−π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

10.2 D+s → KSK

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3610.3 D+

s → ηπ+; η → γγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4210.4 D+

s → η′π+; η′ → π+π−η; η → γγ . . . . . . . . . . . . . . . . . . . . . . . . 4810.5 D+

s → K+K−π+π0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2

Page 3: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10.6 D+s → π+π−π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.7 D+s → K∗+K∗0;K∗+ → K0

Sπ+, K∗0 → K−π+) . . . . . . . . . . . . . . . . . 66

10.8 D+s → ηρ+; η → γγ; ρ+ → π+π0 . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.9 D+s → η′π+; η′ → ρ0γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

11 The Effect of Vertex Fitting on Signal Significance 8411.1 Vertex Fitting All Tracks From the D+

s . . . . . . . . . . . . . . . . . . . . . 8411.2 Vertex Fitting e+e− Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9611.3 Vertex Fitted Tracks with the Beamspot . . . . . . . . . . . . . . . . . . . . 100

12 Estimating Background Events in the Signal Region from Monte Carlo and Data in the Sidebands10712.1 Determining the Shape of the mBC Distribution . . . . . . . . . . . . . . . . 11112.2 Determining the Shape of the δm Distribution . . . . . . . . . . . . . . . . . 11312.3 Estimating the Background in the D+

s → K+K−π+ Mode . . . . . . . . . . 11512.4 Estimating the Background in the D+

s → KSK+ Mode . . . . . . . . . . . . 118

12.5 Estimating the Background in the D+s → ηπ+; η → γγ Mode . . . . . . . . . 120

12.6 Estimating the Background in the D+s → η′π+; η′ → π+π−η; η → γγ Mode . 122

12.7 Estimating the Background in the D+s → K+K−π+π0 Mode . . . . . . . . . 124

12.8 Estimating the Background in the D+s → π+π−π+ Mode . . . . . . . . . . . 127

12.9 Estimating the Background in the D+s → K∗+K∗0 Mode . . . . . . . . . . . 129

12.10Estimating the Background in the D+s → ηρ+; η → γγ; ρ+ → π+π0 Mode . . 131

12.11Estimating the Background in the D+s → η′π+; η′ → ρ0γ Mode . . . . . . . . 133

12.12Summary of Estimated Background in the Various Modes . . . . . . . . . . . 13512.13Predicted Signal Significances . . . . . . . . . . . . . . . . . . . . . . . . . . 13512.14Check on the Modeling of Material in the Detector . . . . . . . . . . . . . . 138

13 Efficiency of Selection Criteria for reconstructing D∗+s → D+

s e+e− 139

14 Signal Yields and Selection Efficiencies for D∗+s → D+

s γ 14314.1 D+

s → K+K−π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14514.2 D+

s → KSK+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

14.3 D+s → ηπ+; η → γγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

14.4 D+s → η′π+; η′ → π+π−η; η → γγ . . . . . . . . . . . . . . . . . . . . . . . . 165

14.5 D+s → K+K−π+π0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

14.6 D+s → π+π−π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

14.7 D+s → K∗+K∗0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

14.8 D+s → ηρ+; η → γγ; ρ+ → π+π0 . . . . . . . . . . . . . . . . . . . . . . . . . 189

14.9 D+s → η′π+; η′ → ρ0γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

15 Un-blinding Data and Results 20115.1 D+

s → K+K−π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20915.2 D+

s → KSK+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

15.3 D+s → ηπ+; η → γγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

3

Page 4: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.4 D+s → η′π+; η′ → π+π−η; η → γγ . . . . . . . . . . . . . . . . . . . . . . . . 215

15.5 D+s → K+K−π+π0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

15.6 D+s → π+π−π+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

15.7 D+s → K∗+K∗0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

15.8 D+s → ηρ+; η → γγ; ρ+ → π+π0 . . . . . . . . . . . . . . . . . . . . . . . . . 223

15.9 D+s → η′π+; η′ → ρ0γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

15.10Comparison of me+e− between Data and Monte Carlo Simulation . . . . . . . 22715.11A Re-evaluation of All D∗+

s Branching Fractions . . . . . . . . . . . . . . . . 228

16 Systematic Uncertainties from the Tracking of Soft Electrons and Photons23016.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23116.2 Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

4

Page 5: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

1 Introduction

In this note, we describe our search for a previously unobserved D∗+s → D+

s e+e− decay using

data collected with the CLEO-c detector at the Cornell Electron Storage Ring (CESR)operating at a center of mass energy of

√s=4,170 MeV. CLEO-c has collected 586 pb−1 of

data at this energy which makes it possible for us to not only discover this decay but alsotry and measure the branching fraction for this decay within reasonable uncertainties.

A D+s meson is the 0− (L=0, S=0) bound state of a charm and strange quark system,

while a D∗+s is the 1− (L=0, S=1) excited state of the same. Branching fractions for the

known decays of the D∗+s to the D+

s , as recorded by the Review of Particle Physics 2008 [2],are tabulated in Table 1. It is important to note that the branching fractions listed in thetable are derived from the ratio

Γ(D∗+s → D+

s π0)

Γ(D∗+s → D+

s γ)= 0.062 ± 0.008

assuming that the branching fractions of D∗+s → D+

s γ and D∗+s → D+

s π0 decays sum to

100%.Our signal channel, a D∗+

s decaying to a D+s via a virtual photon that manifests itself

as an e+e− pair, does not violate any rigorous or semi-rigorous conservation principle. It isexpected to occur at the rate of D∗+

s → D+s γ suppressed by approximately a factor of the

electromagnetic structure constant, α. Should we observe this decay and measure the ratioof rates

B(D∗+s → D+

s e+e−)

B(D∗+s → D+

s γ), (1)

it would lead to a re-evaluation of the branching fractions in the table.The S=1 structure of the quarks in the D∗+

s could perhaps be probed using this decay.We do not make such an attempt.

Table 1: Branching fractions of the known decays of the D∗+s .

Mode Branching FractionB(D∗+

s → D+s γ) (94.2 ± 0.7)%

B(D∗+s → D+

s π0) (5.8 ± 0.7)%

5

Page 6: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

2 Theory

The electromagnetic decay D∗+s → D+

s γ supercedes the strong decay D∗+s → D+

s π0 in rate

because the latter is suppressed by isospin violation of the strong interaction. The currentlyknown branching fractions of the D∗+

s are listed in Table 1 of the Introduction 1. In thissection, we propose the hitherto unobserved electromagnetic decay D∗+

s → D+s e

+e−. It isseparated from the D∗+

s → D+s γ process by one vertex of the electromagnetic interaction, as

seen on comparing Fig. 2.1 and 2.2, and does not violate any known symmetry.In this section, we estimate the ratio of branching fractionsB(D∗+

s → D+s e

+e−)/B(D∗+s →

D+s γ) through a prediction of the ratio of rates for the D∗+

s → D+s e

+e− and D∗+s → D+

s γprocesses.

B(D∗+s → D+

s e+e−)

B(D∗+s → D+

s γ)=

Γ(D∗+s → D+

s e+e−)

Γ(D∗+s → D+

s γ)(2)

With reference to Fig. 2.1, the amplitude for the D∗+s → D+

s γ process may be writtenschematically as:

M(D∗+s → D+

s γ) = εµD∗

sε∗νγ Tµν(P, k), (3)

where εµD∗

sis the polarization vector of the decaying D∗+

s meson with three degrees of freedomindexed by µ, ε∗νγ is the polarization vector of the photon with two degrees of freedom indexedby ν, P is the four-momentum of the D∗+

s , k is the four-momentum of the photon andTµν(P, k) encodes the coupling between the meson and the photon.

Tµν(P, k) may be expressed, most generally, in the form:

Tµν(P, k) = Agµν +BkµPν + CεµναβPαkβ. (4)

The D∗+s meson has JP = 1−, the D+

s has JP = 0− and the emitted γ has spin s = 1with intrinsic odd parity. The angular momentum of the D+

s γ state, L, could be 0, 1 or 2depending on the projection of the spin of the photon on the Jz of the D∗+

s . If sz = Jz, thenL = 0. If sz = 0 then L = 1, Lz = Jz. And if sz = −Jz, then L = 2, Lz = 2Jz. However, inorder to conserve the odd parity of the initial state, given P = −1 for both the D+

s and theγ, L must be equal to 1. This narrows down the kind of terms that may constitute Tµν(P, k)to

Tµν(P, k) = CεµναβPαkβ, (5)

where α and β keep track of the four-momentum components of the D∗+s and photon respec-

tively.In order to model the D∗+

s → D+s e

+e− process, we change the final state photon to avirtual photon and couple it to a e+e− pair as depicted in Fig. 2.2. We may then write theinvariant amplitude as

M(D∗+s → D+

s e+e−) = εµ

D∗sTµν(P, k)

−igνα

k2〈u(p)|ieγα|v(p′)〉, (6)

where u(p) and v(p′) are the spinors of the electron and positron respectively as functionsof their four-momenta, k is the four-momentum of the virtual photon and gνα is the metric

6

Page 7: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

tensor of flat spacetime. Below we will also use the notion q for the virtual photon four-momentum, or q2 for the invariant mass squared of the electron positron pair.

2.1 Rate for D∗+s → D+

s γ

D∗+s

D+s

γ

ie

Figure 1: A Feynman diagram for the D∗+s → D+

s γ process.

Now we proceed to express the rate for D∗+s → D+

s γ in terms of the normalizationconstant C used to express Tµν(P, k) in Eq. 5 and other constants in this process such asthe masses of the D∗+

s and D+s which we denote by mD∗+

sand mD+

srespectively.

Inserting the expression for the coupling in Eq. 5 into the expression for the invariantamplitude in Eq. 3, we may write:

M = εµD∗

sε∗νγ CεµναβP

αkβ. (7)

This may be squared to get

|M2| = |C2|εµD∗

sε∗νγ εµναβP

αkβε∗µ′

D∗sεν′

γ εµ′ν′α′β′P α′

kβ′

, (8)

where µ′, ν ′, α′ and β ′ are indices of four momentum distinguished from their un-primedcousins.

We now sum over final state polarizations and average over initial state polarizations,recalling for photons that

λ=1,2

ε∗νγλεν′

γλ= −gνν′

, (9)

and for massive vector bosons that

1

3

λ=1,3

ε∗νD∗s λ

εν′

D∗sλ

=1

3

(

−gνν′

+P µP µ′

m2D∗

s

)

. (10)

Thus, we get

|M2| =|C2|3gνν′

(

gµµ′ − P µP µ′

m2D∗

s

)

εµναβPαkβεµ′ν′α′β′P α′

kβ′

(11)

which may be simplified to

|M2| =2|C2|

3(P · k)2 =

2|C2|3

m2D∗

sE2

γ (12)

7

Page 8: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

where we have used the tensorial relationship εµναβεµνα′β′ = −2gαα′gββ′ + 2gαβ′gα′β′ and Eγ

is the energy component of the photon in the rest frame of the D∗+s .

For a two-body decay, we may write the differential decay rate as

dΓ =1

32π2|M2| Eγ

m2D∗

s

dΩ (13)

where dΩ is the differential element of the solid angle subtended from the point of decayof the D∗+

s in its rest frame. Since the invariant amplitude in the simplified expression ofEq. 12 does not have any angular dependence, our expression for the rate of D∗+

s → D+s γ

simplifies to

Γ =|C2|12π

E3γ . (14)

2.2 Rate for D∗+s → D+

s e+e−

γD∗+

s

D+s

e+

e−

Figure 2: A Feynman diagram for the D∗+s → D+

s e+e− process.

The rate for D∗+s → D+

s e+e− is a bit more involved as it is a three-body decay. We will

proceed in the same way. First we will calculate |M2|. We start with the amplitude whichis given by

A(D∗+s → D+

s e+e−) = εµ

D∗sCεµναβP

αkβ−igνρ

k2u(p)ieγρv(p

′). (15)

Next we square this

|M2| = |C2|εµD∗

sε∗µ

D∗sεµναβP

αkβεµ′ν′α′β′P α′

kβ′ gνρgν′ρ′

k4u(p)eγρv(p

′)v(p′)eγρ′u(p).

Summing over final states and averaging over initial states allow us to write

|M2| = −4e2|C2|3k4

εµναβεµν′α′β′P αkβP α′

kβ′[

pνp′ν′

+ p′νpν′ − gνν′

(p · p′ +m2)]

= −4e2|C2|3k4

[

M2D∗

sk4 − k2(P · k)2 − 2X2

]

=4e2|C2|

3k4

[

k2(P · k)2 + 2X2 −M2D∗

sk4]

,

whereXµ ≡ εµναβP

αp′βpν

8

Page 9: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

and we have used∑

s,r

usγρvrvrγρ′us =∑

s,r

Tr[usγρvrvrγρ′us]

=∑

s,r

Tr[ususγρvrvrγρ′ ]

= Tr[(/p+m)γρ(/p′ −m)γρ′ ]

= Tr[/pγρ/p′γρ′ −m2γργρ′]

= 4(pρp′ρ′ + pρ′p

′ρ − gρρ′(p · p′ +m2)

The evaluate this we use

εµαβγεµα′β′γ′ = −gαα′g

ββ′g

γγ′ − gα

β′gβγ′g

γα′ − gα

γ′gβα′g

γβ′

+gαα′g

βγ′g

γβ′ + gα

γ′gββ′g

γα′ + gα

β′gβα′g

γγ′

This then gives

X2 = −P 2p′2p2 − 2P · p′p′ · pP · p+ P 2(p · p′)2 +m2((P · p′)2 + (P · p)2)

= −M2D∗

sm4 − (q2 − 2m2)(P · p′)(P · p) +M2

D∗s(q2/2 −m2)2 +m2[(P · p)2 + (P · p′)2]

= −q2(P · p′)(P · p) +M2D∗

s(q4/2 − q2m2) +

m2

4(M2

D∗s−M2

Ds+ q2)2

where I have usedp · p′ = q2/2 −m2

andP · k = (M2

D∗s−M2

Ds+ q2)/2.

The next task is to express P ·p′ and P ·p in a more convenient form. Denote by a ∗ quantitiesevaluated in the e+e− restframe. Let θ∗ be the angle the electron makes with the directionopposite to the Ds in the e+e− frame. This means that

P · p = E∗D∗

sE∗

e − |P ∗D∗

s||P ∗

e | cos θ∗,

P · p′ = E∗D∗

sE∗

e + |P ∗D∗

s||P ∗

e | cos θ∗.

But the energy in the e+e− restframe, E∗D∗

s, can be written

E∗D∗

s=P · k√

q2

as in this frame kµ = (√

q2, 0, 0, 0). Similarly we can express the electron energy as

E∗e =

p · k√

q2

9

Page 10: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Putting this together we get

P · p =P · k√

q2

p · k√

q2+

(P · k)2

q2−M2

D∗s

(p · k)2

q2−m2 cos θ∗

P · p′ =P · k√

q2

p · k√

q2−√

(P · k)2

q2−M2

D∗s

(p · k)2

q2−m2 cos θ∗

Using p · k = q2/2 gives

P · p =P · k

2+

(P · k)2

q2−M2

D∗s

q2

2−m2 cos θ∗

P · p′ =P · k

2−√

(P · k)2

q2−M2

D∗s

22

2−m2 cos θ∗

(P · p)(P · p′) = (P · k)2/4 −(

(P · k)2

q2−M2

D∗s

)(

q2

4−m2

)

cos2 θ∗.

Putting this together we get

X2 = −q2 (P · k)2

4+(

(P · k)2 − q2M2D∗

s

)

(

q2

4−m2

)

cos2 θ∗−+M2D∗

s(q4

4−q2m2)+

m2

4(M2

D∗s−M2

Ds+q2)2.

Using A ≡M2D∗

s−M2

Ds+ q2 we get

|M2| =4e2|C2|

3q4

[

3A2

8q2 −M2

D∗s

(

q4

2+ 2q2m2

)

+m2

2A2 +

(

A2

4− q2M2

D∗s

)(

q2

2− 2m2

)

cos2 θ∗]

For a three-body decay we can write

dΓ =1

(2π)3

1

16M2D∗

s

|M2|dEedq2

We need to re-express dEe in terms of d cos θ∗. To do this we use

Ee =P · pMD∗

s

=E∗

D∗sE∗

e

MD∗s

−|P ∗

D∗s||P ∗

e |MD∗

s

cos θ∗.

Note that in the expressions above, the quantities E∗D∗

s, E∗

e , |P ∗D∗

s|, and |P ∗

e | depend only on

q2 and not on cos θ∗. This means we can diffrentiate this and obtain

dEe = −|P ∗

D∗s||P ∗

e |MD∗

s

d cos θ∗.

10

Page 11: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Writing

E∗D∗

s=q · Pq0

=q · P2|E∗

e |and

P ∗D∗

s=√

E∗2D∗

s−M2

D∗s

=

(q · P )2

4E∗2e

−M2D∗

s

This allows us to obtain the simple result

|P ∗D∗

s||P ∗

e |MD∗

s

=

(q · P )2

4M2D∗

s

− E∗2e =

q20

4− E∗2

e =1

2

q20 − q2 =

PDs

2,

which gives

dEe =PDs

2d cos θ∗.

Using this and integrating over cos θ∗ we get

dq2=

PDse2|C2|

192π3M2D∗

sq4

[

3A2

4q2 −M2

D∗s

(

q4 + 4q2m2)

+m2A2 +2

3

(

A2

4− q2M2

D∗s

)(

q2

2− 2m2

)]

(16)

=PDs

α|C2|48π2M2

D∗s

[

1

q4

2

3A2m2 +

1

q2

(

5

6A2 + 4m2M2

D∗s

)

− 4

3M2

D∗s

]

(17)

Numerical integration over q2 gives

Γ(D∗+s → D+

s e+e−)

Γ(D∗+s → D+

s γ)= 0.89α = 0.65%, (18)

which is remarkably close to the naive expectation that this ratio should be α = 0.730%.

11

Page 12: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

3 Analysis Strategy for Measuring

B(D∗+s → D+

s e+e−)/B(D∗+

s → D+s γ)

As described in the Introduction, 1, this chapter documents a search and observation of theD∗+

s → D+s e

+e− process along with a measurement of the ratio of branching fractions

B(D∗+s → D+

s e+e−)

B(D∗+s → D+

s γ)

at the CLEO-c experiment. We chose to measure and present this ratio of branching fractionsinstead of an absolute branching fraction for the D∗+

s → D+s e

+e− in order to minimizesystematic uncertainties arising from the reconstruction and selection of D+

s mesons. Whenwe refer to the positively charged D∗+

s or the D+s in this document, we imply the negatively

charged particle or the charge-conjugate process unless otherwise specified. This search andmeasurement was conducted in 586 pb−1 of e+e− collision data collected by the CLEO-c experiment at a center of mass energy of 4,170 MeV. At this energy, the total charmcross section is known to be ' 9 nb, of which about 10% produces D±

s D∗∓s events. More

accurately, the cross section for producing D±s D

∗∓s at this energy has been experimentally

measured in [4] and [1] that we average to quote 948 ± 36 pb. How we arrive at this numberis covered in more detail in Section 7 on the datasets we have used. Using the quoted valuesof integrated luminosity and production cross section, we conclude that approximately 556thousand events were at our disposal for this analysis.

In our search and measurement, we employ a blind-analysis technique to search for oursignal process, the D∗+

s → D+s e

+e−, where we reconstruct the D∗+s through the D+

s on thesame side as the D∗+

s and the soft e+e− pair. The D+s is reconstructed exclusively through

the nine hadronic decay channels outlined in Eq. 19 - 27. Selection criteria are optimized,their efficiencies noted and the background levels estimated from data outside the signalregion before we proceed to unblind data within the signal region.

D+s → K+K−π+ (19)

D+s → KSK

+ (20)

D+s → ηπ+; η → γγ (21)

D+s → η′π+; η′ → π+π−η; η → γγ (22)

D+s → K+K−π+π0 (23)

D+s → K∗+K∗0 (24)

D+s → π+π−π+ (25)

D+s → ηρ+; η → γγ; ρ+ → π+π0 (26)

D+s → η′π+; η′ → ρ0γ (27)

Selection criteria on the reconstructed D∗+s , D+

s and soft e+e− candidates are designedto reject background events described in Section 4. These selection criteria are described in

12

Page 13: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Section 5. Of note are the criteria on the helix parameters of the soft e+e− tracks that areused to discriminate our signal against backgrounds that come from D∗+

s → D+s γ where the

γ converted to an e+e− pair in material. These selection criteria are optimized for each ofthe nine hadronic decay modes of the D+

s using Monte Carlo simulations of the signal andbackgrounds as described in Section 10.

The e+e− pair from the D∗+s decay share ∼ 144 MeV of energy and are hence anticipated

to be very soft. The Kalman-filter based track fitter used in CLEO-c did not, by default,store track fits with the electron mass hypothesis, storing tracks fitted to the charged pionmass hypothesis instead. Section 10 that documents our effort to converge on optimal setsof parameters for our selection criteria also documents our realization that tracks fitted tothe electron hypothesis offers us considerably higher signal significances for observing theD∗+

s → D+s e

+e− than tracks fitted to the pion hypothesis. Therefore, a campaign to reprocessseveral datasets to include track fits with the electron mass hypothesis was launched andthis is described in Section 8. Henceforth, the analysis focusses on electron mass fitted datain searching for the D∗+

s → D+s e

+e−.Having narrowed down on a signal region for each of the hadronic decay modes of the D+

s

in the course of our optimization procedure, we estimate the expected number of backgroundevents within this region for each mode by extrapolating Monte Carlo simulation and datapoints from the sideband regions. This is described in Section 12. Before we unblind datawithin the signal regions, we establish that our predicted signal and estimated backgroundlevels are adequate to obtain maximal signal significance if we are to unblind data in all themodes.

Thereafter, we measure the efficiencies of our selection criteria for D∗+s → D+

s e+e− re-

construction in each of the hadronic decay channels in Section 13. We could at this point,in principle, proceed to unblind data and used the number of observed events in conjuctionwith the selection efficiencies to present a measurement for the absolute branching fractionof D∗+

s → D+s e

+e−. Such a measurement, however, would have large systematic errors fromthe reconstruction of the D+

s and we choose not to follow this route.Using criteria similar to those used to select D∗+

s → D+s e

+e− events except without thetrack helix criteria for the e+e− and including criteria on the photon from the D∗+

s , wereconstruct D∗+

s → D+s γ events where the D+

s decays in the hadronic modes specified in Eq.19 - 27. The efficiency of our selection criteria is noted, as is our signal yield for each of thechannels. This is described in Section 14.

We then unblind data in the signal regions of the D∗+s → D+

s e+e− reconstruction in each

of the chosen decay modes of the D+s , taking into account the background for each mode

estimated in Section 12. Using the number of observed signal events, the efficiencies for ourselection criteria and the signal yields and efficiencies for the D∗+

s → D+s γ reconstruction, we

proceed to compute the ratio of branching fractions we seek to measure. This is describedin Section 15 of the document. Also motivated in this section is our requirement for esti-mating the systematic uncertainty, in the form of deviations between data and Monte Carlosimulations, in the reconstruction of soft e+e− pairs.

The systematic uncertainties associated with the selection and reconstruction efficiencies

13

Page 14: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

of soft e+e− pairs in D∗+s → D+

s e+e− and the photon in D∗+

s → D+s γ is measured in Section

16. We estimate the systematic deviation between reconstruction efficiencies in Monte Carlosimulation and data by measuring the ratio of the numbers of events where one of the π0

Dalitz decays to γe+e− to the number of events where both π0 decay to γγ and comparingthis to the ratio expected from currently accepted branching fractions for π0 → γe+e− andπ0 → γγ. This uncertainty is propagated into the ratio of branching fractions reported inSection 15.

4 Backgrounds for D∗+s → D+

s e+e−

A significant background to the observation of this decay is expected fromD∗+s → D+

s γ wherethe γ converts in the material of the apparatus or the beam-pipe to form an e+e− pair. Thematerial of the beam-pipe is known to have been approximately 1% of a radiation length thickfor photons incident on it closest to the interaction region and higher for photons incidentat steeper angles. If we accept the theoretical estimate of the rate of the D∗+

s → D+s e

+e−

process with respect to the D∗+s → D+

s γ as described in Section 2, we conclude that thisconversion process occurred at roughly the same rate as the signal. This background iscalled the conversion background in this document. The electrons from such conversions willhave the same range of energies as those from signal processes. However, their tracks wouldappear to originate at a distance away from the primary interaction point. Selection criteriafor selecting and reconstructing the D∗+

s → D+s e

+e− are designed to exploit this fact.Another source of background, also seen to be significant from Monte Carlo simulation

studies, arises from π0 mesons that were produced at the primary interaction point whichthen decayed through the Dalitz channel: π0 → γe+e−. Such e+e− pairs would typically havehad the same range of energies as those expected from the signal process and would seemto have originated from the primary interaction point. Though the rate of Dalitz decaysof the π0 is ∼ 1.2% [2], the prodigious production of π0 mesons makes this a significantbackground to our rare signal. We could veto events where the soft e+e− combined with aγ in the event to produce a π0, but estimating the efficiency of such a veto from data wouldbe difficult. Instead, we recognize that such a background would not peak in the variables ofany of our selection criteria and estimate the frequency of its occurrence from the sidebandsof the signal region in our data. We call this the Dalitz decay background in the rest of thedocument.

Combinatorial backgrounds necessarily result from combining candidate daughters of theD+

s and candidate e−s and e+s. We estimate these from the sidebands around the signalregion in our data.

We also account for backgrounds that arise from light quark (u, d, s) production at theinteraction point. These backgrounds are seen, from Monte Carlo simulations, to dominate,though not peak, in the π+π−π+ and η′π+; η′ → ρ0γ decay channels of the D+

s after applyingour selection criteria. Therefore, we choose to estimate their contributions from the sidebandsof the signal region in our data. They are collectively called the continuum background inthe rest of this document.

14

Page 15: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

5 Selection Criteria for Measuring B(D∗+s → D+

s e+e−)

The entities directly measured by the CLEO-c detector that is relevant for our analysis arecharged tracks and electromagnetic showers. Relatively stable particles, like the soft e− ande+ in the final state of our signal process or the π+, K+ and γ from decays of the D+

s couldbe detected directly by the detector. Short-lived particles like the D+

s and the D∗+s must

be reconstructed by analyzing the signatures of their decays into particles that left tracksor shower in the detector. As we have mentioned earlier, we choose to reconstruct the D+

s

through 9 hadronic final states as listed in Eq. 19 - 27, and the D∗+s through the D+

s andthe soft e+e− pair.

We construct three kinematic variables from reconstructed D+s andD∗+

s candidates, basedon which we select events most likely to contain our signal. We also construct two combi-nations of track parameters of the e− and e+ which gave us criteria to powerfully rejectconversion backgrounds.

5.1 Track Quality Requirements for the Soft e+e− Pair

Quality requirements are imposed on the soft e+e− tracks in order to reject poorly recon-structed tracks and tracks that cannot correspond to our signal process. These tracks arerequired to fit the hits in the drift chambers with χ2 less than 100000. The measured energy,which is derived from the momentum, that in turn is inferred from the curvature of thetrack’s helix in the 1 T magnetic field, is required to be between 10 MeV and 150 MeV.The upper limit is set by considering the mass difference between the D∗+

s and D+s mesons,

which is approximately 144 MeV. A single electron cannot carry more than that amountof energy. Below 10 MeV, electron tracks curl in a way that cannot be well reconstructedby the drift chamber. Next, we require that the tracks pass within 5 cm of the interactionpoint in the dimension parallel to the beam-axis and within 5 mm of the beam-axis in thetransverse dimensions. Finally, in order to reject particles that are not electrons, we requirethe dE/dx as computed from the track fit to be within 3σ of that expected for electrons.

These criteria remain identical for all the hadronic decay modes of the D+s as the e+e−

pair is independent of the D+s .

5.2 mD+s

, the mass of the D+s Meson

The D+s meson is reconstructed using the tight Ds-tagging criteria outlined in [8]. We select

events which have D+s candidates with invariant mass within tens of MeV from 1.969 GeV.

The current world standard for its mass as recorded in the Review of Particle Physics 2008[2] is 1.96849 ± 0.00034 GeV. This criterion rejects most false combinations of D+

s daughters.The exact width of this criterion was optimized individually for each mode.

15

Page 16: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

5.3 mBC of the D∗+s

The energy of a D∗+s meson produced from the e+e− collisions in CESR may be determined

with higher precision from the measured energy of the beam than from the sum of theenergies of its decay constituents as measured by the CLEO-c detector. It may be calculatedfrom:

ED∗+s

(beam) =4s−m2

D+s

(RPP) +m2D∗+

s

(RPP)

4√s

, (28)

where ED∗+s

(beam) is the energy of the D∗+s we calculated from the beam energy, s is the

square of the center of mass energy of the beam, and mD+s(RPP) and mD∗+

s(RPP) are the

current world standards for the D+s and D∗+

s masses respectively as recorded in the Reviewof Particle Physics 2008.

Having thus calculated the energy of the D∗+s meson, we can now define a more precise

variant of the invariant mass of the D∗+s as follows:

mBC =√

E2D∗+

s

(beam) − p2D∗+

s

(constituents) (29)

where pD∗+s

(constituents) is the momentum of the D∗+s calculated from the momenta of the

daughters of its decay. mBC is called the beam constrained mass in CLEO literature.In this selection criterion, we accept events with candidates having mBC within tens of

MeV from 2.112 GeV. The current world standard for the D∗+s mass as recorded in the

Review of Particle Physics 2008 [2] is 2.1123 ± 0.0005 GeV. This criterion is meant to rejectmost false combinations of D∗+

s daughters.

5.4 δm between the D∗+s and the D+

s

We define δm as the mass difference between the reconstructed D∗+s and D+

s mesons.

δm = mD∗+s

−mD+s

(30)

This mass difference is known to be 143.8 MeV [2]. By accepting events with δm within anarrow range of this values around 143.8 MeV, we reject most combinations where the e−

or e+ that we use to reconstruct the D∗+s did not, in fact, come from decays of the D∗+

s .

5.5 ∆d0

In CLEO, the d0 of a track is defined as the distance of closest approach of the track to thez-axis. It is a signed quantity, whose sign depends on the charge of the track (inferred fromthe sense of the track helix) and whether the origin of the x− y plane falls within the circlemade by the track in that plane. For more details, one may see Section 6 of [6].

Now, for e− and e+ tracks that come from the origin, as they do for our signal, it maybe seen from Fig. 3 that de−

0 − de+

0 is 0. Hence, in data, our signal will have ∆d0 centeredaround 0.

16

Page 17: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Figure 3: An illustration of ∆d0 between the soft electron tracks of the signal and conversionevents.

However, for e− and e+ tracks that come from a point away from the origin, as they dofor the conversion background, it is clear from Fig. 3 that de−

0 − de+

0 will be negative.For our selection criterion, we define:

∆d0 = de−

0 − de+

0 (31)

and require ∆d0 to be greater than -5 mm. This rejects conversion background events.

5.6 ∆φ0

The azimuthal angle of the e− and e+ tracks measured at the point of closest approach ofthe track to the z-axis, denoted by φ0, appears to be very effective in rejecting conversionbackground events.

For events where the e− and e+ tracks come from the origin, as they do for our signal, itmay be noted from Fig. 4 that if we define:

∆φ0 = φe−

0 − φe+

0 , (32)

∆φ0 will be centered around 0 for the signal. However, for conversion events where the tracksdo not emanate from the origin, it may be inferred from 4 that ∆φ0 will always be positive.

Requiring ∆φ0 to be less than 0.12 in this selection criterion rejects a significant portionof our conversion background events.

5.7 Interdependence of Kinematic variables

We may construct yet another kinematic variable for a selection criterion:

δE = ED∗+s

(constituents) − ED∗+s

(beam), (33)

17

Page 18: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_dPhiEntries 1394Mean 0.09293RMS 0.2724

0φ∆ -1.5 -1 -0.5 0 0.5 1 1.50

20

40

60

80

100

120

140

160

180

200

h_dPhiEntries 1394Mean 0.09293RMS 0.2724

0φ∆

Figure 4: An illustration of ∆φ0 between the soft electron tracks of the signal and conversionevents.

where ED∗+s

(constituents) is the energy of the D∗+s as reconstructed from its decay con-

stituents and ED∗+s

(beam) is the energy of the D∗+s as calculated from the beam energy.

However, δE would not be independent of mD+s(constituents) and mBC . This is because we

can combine the expressions for δE and mBC to get:

(δE)2 + 2ED∗+s

(beam)δE +m2BC = m2

D∗+s

(constituents) (34)

This means if we shape δE to be 0, mBC will be shaped towards m2D∗+

s

(constituents). So

now, if we shape mBC around mD∗+s

(RPP), we are shaping mD∗+s

(constituents). If we shapethat, and also shape mD+

s(constituents) in our first selection criterion, we are shaping δm.

An equation with just the kinematic quantities that we shape and a constant, ED∗+s

(beam),is:

(δE)2 + 2ED∗+s

(beam)δE +m2BC = (δm +mD+

s(constituents))2 (35)

6 Selection Criteria for Measuring B(D∗+s → D+

s γ)

As mentioned, we seek to measure the ratio of branching fractionsB(D∗+s → D+

s e+e−)/B(D∗+

s →D+

s γ) in order to minimize systematics arising from the reconstructing of D+s mesons, and

therefore we must have a way to measure yields and efficiencies for a B(D∗+s → D+

s γ) mea-surement. We do this, again, by reconstructing the D∗+

s through the D+s on the same side

and the γ. The D+s is reconstructed exclusively through the nine hadronic decay channels

listed in Eq. 19 - 27.

18

Page 19: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Selection criteria used to separate the D∗+s → D+

s γ signal from backgrounds are similarto those used for the D∗+

s → D+s e

+e−. The kinematic variables mD+s, mBC and δm retain

their definitions from the previous section, except the four-momenta of the e+e− pair isreplaced by that of a γ. Selection criteria on the e+e− pair are obviously inapplicable andare replaced by criteria on the γ. This is described in the following section. Furthermore,we plot the distribution of mBC after applying all other criteria, and the large rate of thischannel that translates to a large number of data points allows us to compute the signalyields and efficiencies from a fit instead of cutting and counting within a range.

6.1 Shower Criteria on the γ

Photons are reconstructed in CLEO-c from electromagnetic showers in the calorimeter thatdistribute their energies over multiple crystals. The direction of the photon is determinedby interpolating between crystals and the total energy is determined by summing the energydeposited in the region identified as part of an electromagnetic shower. The shower is requiredto have total energy between 10 MeV and 2 GeV. No part of the shower may deposit itsenergy in a known noisy, i.e. “hot”, crystal or an under-performing one. The shower maynot lie in the path of a track since such a shower would almost certainly have been producedby a charged particle and therefore cannot be a photon candidate. Electromagnetic showerstend to deposit a narrower distribution of energy than a hadronic shower. The collimationof energy deposition is measured by a quantity known as E9/E25. It is the ratio of energy inthe 3 × 3 block of crystal surrounding the cluster-center of the shower energy to the energydeposited in the 5 × 5 block. E9/E25 is required to be close to 1 for a photon shower. Wealso require that energies in this 5 × 5 block that are associated with any other photon areremoved and this procedure is called “unfolding” in this context. We select on a range forthis unfolded E9/E25 variable, limited by 1, such that 99% of showers are accepted. Andfinally, the shower must be from a region of the barrel or endcap calorimeter known to begood.

19

Page 20: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 2: Integrated luminosity corresponding to the CLEO-c datasets used in this analysis.The statistical uncertainties are added in quadrature, while the systematic uncertainties areadded linearly. Thereafter, these two forms of uncertainties are added in quadrature to giveus the total uncertainty we use for the analysis and the remainder of this document.

Dataset Integrated Luminosity ± stat ± syst (pb−1)

39 55.1 ± 0.03 ± 0.5640 123.9 ± 0.05 ± 1.341 119.1 ± 0.05 ± 1.347 109.8 ± 0.05 ± 1.148 178.3 ± 0.06 ± 1.9

Total 586.2 ± 0.11 ± 6.1

7 Datasets Used

Data taken at√s = 4,170 MeV by the CLEO-c detector used for this analysis correspond

to the datasets enumerated in Table 2. We add the integrated luminosities of each of thedatasets to converge on the value of 586 ± 6 pb−1 as the total luminosity of our data. Thisvalue is used for the rest of this document.

Electron-positron collisions at a center of mass energy of√s= 4,170 MeV have been mea-

sured to produce D±s D

∗∓s pairs with a cross section of 916 ± 11(statistical) ± 49(systematic)

pb in [4] and 983 ± 46(statistical) ± 21(systematics of measurement) ± 10 (systematics ofluminosity) in [1]. These being independent measurements, we use the uncertainty-weightedaverage value of 948 ± 36 pb for the cross section in this analysis.

Dataset 42 containing 48.1 pb−1 of data collected at the ψ(2S) resonance energy wasused to measure the systematic uncertainty in the electron tracking and reconstruction forthis analysis.

Monte Carlo samples modeling known physical processes expected in these datasets hadbeen produced and are available as the Generic and Continnum samples described in thefollowing sections.

7.1 Generic Monte Carlo

By Generic Monte Carlo, we mean a Monte Carlo (MC) simulation of all known physicsprocesses that follow from the production of charm quarks at 4,170 MeV e+e− collisions.The D∗+

s → D+s e

+e− process which we are searching for, consequently, is not a part of thissimulation. In order to decrease statistical uncertainties, the Generic MC was created withapproximately 20 events for every 1 event of data. This scale factor of 20 was aimed for,but not necessarily achieved due to computational errors. We re-evaluate the scale factorachieved as follows:

According tohttps://www.lepp.cornell.edu/~c3mc/private/genmc_decs/20080404_MCGEN_1/ddmix_4170_isr.dec ,

which is the EVTGEN decay file used to set the branching fractions of the various charm

20

Page 21: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

quark states possible at 4,170 MeV, the branching fraction of producing D±s D

∗∓s is 0.1014.

Also, from the “Samples” section ofhttps://wiki.lepp.cornell.edu/lepp/bin/view/CLEO/Private/SW/CLEOcMCstatus ,

the total number of produced events is 105.2 million. Therefore, we may write:

(586 ± 3)pb−1 × (948 ± 36)pb

0.1014× scale = (105.2 ± 0.1) × 106 (36)

From this, we deduce that the achieved scale factor for the Generic MC sample has been19.2 ± 0.8. The uncertainty in the luminosity contributes most to the uncertainty in thisscale. Since we will be mostly dividing the number of events in Generic MC with this scale,it is useful to record the inverse of this scale: 0.052 ± 0.002.

7.2 Continuum Monte Carlo

By Continuum Monte Carlo, we mean a Monte Carlo simulation of all physics processesthat follow from the production of up, down and strange quarks at

√s = 4,170 MeV e+e−

collisions. The scale factor for this MC sample is read off as 5 from the website:https://wiki.lepp.cornell.edu/lepp/bin/view/CLEO/Private/SW/CLEOcMCstatus

21

Page 22: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

8 Reprocessing for Electron-fitted Tracks

Tracks in CLEO are fitted to various particle mass hypotheses with a Kalman filter. Inorder to conserve disk-space, however, CLEO has chosen to not store fits made with theelectron mass hypothesis in the reconstruction process. Electrons are reconstructed usingtrack fits made with the charged pion mass hypothesis. This works fine for energies abovea few hundred MeVs, but not in our analysis which deals with average electron energies of70 MeV and goes down to 40 MeV. A plot of the difference between the reconstructed andMonte Carlo generated electron energy against the generated energy using the pion masshypothesis is presented in Fig. 5. A significant over-estimation of the energy is observed fortrue energies less than 80 MeV.

MC Electron Energy (GeV)0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Rec

o-M

C El

ectro

n En

ergy

(GeV

)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Electron Energy Resolution

MC Electron Energy (GeV)0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Reco

- M

C El

ectro

n En

ergy

(GeV

)

0

0.005

0.01

0.015

0.02

0.025

Electron Energy Resolution

Figure 5: (Left) A scatter plot between the reconstructed and Monte Carlo generated electronenergy against the generated energy using the pion mass hypothesis. (Right) The y-profileof the scatter plot.

This is seen to be corrected when we use the electron mass hypothesis for our track fitsas presented in Fig. 6. Simply re-parameterizing the energy of the tracks using a fit to theprofile plot in Fig. 5 did not improve our results as significantly as reconstructing trackswith the electron mass fit.

To carry out this reprocessing procedure, we observed the following steps:

1. We staged in the raw events of the datasets in Table 2 and dataset 42 to disk,

2. We recognized that we do not need the electron mass hypothesis fit, shortened toelectron-fit in the rest of the document, in all events. Our analysis only requires eventsthat have a Ds candidate which decayed in one of the nine hadronic modes specified inEq. 19 - 27 to be electron-fitted. To that end, we produced an Indexed Ascii (IDXA)

22

Page 23: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

MC Electron Energy (GeV)0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Rec

o-M

C El

ectro

n En

ergy

(GeV

)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Electron Energy Resolution

MC Electron Energy (GeV)0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Reco

- M

C El

ectro

n En

ergy

(GeV

)

-0.002

0

0.002

0.004

0.006

Electron Energy Resolution

Figure 6: (Left) A scatter plot between the reconstructed and Monte Carlo generated electronenergy against the generated energy using the electron mass hypothesis. (Right) The y-profileof the scatter plot.

file containing the run and event numbers of all such events in each of the datasetswe used. This IDXA file was used to skim the events of interest from the staged-indatasets and write them out in PDS format to a local disk. For dataset 42, we skimmedevents that contained a reconstructed J/ψ, a π0, an e− and a γ for reconstruction.

3. We ran the pass2 reconstruction procedure on the PDS file, taking care to use the Suezversions and the constants versions originally used to process the datasets as recordedat:https://wiki.lepp.cornell.edu/lepp/bin/view/CLEO/Private/SW/FederationDetails ,

We kept the electron track information FATable<TRHelixElectronFit> andFATable<TRElectronQuality> for datasets in Table 2. For dataset 42, we kept theelectron track information as well as photon decay information for π0 mesons: FATable<PhdPi0>.This reconstruction procedure was carried out exclusively on the Cornell solaris batchfarm that was used to originally pass2 these datasets. It wrote out another set of PDSfiles.

4. After pass2, the PDS files corresponding to the datasets in Table 2 were run throughthe Ds-tagging procedure on the Cornell linux farm. Once again, care was taken to usethe same Suez and constants versions originally used for this procedure. The PDS fileswritten out at the end of this process contained the data with electron-fitted tracksrelevant for our analysis.

5. The number of Ds candidates that decayed in one of the nine hadronic decay modes

23

Page 24: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

of our analysis should not have changed in the course of our reprocessing. However,we noticed a tendency for our procedure to miss and create new Ds candidates oncein roughly 1,000 events. On inspection, these missed or new candidates were foundto occur when the momentum of a single track in the event somehow got tweaked. Itcould be attributed to a subtle filter or processor that we may have missed in our pass2

or Ds-tagging procedures. Since this effect is at the per-mill level, we concluded that itwould not affect the results of our analysis gravely. The fraction of missed and newlycreated Ds tags are used to quantify the veracity of our reprocessing technique in thesubsequent sections.

8.1 Dataset 39

Dataset 39 contains 55.1 pb−1 of data, which originally had 3,560,069 Ds-tags. It wasreconstructed on the solaris farm using Suez version 20060117 P2 and constants versionPASS2-C 5. Ds-tagging was done on the linux farm using Suez version 20060224 FULL 1 andconstants version Analysis-C 5. Our procedure missed 6,451 tags and created 3,825 newtags. Therefore, we missed ∼ 0.18% and created ∼ 0.1% new Ds-tags in this dataset.

8.2 Dataset 40

Dataset 40 contains 123.9 pb−1 of data, which originally had 7,995,036 Ds-tags. It wasreconstructed on the solaris farm using Suez version 20060802 P2 and constants versionPASS2-C 6. Ds-tagging was done on the linux farm using Suez version 20060224 FULL 1 andconstants version Analysis-C 6. Our procedure missed 11,594 tags and created 6,960 newtags. Therefore, we missed ∼ 0.15% and created ∼ 0.09% new Ds-tags in this dataset.

8.3 Dataset 41

Dataset 41 contains 119.1 pb−1 of data, which originally had 7,680,344 Ds-tags. It wasreconstructed on the solaris farm using Suez version 20060802 P2 and constants versionPASS2-C 6. Ds-tagging was done on the linux farm using Suez version 20060224 FULL 1/3

and constants version Analysis-C 6. Our procedure missed 10,424 tags and created 6,431new tags. Therefore, we missed ∼ 0.14% and created ∼ 0.08% new Ds-tags in this dataset.

8.4 Dataset 42

Dataset 42 contains 48.1 pb−1 of data collected at the ψ(2S) resonance energy. It was re-reconstructed in order to have electron-fitted tracks for our low energy electron trackingefficiency study. It was reconstructed on the solaris farm using Suez version 20060802 P2

and constants version PASS2-C 6.

24

Page 25: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

8.5 Dataset 47

Dataset 47 contains 109.8 pb−1 of data, which originally had 7,184,618 Ds-tags. It wasreconstructed on the solaris farm using Suez version 20071023 P2 and constants versionPASS2-C 6. Ds-tagging was done on the linux farm using Suez version 20060224 FULL A 3

and constants version Analysis-C 6. Our procedure missed 13,036 tags and created 8,377new tags. Therefore, we missed ∼ 0.18% and created ∼ 0.11% new Ds-tags in this dataset.

8.6 Dataset 48

Dataset 48 contains 178.3 pb−1 of data, which originally had 11,560,602 Ds-tags. It wasreconstructed on the solaris farm using Suez version 20071023 P2 and constants versionPASS2-C 6. Ds-tagging was done on the linux farm using Suez version 20060224 FULL A 3

and constants version Analysis-C 6. Our procedure missed 17,151 tags and created 9,541new tags. Therefore, we missed ∼ 0.15% and created ∼ 0.08% new Ds-tags in this dataset.

25

Page 26: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

9 Validation of Generated Signal Monte Carlo

We have arrived at an analytical form for dΓ/dq2 in Eq. 17 that we’ve integrated over q2

and divided by Eq. 14 to compute Γ(D∗+s → D+

s e+e−)/Γ(D∗+

s → D+s γ) in Eq. 18. However,

we have simply inserted the form of the matrix element for our process, Eq. 15, as a modulein EVTGEN. Therefore, we must check if the dΓ/dq2 in our Monte Carlo distribution followsthe analytical form we arrived at.

To do so, we plot dΓ/dq2 as a function of q2 that was written down in Eq. 17 overlaidwith an appropriately normalized histogram of the q2 recovered from the generator levelinvariant mass of the e+e− pair in Fig. 7.

)2 (GeV2ee m

-610 -510 -410

2/d

d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09Analytical Distribution

Distribution from Monte Carlo

(a)

Distribution2q

)2 (GeV2ee m

0 1 2 3 4 5-610×

2/d

d

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035Analytical Distribution

Distribution from Monte Carlo

(b)

Distribution2q

Figure 7: (a) The analytical expression for the distribution of q2 overlaid with the distributionof m2

ee from our generated Monte Carlo. The discrepancy is explained in the text. (b) Thesame plot zoomed in between 0 GeV and 20m2

e to illustrate the discrepancy better.

This discrepancy was tracked down to the insufficient precision with which the valuesof electron energy and momentum at generator level Monte Carlo are stored in CLEO-csoftware. This causes a smearing in the invariant mass of a single electron calculated fromthe stored values of its energy and momentum, as shown in Fig. 8. It gets worse as one goesto higher energies, as seen in Fig. 8b.

Henceforth, we decided to re-calculate the energy of each electron from its momentum.The distribution of m2

ee now matches our analytical calculation, as shown in Fig. 9.This discrepancy is not expected to be a problem in reconstructed data as the energy

of electron tracks are recomputed from the reconstructed track momentum by assuming theelectron mass. Also, discrepancies in the range of MeVs, as suggested by Fig. 7 and 8 wouldbe washed away by the resolution of the detector.

26

Page 27: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)e m0 0.0005 0.001 0.0015 0.002 0.00250

200400600800

1000120014001600180020002200

(a)

Invariant Mass Distribution of the Electron from Generator Level Monte Carlo

E (GeV)0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(GeV

)e

m

0

0.0005

0.001

0.0015

0.002

0.0025

(b)

Invariant Mass vs Energy of Electron from Generator Level Monte Carlo

Figure 8: (a) Invariant mass distribution of an electron from the values of energy andmomentum stored at generator level Monte Carlo. (b) The same plotted against the energyof the electron.

)2 (GeV2ee m

-610 -510 -410

2/d

d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09Analytical Distribution

Distribution from Corrected Monte Carlo

(a)

Distribution2q

)2 (GeV2ee m

0 1 2 3 4 5-610×

2/d

d

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035Analytical Distribution

Distribution from Corrected Monte Carlo

(b)

Distribution2q

Figure 9: (a) The analytical expression for the distribution of q2 overlaid with the distributionof the corrected m2

ee from the Monte Carlo. (b) A zoom into the region betweeen 0 GeV and20m2

e to illustrate the close match near the peak.

27

Page 28: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10 Optimization of Selection Criteria for Measuring

B(D∗+s → D+

s e+e−)

We optimize the selection criteria for each of the 9 hadronic decay modes of the D+s used

in this analysis, for both the pion-fitted and electron-fitted samples. Improvements in thesignal yields and significances are noted as we go from the pion-fitted to the electron-fittedsamples, and this is tabulated in Tables 6, 8, 10, 12, 14, 16, 18, 20 and 22.

A problem arises in making optimization plots for the electron-fitted samples because thegeneric Monte Carlo and the continuum Monte Carlo are not electron-fitted. To get aroundthis, we recognize that electron-fitting tracks is most important for separating conversionevents from signal. It does not change distributions of the Dalitz decay or other combinatoricbackgrounds appreciably for the purposes of this analysis. Therefore, we privately produceelectron-fitted Monte Carlo samples of D∗+

s → D+s γ events where the D+

s decays generically,and use them in place of Generic Monte Carlo events which have D∗+

s → D+s γ at their

generator level.To create the plots in the following sub-sections for each hadronic decay of the D+

s , it isassumed that:

• D±s D

∗∓s pairs are produced at

√s= 4170 MeV with a cross section of 948 ± 36 pb,

• the branching fraction of D∗+s → D+

s γ is 94.2%,

• the branching fraction of D∗+s → D+

s e+e− is 0.65%,

• the scale of generic Monte Carlo is 1/19.2,

• the scale of continuum Monte Caro is 1/5.

A summary of the number of signal and background events expected after optimizationfor each mode with pion-fitted samples is tabulated in Table 3. A similar summary forelectron-fitted samples is presented in Table 4. They are a compilation of results obtainedin the following sub-sections that deals with the optimization of the modes individually.The numbers in these tables are, by no means, used as final expectations of the backgroundin data. A data driven method is used to achieve that in Section 12 and summarized inSection 12.12. The numbers here are merely representative and were used to converge on anoptimized set of parameters for our selection criteria.

10.1 D+s → K+K−π+

Given that the branching fraction of D+s → K+K−π+ is 5.50%, we studied the plots in 10,

12, 14, 16 and 18 to arrive at the selection criteria for pion-fitted data, and the plots in11, 13, 15, 17 and 19 to arrive at the selection criteria for electron-fitted data. These aresummarized in Table 5.

The result of these selection criteria, applied to the pion and electron-fitted samples, arepresented in terms of the signal and background yields we can expect in 586 pb−1 of data

28

Page 29: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 3: Number of signal and background events expected from Monte Carlo in pion massfitted data.

Mode Signal Generic Background Continuum Background Total Background s/√b

K+K−π+ 11.7 2.03 0.00 2.03 8.2KSK

+ 3.12 0.78 0.00 0.78 3.5ηπ+ 1.57 0.21 0.20 0.41 6.3

η′π+; η′ → π+π−η 1.02 0.47 0.00 0.47 1.5K+K−π+π0 4.62 3.49 0.40 3.89 2.3π+π−π+ 2.99 0.73 0.60 1.33 2.6K∗+K∗0 1.78 1.35 0.00 1.35 1.5ηρ+ 5.54 2.40 3.60 6.00 2.3

η′π+; η′ → ρ0γ 2.17 0.83 1.60 2.43 1.4Total 36.94 12.29 6.4 18.69 8.6

Table 4: Number of signal and background events expected from Monte Carlo in electronmass fitted data.

Mode Signal Conversion Background Generic Background Continuum Background Total Background s/√b

Conversions Vetoed

K+K−π+ 13.36 1.04 0.42 0.00 1.45 11.1KSK

+ 3.05 0.34 0.21 0.00 0.54 4.13ηπ+ 1.79 0.17 0.10 0.20 0.47 6.6

η′π+; η′ → π+π−η 0.74 0.00 0.00 0.00 0.00 ∞K+K−π+π0 4.86 0.63 1.46 0.20 2.29 3.2π+π−π+ 3.67 0.28 0.21 1.60 2.09 2.5K∗+K∗0 2.02 0.23 0.63 0.20 1.05 2.0ηρ+ 5.71 0.85 0.99 1.00 2.84 3.4

η′π+; η′ → ρ0γ 2.41 0.34 0.21 1.80 2.35 1.6Total 40.36 3.88 4.23 5.00 13.08 11.2

in Table 6. A signal significance, defined for now simply as NSignalEvents√NBackgroundEvents

, serves as ameasure of comparison between the two sets of criteria and samples.

29

Page 30: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → K+K−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data. The top leftplots, for both the pion and electron-fitted sets of data, are the distributions of mD+

sin the

signal MC sample. The top right plot is the signal MC sample accepted by the criterion aswe increase the cut width plotted on the x-axis. For the pion-fitted samples on the left, theplots in the second and third rows correspond to the generic and continuum MC samples,respectively. For the electron-fitted samples on the right, the plots in the second, third andfourth rows correspond to the conversion, generic and continuum MC samples, respectively.For both sets of plots, the bottom left shows the significance of the signal over background.The bottom right plot shows the precision of the signal.

(GeV)±SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Signal Sample±SDm h_dsPlusM_signal

Entries 1377Mean 1.968RMS 0.005849

Signal Sample±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

2

4

6

8

10

12

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 20167Mean 0.01104RMS 0.004838

Signal Sample vs Cut Width±SDm

(GeV)±SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 115Mean 1.969RMS 0.03579

Generic MC Background Sample±SDm

GeV±SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

00.20.40.60.8

11.21.4

1.61.8

22.22.4

Generic MC Background Sample vs Cut Width±SDm h_dsPlusM_generic_range

Entries 606Mean 0.01149RMS 0.004725

Generic MC Background Sample vs Cut Width±SDm

(GeV)±SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 5Mean 1.999RMS 0.03948

Continuum MC Background Sample±SDm

Cut Width GeV0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ

0

1

2

3

4

5

6

7

8

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.0101RMS 0.005191

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.5

1

1.5

2

2.5

3

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01038RMS 0.005128

Signal Precision vs Cut Width±SDm

Figure 10: Optimization plots for themD+

sselection criterion in the D+

s →K+K−π+ decay mode for pion-fitteddata.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2 #

Eve

nts

/ 0.6

MeV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Signal Sample±SDm h_dsPlusM_signal

Entries 1552Mean 1.968RMS 0.005539

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 23015Mean 0.01105RMS 0.004828

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

Conversion Sample±SDm h_dsPlusM_conver

Entries 22Mean 1.965RMS 0.006441

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 313Mean 0.01137RMS 0.004588

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 45Mean 1.973RMS 0.04187

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 120Mean 0.01217RMS 0.004556

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 3Mean 1.993RMS 0.04464

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

2

4

6

8

10

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.009982RMS 0.005274

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

3

3.5

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.0104RMS 0.005124

Signal Precision vs Cut Width±SDm

Figure 11: Optimization plots for themD+

sselection criterion in the D+

s →K+K−π+ decay mode for electron-fitteddata.

30

Page 31: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → K+K−π+ decay mode

having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Signal SampleBCm h_MBC_signalEntries 1539Mean 2.113RMS 0.004745

Signal SampleBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 23634Mean 0.01063RMS 0.004995

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC BackgroundBCm h_MBC_genericEntries 253Mean 2.106RMS 0.02604

Generic MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 1399Mean 0.01247RMS 0.00452

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundBCm h_MBC_continuEntries 14Mean 2.1RMS 0.02918

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 32Mean 0.01347RMS 0.003377

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

8

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008931RMS 0.005242

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Precision vs Cut WidthBCm h_MBC_precision

Entries 19Mean 0.009901RMS 0.005212

Signal Precision vs Cut WidthBCm

Figure 12: Optimization plots for the mBC

selection criterion in the D+s → K+K−π+ de-

cay mode for pion-fitted data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

0

0.2

0.4

0.6

0.8

1

1.2

Signal SampleBCm h_MBC_signalEntries 1820Mean 2.114RMS 0.00454

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

16

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 28817Mean 0.01048RMS 0.005072

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Conversion MC SampleBCm h_MBC_converEntries 112Mean 2.105RMS 0.02291

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 804Mean 0.01213RMS 0.004549

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundBCm h_MBC_genericEntries 85Mean 2.106RMS 0.02837

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 352Mean 0.01248RMS 0.004525

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundBCm h_MBC_continuEntries 7Mean 2.08RMS 0.02003

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 14Mean 0.012RMS 0.004031

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008783RMS 0.005397

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009883RMS 0.005267

Signal Precision vs Cut WidthBCm

Figure 13: Optimization plots for the mBC

selection criterion in the D+s → K+K−π+ de-

cay mode for electron-fitted data.

31

Page 32: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in the D+s → K+K−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45m Signal Sampleδ h_DeltaM_signal

Entries 1559Mean 0.1533RMS 0.004902

m Signal Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

2

4

6

8

10

12

14

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 20937Mean 0.01143RMS 0.004705

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

m Generic MC Background Sampleδ h_DeltaM_generic

Entries 229Mean 0.1577RMS 0.02595

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 707Mean 0.01256RMS 0.004341

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries 10Mean 0.1876RMS 0.009965

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

-1

-0.5

0

0.5

1

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 0Mean 0RMS 0

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

8

9

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009921RMS 0.005119

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries 19Mean 0.01057RMS 0.005059

m Signal Precision vs Cut Widthδ

Figure 14: Optimization plots for the δm se-lection criterion in the D+

s → K+K−π+ de-cay mode for pion-fitted data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

0

0.2

0.4

0.6

0.8

1

1.2

m Signal Sampleδ h_DeltaM_signalEntries 1767Mean 0.1443RMS 0.004735

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

16

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 26766Mean 0.01071RMS 0.004985

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV0

0.05

0.1

0.15

0.2

0.25

m Conversion MC Sampleδ h_DeltaM_converEntries 159Mean 0.151RMS 0.0308

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 457Mean 0.01201RMS 0.004755

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m Generic MC Background Sampleδ h_DeltaM_genericEntries 93Mean 0.1499RMS 0.02775

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 254Mean 0.01274RMS 0.004388

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 13Mean 0.1671RMS 0.03017

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 1Mean 0.0185RMS 2.42e-10

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009271RMS 0.005219

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.0101RMS 0.005198

m Signal Precision vs Cut Widthδ

Figure 15: Optimization plots for the δm se-lection criterion in the D+

s → K+K−π+ de-cay mode for electron-fitted data.

32

Page 33: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆d0 of the e+e− in the D+s → K+K−π+

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Signal Sample0d∆ h_diffD0_signalEntries 1323Mean 0.001492RMS 0.001972

Signal Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

2

4

6

8

10

12

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 15209Mean -0.00408RMS 0.003579

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generic MC Background Sample0d∆ h_diffD0_genericEntries 47Mean 0.0009133

RMS 0.003437

Generic MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 515Mean -0.003978

RMS 0.003821

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continu

Entries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

1

2

3

4

5

6

7

8

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.003513

RMS 0.003865

Significance vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Precision vs Cut Width0d∆ h_diffD0_precision

Entries 19Mean -0.003421

RMS 0.003986

Precision vs Cut Width0d∆

Figure 16: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → K+K−π+

for pion-fitted data.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal Sample0d∆ h_diffD0_signalEntries 1457Mean 0.0001248RMS 0.001901

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 14764Mean -0.004751RMS 0.003202

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m0

0.020.040.060.08

0.10.120.140.160.18

0.20.220.24

Conversion MC Sample0d∆ h_diffD0_converEntries 26Mean -0.0009811RMS 0.003759

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 234Mean -0.0047RMS 0.003508

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample0d∆ h_diffD0_genericEntries 8Mean 0.002035RMS 0.003575

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 96Mean -0.003458RMS 0.004098

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

2

4

6

8

10

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.004282RMS 0.003426

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.004092RMS 0.003631

Precision vs Cut Width0d∆

Figure 17: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → K+K−π+

for electron-fitted data.

33

Page 34: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆φ0 of the e+e− in the D+s → K+K−π+

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Signal SampleΦ∆ h_dPhi_signalEntries 1582Mean -0.03815RMS 0.3095

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

2

4

6

8

10

12

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 32120Mean 0.06484RMS 0.0776

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.5

1

1.5

2

2.5

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 202Mean 0.129RMS 0.2128

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 1293Mean 0.08297RMS 0.08242

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 2Mean 0.07743RMS 4.62e-10

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 11Mean 0.135RMS 0.03162

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

6

7

8

Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries 30Mean 0.04816RMS 0.07672

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries 30Mean 0.05405RMS 0.08004

Precision vs Cut WidthΦ∆

Figure 18: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → K+K−π+ decay mode for pion-fitteddata.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.5

1

1.5

2

2.5

3

3.5

4

Signal SampleΦ∆ h_dPhi_signalEntries 1842Mean -0.0009114RMS 0.2938

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 31899Mean 0.07592RMS 0.07445

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

00.2

0.40.6

0.8

11.2

1.4

1.61.8

2

Conversion MC SampleΦ∆ h_dPhi_converEntries 195Mean 0.2367RMS 0.2307

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 566Mean 0.08679RMS 0.07792

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 33Mean 0.08837RMS 0.2633

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 218Mean 0.05968RMS 0.08153

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 2Mean 0.4219RMS 4.949e-09

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

2

4

6

8

10

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.06166RMS 0.07688

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06189RMS 0.07929

Precision vs Cut WidthΦ∆

Figure 19: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → K+K−π+ decay mode for electron-fitted data.

34

Page 35: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 5: Selection criteria for pion-fitted and electron-fitted data in the D+s → K+K−π+

decay mode.Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ± Width Cut Center ± WidthmD+

s1.969 ± 0.011 GeV 1.969 ± 0.011 GeV

mBC 2.112 ± 0.005 GeV 2.112 ± 0.004 GeVδm 0.155 ± 0.009 GeV 0.144 ± 0.006 GeV∆d0 -0.002 m -0.006 m∆φ0 0.06 0.1

Table 6: Number of signal and background events expected in pion and electron-fitted datain the D+

s → K+K−π+ decay mode.Expected Number of Pion-Fitted Samples Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 11.7 13.36Conversion Background - 1.04

Generic Background (without Conversions in e-fit) 2.03 0.42Continuum Background 0.00 0.00

Total Background (NBackgroundEvents) 2.03 1.45NSignalEvents√

NBackgroundEvents8.2 11.1

35

Page 36: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10.2 D+s → KSK

+

Given that the branching fraction of D+s → KSK

+ is 1.49%, we studied the plots in 20,22, 24, 26 and 28 to arrive at the selection criteria for pion-fitted data, and the plots in21, 23, 25, 27 and 29 to arrive at the selection criteria for electron-fitted data. These aresummarized in Table 7.

Table 7: Selection criteria for pion-fitted and electron-fitted data in the D+s → KSK

+ decaymode.

Selection Criterion Pion-Fitted Data Electron-Fitted DataCut Center ± Width Cut Center ± Width

mD+s

1.969 ± 0.012 GeV 1.969 ± 0.008 GeVmBC 2.112 ± 0.006 GeV 2.112 ± 0.007 GeVδm 0.158 ± 0.010 GeV 0.144 ± 0.006 GeV∆d0 -0.002 m -0.004 m∆φ0 0.09 0.14

The result of these selection criteria, applied to the pion and electron-fitted samples, arepresented in terms of the signal and background yields we can expect in 586 pb−1 of datain Table 8. A signal significance, defined for now simply as NSignalEvents√

NBackgroundEvents, serves as a

measure of comparison between the two sets of criteria and samples.

Table 8: Number of signal and background events expected in pion and electron-fitted datain the D+

s → KSK+ decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 3.12 3.05Conversion Background - 0.34

Generic Background (without Conversions in e-fit) 0.78 0.21Continuum Background 0.00 0.00

Total Background (NBackgroundEvents) 0.78 0.54NSignalEvents√

NBackgroundEvents3.5 4.13

36

Page 37: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → KSK

+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data. The top leftplots, for both the pion and electron-fitted sets of data, are the distributions of mD+

sin the

signal MC sample. The top right plot is the signal MC sample accepted by the criterion aswe increase the cut width plotted on the x-axis. For the pion-fitted samples on the left, theplots in the second and third rows correspond to the generic and continuum MC samples,respectively. For the electron-fitted samples on the right, the plots in the second, third andfourth rows correspond to the conversion, generic and continuum MC samples, respectively.For both sets of plots, the bottom left shows the significance of the signal over background.The bottom right plot shows the precision of the signal.

(GeV)±SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Signal Sample±SDm h_dsPlusM_signal

Entries 1409Mean 1.968RMS 0.00719

Signal Sample±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 18925Mean 0.01139RMS 0.004741

Signal Sample vs Cut Width±SDm

(GeV)±SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 81Mean 1.988RMS 0.03936

Generic MC Background Sample±SDm

GeV±SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Generic MC Background Sample vs Cut Width±SDm h_dsPlusM_generic_range

Entries 220Mean 0.0128RMS 0.004201

Generic MC Background Sample vs Cut Width±SDm

(GeV)±SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 6Mean 1.967RMS 0.03537

Continuum MC Background Sample±SDm

Cut Width GeV0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 6Mean 0.016RMS 0.001708

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ

0

1

2

3

4

5

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.009959RMS 0.0049

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01042RMS 0.005102

Signal Precision vs Cut Width±SDm

Figure 20: Optimization plots for themD+

sselection criterion in the D+

s →KSK

+ decay mode for pion-fitted data.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2 #

Eve

nts

/ 0.6

MeV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Signal Sample±SDm h_dsPlusM_signal

Entries 1596Mean 1.968RMS 0.007181

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 21437Mean 0.01137RMS 0.004746

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

00.020.040.060.08

0.1

0.120.14

0.160.18

0.20.22

Conversion Sample±SDm h_dsPlusM_conver

Entries 9Mean 1.965RMS 0.0127

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 121Mean 0.01107RMS 0.004782

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 61Mean 1.982RMS 0.04773

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 97Mean 0.01163RMS 0.005118

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 6Mean 1.989RMS 0.04463

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01066RMS 0.004994

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01064RMS 0.00506

Signal Precision vs Cut Width±SDm

Figure 21: Optimization plots for themD+

sselection criterion in the D+

s →KSK

+ decay mode for electron-fitteddata.

37

Page 38: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → KSK

+ decay mode havingapplied all other selection criteria. All plots are normalized to 586 pb−1 of data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Signal SampleBCm h_MBC_signalEntries 1455Mean 2.113RMS 0.005126

Signal SampleBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 22549Mean 0.01067RMS 0.004968

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC BackgroundBCm h_MBC_genericEntries 62Mean 2.102RMS 0.02512

Generic MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 328Mean 0.01159RMS 0.004996

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundBCm h_MBC_continuEntries 13Mean 2.099RMS 0.0355

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 17Mean 0.01438RMS 0.002988

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.009503RMS 0.005109

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Precision vs Cut WidthBCm h_MBC_precision

Entries 19Mean 0.01002RMS 0.005166

Signal Precision vs Cut WidthBCm

Figure 22: Optimization plots for the mBC

selection criterion in the D+s → KSK

+ decaymode for pion-fitted data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

Signal SampleBCm h_MBC_signalEntries 1389Mean 2.114RMS 0.004872

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 21980Mean 0.0105RMS 0.005065

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV0

0.020.04

0.06

0.080.1

0.120.14

0.16

0.180.2

0.22

Conversion MC SampleBCm h_MBC_converEntries 25Mean 2.116RMS 0.0152

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 209Mean 0.01274RMS 0.004324

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.01

0.02

0.03

0.04

0.05

Generic MC BackgroundBCm h_MBC_genericEntries 18Mean 2.103RMS 0.02228

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 96Mean 0.01187RMS 0.004818

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundBCm h_MBC_continuEntries 2Mean 2.056RMS 1.53e-08

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008752RMS 0.005314

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009843RMS 0.005252

Signal Precision vs Cut WidthBCm

Figure 23: Optimization plots for the mBC

selection criterion in the D+s → KSK

+ decaymode for electron-fitted data.

38

Page 39: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in the D+s → KSK

+ decay mode havingapplied all other selection criteria. All plots are normalized to 586 pb−1 of data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

m Signal Sampleδ h_DeltaM_signalEntries 1481Mean 0.1528RMS 0.005688

m Signal Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 19377Mean 0.01158RMS 0.004636

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m Generic MC Background Sampleδ h_DeltaM_generic

Entries 81Mean 0.1553RMS 0.02456

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 284Mean 0.01227RMS 0.004684

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries 6Mean 0.1623RMS 0.02736

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

-1

-0.5

0

0.5

1

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 0Mean 0RMS 0

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.01044RMS 0.004932

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries 19Mean 0.01069RMS 0.004998

m Signal Precision vs Cut Widthδ

Figure 24: Optimization plots for the δm se-lection criterion in the D+

s → KSK+ decay

mode for pion-fitted data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

0

0.05

0.1

0.15

0.2

0.25

m Signal Sampleδ h_DeltaM_signalEntries 1550Mean 0.1441RMS 0.0052

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 22841Mean 0.01076RMS 0.004975

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

m Conversion MC Sampleδ h_DeltaM_converEntries 56Mean 0.1438RMS 0.03194

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 229Mean 0.01239RMS 0.004819

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

m Generic MC Background Sampleδ h_DeltaM_genericEntries 37Mean 0.1607RMS 0.02415

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 136Mean 0.01222RMS 0.004662

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 4Mean 0.1352RMS 0.0001439

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 21Mean 0.01374RMS 0.003038

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009142RMS 0.00512

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.009979RMS 0.005176

m Signal Precision vs Cut Widthδ

Figure 25: Optimization plots for the δm se-lection criterion in the D+

s → KSK+ decay

mode for electron-fitted data.

39

Page 40: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆d0 of the e+e− in the D+s → KSK

+

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Signal Sample0d∆ h_diffD0_signalEntries 1305Mean 0.00164RMS 0.002015

Signal Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 15177Mean -0.004006RMS 0.003634

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample0d∆ h_diffD0_genericEntries 21Mean -7.048e-06

RMS 0.003431

Generic MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 208Mean -0.004442

RMS 0.003498

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continu

Entries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.003167

RMS 0.003974

Significance vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut Width0d∆ h_diffD0_precision

Entries 19Mean -0.003176

RMS 0.004152

Precision vs Cut Width0d∆

Figure 26: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → KSK+ for

pion-fitted data.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal Sample0d∆ h_diffD0_signalEntries 1251Mean 9.864e-05RMS 0.00193

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 12638Mean -0.00476RMS 0.003208

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m0

0.02

0.04

0.06

0.08

0.1

Conversion MC Sample0d∆ h_diffD0_converEntries 8Mean -0.0002283RMS 0.002609

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 79Mean -0.004754RMS 0.003285

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.01

0.02

0.03

0.04

0.05

Generic MC Background Sample0d∆ h_diffD0_genericEntries 4Mean 0.001338RMS 0.002964

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 45Mean -0.003989RMS 0.003793

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.004385RMS 0.003353

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.003982RMS 0.003784

Precision vs Cut Width0d∆

Figure 27: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → KSK+ for

electron-fitted data.

40

Page 41: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆φ0 of the e+e− in the D+s → KSK

+

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Signal SampleΦ∆ h_dPhi_signalEntries 1508Mean -0.05944RMS 0.3149

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 31401Mean 0.06283RMS 0.07852

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 70Mean 0.07624RMS 0.257

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 515Mean 0.08187RMS 0.0865

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC BackgroundΦ∆ h_dPhi_continu

Entries 2Mean 0RMS 0

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries 30Mean 0.04905RMS 0.07591

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries 30Mean 0.05262RMS 0.07983

Precision vs Cut WidthΦ∆

Figure 28: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → KSK+ decay mode for pion-fitted

data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Signal SampleΦ∆ h_dPhi_signalEntries 1468Mean -0.008877RMS 0.3031

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 25771Mean 0.07495RMS 0.07523

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Conversion MC SampleΦ∆ h_dPhi_converEntries 42Mean 0.1373RMS 0.318

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 169Mean 0.06502RMS 0.08688

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 15Mean 0.0796RMS 0.1564

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 116Mean 0.06259RMS 0.08437

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

-1

-0.5

0

0.5

1

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 0Mean 0RMS 0

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.06732RMS 0.07484

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06277RMS 0.07894

Precision vs Cut WidthΦ∆

Figure 29: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → KSK+ decay mode for electron-fitted

data.

41

Page 42: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10.3 D+s → ηπ+; η → γγ

Given that:

• the branching fraction of D+s ηπ

+ is ' 1.58%, and

• the branching fraction of η → γγ is ' 39.31%,

, we studied the plots in 30, 32, 34, 36 and 38 to arrive at the selection criteria for pion-fitteddata, and the plots in 31, 33, 35, 37 and 39 to arrive at the selection criteria for electron-fitteddata. These are summarized in Table 9.

Table 9: Selection criteria for pion-fitted and electron-fitted data in the D+s → ηπ+; η → γγ

decay mode.Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ± Width Cut Center ± WidthmD+

s1.969 ± 0.015 GeV 1.969 ± 0.016 GeV

mBC 2.112 ± 0.007 GeV 2.112 ± 0.008 GeVδm 0.155 ± 0.013 GeV 0.144 ± 0.008 GeV∆d0 -0.007 m -0.004 m∆φ0 0.07 0.12

The result of these selection criteria, applied to the pion and electron-fitted samples, arepresented in terms of the signal and background yields we can expect in 586 pb−1 of datain Table 10. A signal significance, defined for now simply as NSignalEvents√

NBackgroundEvents, serves as a

measure of comparison between the two sets of criteria and samples.

Table 10: Number of signal and background events expected in pion and electron-fitted datain the D+

s → ηπ+; η → γγ decay mode.Expected Number of Pion-Fitted Samples Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 1.57 1.79Conversion Background - 0.17

Generic Background (without Conversions in e-fit) 0.21 0.10Continuum Background 0.20 0.20

Total Background (NBackgroundEvents) 0.41 0.47NSignalEvents√

NBackgroundEvents6.3 6.6

42

Page 43: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → ηπ+; η → γγ decay mode

having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.The top left plots, for both the pion and electron-fitted sets of data, are the distributions ofmD+

sin the signal MC sample. The top right plot is the signal MC sample accepted by the

criterion as we increase the cut width plotted on the x-axis. For the pion-fitted samples onthe left, the plots in the second and third rows correspond to the generic and continuum MCsamples, respectively. For the electron-fitted samples on the right, the plots in the second,third and fourth rows correspond to the conversion, generic and continuum MC samples,respectively. For both sets of plots, the bottom left shows the significance of the signal overbackground. The bottom right plot shows the precision of the signal.

(GeV)±SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Signal Sample±SDm h_dsPlusM_signal

Entries 2023Mean 1.967RMS 0.01101

Signal Sample±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 19723Mean 0.01211RMS 0.004554

Signal Sample vs Cut Width±SDm

(GeV)±SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 13Mean 1.966RMS 0.02393

Generic MC Background Sample±SDm

GeV±SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generic MC Background Sample vs Cut Width±SDm h_dsPlusM_generic_range

Entries 68Mean 0.01159RMS 0.005046

Generic MC Background Sample vs Cut Width±SDm

(GeV)±SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 12Mean 1.959RMS 0.03163

Continuum MC Background Sample±SDm

Cut Width GeV0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 17Mean 0.01374RMS 0.003978

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ

0

1

2

3

4

5

6

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01081RMS 0.004944

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01105RMS 0.004974

Signal Precision vs Cut Width±SDm

Figure 30: Optimization plots for themD+

sselection criterion in the D+

s →ηπ+; η → γγ decay mode for pion-fitteddata.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2 #

Eve

nts

/ 0.6

MeV

0

0.01

0.02

0.03

0.04

0.05

0.06

Signal Sample±SDm h_dsPlusM_signal

Entries 2239Mean 1.967RMS 0.01125

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 21604Mean 0.01215RMS 0.004547

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

Conversion Sample±SDm h_dsPlusM_conver

Entries 5Mean 1.971RMS 0.04115

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 38Mean 0.01217RMS 0.004298

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.01

0.02

0.03

0.04

0.05

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 6Mean 1.993RMS 0.02772

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 29Mean 0.0116RMS 0.005479

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 7Mean 1.95RMS 0.04378

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 7Mean 0.0155RMS 0.002

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

3

3.5

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01072RMS 0.004825

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

1.2

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01105RMS 0.00495

Signal Precision vs Cut Width±SDm

Figure 31: Optimization plots for themD+

sselection criterion in the D+

s →ηπ+; η → γγ decay mode for electron-fitted data.

43

Page 44: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → ηπ+; η → γγ decay mode

having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

Signal SampleBCm h_MBC_signalEntries 1830Mean 2.114RMS 0.005703

Signal SampleBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 27021Mean 0.01087RMS 0.00491

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC BackgroundBCm h_MBC_genericEntries 31Mean 2.108RMS 0.02434

Generic MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 144Mean 0.01333RMS 0.004194

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC BackgroundBCm h_MBC_continuEntries 32Mean 2.09RMS 0.03347

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 36Mean 0.01328RMS 0.00434

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008932RMS 0.005043

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Signal Precision vs Cut WidthBCm h_MBC_precision

Entries 19Mean 0.01011RMS 0.005147

Signal Precision vs Cut WidthBCm

Figure 32: Optimization plots for the mBC

selection criterion in the D+s → ηπ+; η → γγ

decay mode for pion-fitted data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

Signal SampleBCm h_MBC_signalEntries 1969Mean 2.114RMS 0.005236

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 30060Mean 0.01073RMS 0.004971

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV0

0.01

0.02

0.03

0.04

0.05

0.06

Conversion MC SampleBCm h_MBC_converEntries 13Mean 2.101RMS 0.02349

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 81Mean 0.01176RMS 0.005117

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.01

0.02

0.03

0.04

0.05

Generic MC BackgroundBCm h_MBC_genericEntries 8Mean 2.088RMS 0.0275

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 46Mean 0.012RMS 0.004562

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC BackgroundBCm h_MBC_continuEntries 26Mean 2.087RMS 0.03277

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 21Mean 0.01317RMS 0.004539

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.00967RMS 0.00497

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.01001RMS 0.005178

Signal Precision vs Cut WidthBCm

Figure 33: Optimization plots for the mBC

selection criterion in the D+s → ηπ+; η → γγ

decay mode for electron-fitted data.

44

Page 45: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in the D+s → ηπ+; η → γγ decay mode

having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

m Signal Sampleδ h_DeltaM_signalEntries 1754Mean 0.1528RMS 0.005476

m Signal Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 22097Mean 0.01163RMS 0.004613

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m Generic MC Background Sampleδ h_DeltaM_generic

Entries 26Mean 0.1717RMS 0.02265

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 74Mean 0.0117RMS 0.005167

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries 15Mean 0.1628RMS 0.03029

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 25Mean 0.01126RMS 0.005757

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.01095RMS 0.00455

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries 19Mean 0.01087RMS 0.004913

m Signal Precision vs Cut Widthδ

Figure 34: Optimization plots for the δm se-lection criterion in the D+

s → ηπ+; η → γγdecay mode for pion-fitted data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

m Signal Sampleδ h_DeltaM_signalEntries 2088Mean 0.1442RMS 0.00535

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

00.2

0.4

0.60.8

1

1.2

1.4

1.61.8

2

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 30355Mean 0.01078RMS 0.004982

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

m Conversion MC Sampleδ h_DeltaM_converEntries 35Mean 0.152RMS 0.02801

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 91Mean 0.01364RMS 0.003712

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

m Generic MC Background Sampleδ h_DeltaM_genericEntries 10Mean 0.1691RMS 0.02581

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 36Mean 0.01242RMS 0.004245

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 22Mean 0.1591RMS 0.02994

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 22Mean 0.01259RMS 0.004776

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.01038RMS 0.004529

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.009911RMS 0.005222

m Signal Precision vs Cut Widthδ

Figure 35: Optimization plots for the δm se-lection criterion in the D+

s → ηπ+; η → γγdecay mode for electron-fitted data.

45

Page 46: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆d0 of the e+e− in theD+

s → ηπ+; η → γγ decay mode having applied all other selection criteria. All plotsare normalized to 586 pb−1 of data.

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal Sample0d∆ h_diffD0_signalEntries 1535Mean 0.001579RMS 0.002112

Signal Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 17764Mean -0.004018RMS 0.003639

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample0d∆ h_diffD0_genericEntries 4Mean 0.001263

RMS 0.0009244

Generic MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 46Mean -0.004217

RMS 0.003366

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 1Mean 0.00158RMS 1.687e-11

Continuum MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 12Mean -0.004RMS 0.003452

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

1

2

3

4

5

6

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.003844

RMS 0.003673

Significance vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Precision vs Cut Width0d∆ h_diffD0_precision

Entries 19Mean -0.003198

RMS 0.004195

Precision vs Cut Width0d∆

Figure 36: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → ηπ+; η →γγ for pion-fitted data.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Signal Sample0d∆ h_diffD0_signalEntries 1774Mean 0.0001244RMS 0.001984

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 17966Mean -0.004739RMS 0.003228

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m0

0.01

0.02

0.03

0.04

0.05

0.06

Conversion MC Sample0d∆ h_diffD0_converEntries 3Mean -0.0003224RMS 0.00263

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 29Mean -0.004793RMS 0.003332

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample0d∆ h_diffD0_genericEntries 2Mean 0.002876RMS 1.7e-05

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 26Mean -0.0035RMS 0.003742

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 1Mean -0.001903RMS 1.751e-11

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 8Mean -0.006RMS 0.002291

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.00424RMS 0.003339

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.003943RMS 0.00376

Precision vs Cut Width0d∆

Figure 37: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → ηπ+; η →γγ for electron-fitted data.

46

Page 47: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆φ0 of the e+e− in theD+

s → ηπ+; η → γγ decay mode having applied all other selection criteria. All plotsare normalized to 586 pb−1 of data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Signal SampleΦ∆ h_dPhi_signalEntries 1909Mean -0.04563RMS 0.353

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 38849Mean 0.06282RMS 0.07839

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 76Mean 0.2816RMS 0.1878

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 161Mean 0.1022RMS 0.07808

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 11Mean 0.3049RMS 0.2084

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 22Mean 0.08RMS 0.06344

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

6

7

8

9

Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries 30Mean 0.03634RMS 0.08094

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries 30Mean 0.05274RMS 0.08102

Precision vs Cut WidthΦ∆

Figure 38: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → ηπ+; η → γγ decay mode for pion-fitted data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

Signal SampleΦ∆ h_dPhi_signalEntries 2107Mean -0.007815RMS 0.3548

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 37771Mean 0.07362RMS 0.0754

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.05

0.1

0.15

0.2

0.25

0.3

Conversion MC SampleΦ∆ h_dPhi_converEntries 24Mean 0.2823RMS 0.2772

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 67Mean 0.09763RMS 0.07799

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.01

0.02

0.03

0.04

0.05

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 2Mean -0.04646RMS 3.334e-10

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 53Mean 0.05632RMS 0.07845

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 7Mean 0.2543RMS 0.04979

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 29Mean 0.045RMS 0.08367

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.06596RMS 0.07594

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06217RMS 0.079

Precision vs Cut WidthΦ∆

Figure 39: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → ηπ+; η → γγ decay mode for electron-fitted data.

47

Page 48: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10.4 D+s → η′π+; η′ → π+π−η; η → γγ

Given that

• the branching fraction of D+s → η′π+ is ' 3.8%, and

• the branching fraction of η′ → π+π−η is ' 44.6%,

• the branching fraction of η → γγ is 39.31%,

we studied the plots in 40, 42, 44, 46 and 48 to arrive at selection criteria for pion-fitted data,and the plots in 41, 43, 45, 47 and 49 to arrive at the selection criteria for electron-fitteddata. These are tabulated in Table 11

Table 11: Selection criteria for pion-fitted and electron-fitted data in the D+s → η′π+; η′ →

π+π−η; η → γγ decay mode.Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ± Width Cut Center ± WidthmD+

s1.969 ± 0.011 GeV 1.969 ± 0.008 GeV

mBC 2.112 ± 0.011 GeV 2.112 ± 0.004 GeVδm 0.155 ± 0.013 GeV 0.144 ± 0.008 GeV∆d0 -0.003 m -0.004 m∆φ0 0.07 0.1

The result of these selection criteria, applied to the pion and electron-fitted samples, arepresented in terms of the signal and background yields we can expect in 586 pb−1 of datain Table 12. A signal significance, defined for now simply as NSignalEvents√

NBackgroundEvents, serves as a

measure of comparison between the two sets of criteria and samples.

Table 12: Number of signal and background events expected in pion and electron-fitted datain the D+

s → η′π+; η′ → π+π−η; η → γγ decay mode.Expected Number of Pion-Fitted Samples Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 1.02 0.74Conversion Background - 0.00

Generic Background (without Conversions in e-fit) 0.47 0.00Continuum Background 0.00 0.00

Total Background (NBackgroundEvents) 0.47 0.00NSignalEvents√

NBackgroundEvents1.50 ∞

48

Page 49: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → η′π+; η′ → π+π−η; η → γγ

decay mode having applied all other selection criteria. All plots are normalized to 586pb−1 of data. The top left plots, for both the pion and electron-fitted sets of data, arethe distributions of mD+

sin the signal MC sample. The top right plot is the signal MC

sample accepted by the criterion as we increase the cut width plotted on the x-axis. Forthe pion-fitted samples on the left, the plots in the second and third rows correspond tothe generic and continuum MC samples, respectively. For the electron-fitted samples on theright, the plots in the second, third and fourth rows correspond to the conversion, genericand continuum MC samples, respectively. For both sets of plots, the bottom left shows thesignificance of the signal over background. The bottom right plot shows the precision of thesignal.

(GeV)±SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.01

0.02

0.03

0.04

0.05

0.06

Signal Sample±SDm h_dsPlusM_signal

Entries 1185Mean 1.967RMS 0.008578

Signal Sample±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 14315Mean 0.01159RMS 0.004718

Signal Sample vs Cut Width±SDm

(GeV)±SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 17Mean 1.968RMS 0.02394

Generic MC Background Sample±SDm

GeV±SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Generic MC Background Sample vs Cut Width±SDm h_dsPlusM_generic_range

Entries 155Mean 0.0116RMS 0.004789

Generic MC Background Sample vs Cut Width±SDm

(GeV)±SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 3Mean 1.992RMS 0.03738

Continuum MC Background Sample±SDm

Cut Width GeV0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01074RMS 0.005045

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01074RMS 0.005065

Signal Precision vs Cut Width±SDm

Figure 40: Optimization plots for themD+

sselection criterion in the D+

s →η′π+; η′ → π+π−η; η → γγ decay modefor pion-fitted data.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s / 0

.6 M

eV

0

0.01

0.02

0.03

0.04

0.05

Signal Sample±SDm h_dsPlusM_signal

Entries 937Mean 1.967RMS 0.008082

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 11984Mean 0.01156RMS 0.004711

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

Conversion Sample±SDm h_dsPlusM_conver

Entries 1Mean 1.95RMS 1.782e-08

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 0Mean 0RMS 0

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.01

0.02

0.03

0.04

0.05

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 2Mean 2.031RMS 1.354e-08

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 0Mean 0RMS 0

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 2Mean 1.964RMS 0.05449

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

-1

-0.5

0

0.5

1

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0RMS 0

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01074RMS 0.005063

Signal Precision vs Cut Width±SDm

Figure 41: Optimization plots for themD+

sselection criterion in the D+

s →η′π+; η′ → π+π−η; η → γγ decay modefor electron-fitted data.

49

Page 50: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → η′π+; η′ → π+π−η; η → γγ

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.01

0.02

0.03

0.04

0.05

Signal SampleBCm h_MBC_signalEntries 1002Mean 2.114RMS 0.005224

Signal SampleBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 15197Mean 0.01082RMS 0.004921

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundBCm h_MBC_genericEntries 21Mean 2.109RMS 0.01718

Generic MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 145Mean 0.013RMS 0.003966

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC BackgroundBCm h_MBC_continu

Entries 1Mean 0RMS 0

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.01076RMS 0.00443

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Signal Precision vs Cut WidthBCm h_MBC_precision

Entries 19Mean 0.009884RMS 0.00522

Signal Precision vs Cut WidthBCm

Figure 42: Optimization plots for the mBC

selection criterion in the D+s → η′π+; η′ →

π+π−η; η → γγ decay mode for pion-fitteddata.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

Signal SampleBCm h_MBC_signalEntries 895Mean 2.114RMS 0.004809

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 13876Mean 0.01071RMS 0.004976

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV0

0.01

0.02

0.03

0.04

0.05

Conversion MC SampleBCm h_MBC_converEntries 3Mean 2.076RMS 0.007448

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 0Mean 0RMS 0

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.01

0.02

0.03

0.04

0.05

Generic MC BackgroundBCm h_MBC_genericEntries 6Mean 2.097RMS 0.03093

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 0Mean 0RMS 0

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

-1

-0.5

0

0.5

1

Continuum MC BackgroundBCm h_MBC_continuEntries 0Mean 0RMS 0

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0RMS 0

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.01022RMS 0.005191

Signal Precision vs Cut WidthBCm

Figure 43: Optimization plots for the mBC

selection criterion in the D+s → η′π+; η′ →

π+π−η; η → γγ decay mode for electron-fitted data.

50

Page 51: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in the D+s → η′π+; η′ → π+π−η decay

mode having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

m Signal Sampleδ h_DeltaM_signalEntries 1056Mean 0.1529RMS 0.005359

m Signal Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 13157Mean 0.01165RMS 0.004607

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

m Generic MC Background Sampleδ h_DeltaM_generic

Entries 27Mean 0.1575RMS 0.02431

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 140Mean 0.01173RMS 0.004768

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries 1Mean 0.1719RMS 3.492e-10

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 5Mean 0.0165RMS 0.001414

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.01059RMS 0.004828

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries 19Mean 0.01074RMS 0.004935

m Signal Precision vs Cut Widthδ

Figure 44: Optimization plots for the δm se-lection criterion in the D+

s → η′π+; η′ →π+π−η decay mode for pion-fitted data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

m Signal Sampleδ h_DeltaM_signalEntries 759Mean 0.1444RMS 0.004936

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 11440Mean 0.01075RMS 0.004982

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV0

0.02

0.04

0.06

0.08

0.1

m Conversion MC Sampleδ h_DeltaM_converEntries 6Mean 0.1787RMS 0.003995

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 0Mean 0RMS 0

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

-1

-0.5

0

0.5

1

m Generic MC Background Sampleδ h_DeltaM_genericEntries 0Mean 0RMS 0

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 0Mean 0RMS 0

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 1Mean 0.1719RMS 3.492e-10

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 0Mean 0RMS 0

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0RMS 0

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.01024RMS 0.005198

m Signal Precision vs Cut Widthδ

Figure 45: Optimization plots for the δm se-lection criterion in the D+

s → η′π+; η′ →π+π−η decay mode for electron-fitted data.

51

Page 52: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆d0 of the e+e− in theD+

s → η′π+; η′ → π+π−η decay mode having applied all other selection criteria. Allplots are normalized to 586 pb−1 of data.

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Signal Sample0d∆ h_diffD0_signalEntries 945Mean 0.001481RMS 0.002079

Signal Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 10847Mean -0.004074RMS 0.003597

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample0d∆ h_diffD0_genericEntries 11Mean 0.0004747

RMS 0.002646

Generic MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 117Mean -0.004346

RMS 0.003589

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continu

Entries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.003261

RMS 0.003952

Significance vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Precision vs Cut Width0d∆ h_diffD0_precision

Entries 19Mean -0.003277

RMS 0.004083

Precision vs Cut Width0d∆

Figure 46: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → η′π+; η′ →π+π−η for pion-fitted data.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Signal Sample0d∆ h_diffD0_signalEntries 672Mean 0.0001334RMS 0.001817

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 6813Mean -0.004764RMS 0.00319

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m-1

-0.5

0

0.5

1

Conversion MC Sample0d∆ h_diffD0_converEntries 0Mean 0RMS 0

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 0Mean 0RMS 0

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

-1

-0.5

0

0.5

1

Generic MC Background Sample0d∆ h_diffD0_genericEntries 0Mean 0RMS 0

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 0Mean 0RMS 0

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean 0RMS 0

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.004009RMS 0.00372

Precision vs Cut Width0d∆

Figure 47: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → η′π+; η′ →π+π−η for electron-fitted data.

52

Page 53: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆φ0 of the e+e− in theD+

s → η′π+; η′ → π+π−η decay mode having applied all other selection criteria. Allplots are normalized to 586 pb−1 of data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Signal SampleΦ∆ h_dPhi_signalEntries 1181Mean -0.04737RMS 0.3388

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 23498Mean 0.06352RMS 0.07858

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 48Mean 0.03029RMS 0.3938

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 309Mean 0.08047RMS 0.08094

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 1Mean 0.1533RMS 1.267e-09

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 4Mean 0.17RMS 0.01118

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries 30Mean 0.04656RMS 0.07816

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries 30Mean 0.05123RMS 0.08006

Precision vs Cut WidthΦ∆

Figure 48: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → η′ → π+π−η; η → γγ decay mode forpion-fitted data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

00.020.040.060.08

0.10.120.140.160.18

0.20.220.24

Signal SampleΦ∆ h_dPhi_signalEntries 839Mean 0.003862RMS 0.3209

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 14605Mean 0.07577RMS 0.07434

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.02

0.04

0.06

0.08

0.1

0.12

Conversion MC SampleΦ∆ h_dPhi_converEntries 6Mean 0.3131RMS 0.09063

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.01

0.02

0.03

0.04

0.05

0.06

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 4Mean 0.17RMS 0.01118

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

-1

-0.5

0

0.5

1

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 0Mean 0RMS 0

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

-1

-0.5

0

0.5

1

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 0Mean 0RMS 0

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

-1

-0.5

0

0.5

1

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 0Mean 0RMS 0

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.1701RMS 0.01117

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06133RMS 0.07939

Precision vs Cut WidthΦ∆

Figure 49: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → η′ → π+π−η; η → γγ decay mode forelectron-fitted data.

53

Page 54: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10.5 D+s → K+K−π+π0

Given that the branching fraction of D+s → K+K−π+π0 is 5.6%, we studied the plots in

50, 52, 54, 56 and 58 to arrive at the selection criteria for pion-fitted data, and the plots in51, 53, 55, 57 and 59 to arrive at the selection criteria for electron-fitted data. These aretabulated in Table 13

Table 13: Selection criteria for pion-fitted and electron-fitted data in the D+s → K+K−π+π0

decay mode.Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ± Width Cut Center ± WidthmD+

s1.969 ± 0.009 GeV 1.969 ± 0.010 GeV

mBC 2.112 ± 0.007 GeV 2.112 ± 0.004 GeVδm 0.155 ± 0.011 GeV 0.144 ± 0.006 GeV∆d0 -0.002 m -0.006 m∆φ0 0.07 0.12

The result of these selection criteria, applied to the pion and electron-fitted samples, arepresented in terms of the signal and background yields we can expect in 586 pb−1 of datain Table 14. A signal significance, defined for now simply as NSignalEvents√

NBackgroundEvents, serves as a

measure of comparison between the two sets of criteria and samples.

Table 14: Number of signal and background events expected in pion and electron-fitted datain the D+

s → K+K−π+π0 decay mode.Expected Number of Pion-Fitted Samples Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 4.62 4.86Conversion Background - 0.63

Generic Background (without Conversions in e-fit) 3.49 1.46Continuum Background 0.40 0.20

Total Background (NBackgroundEvents) 3.89 2.29NSignalEvents√

NBackgroundEvents2.3 3.2

54

Page 55: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → K+K−π+π0 decay mode

having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.The top left plots, for both the pion and electron-fitted sets of data, are the distributions ofmD+

sin the signal MC sample. The top right plot is the signal MC sample accepted by the

criterion as we increase the cut width plotted on the x-axis. For the pion-fitted samples onthe left, the plots in the second and third rows correspond to the generic and continuum MCsamples, respectively. For the electron-fitted samples on the right, the plots in the second,third and fourth rows correspond to the conversion, generic and continuum MC samples,respectively. For both sets of plots, the bottom left shows the significance of the signal overbackground. The bottom right plot shows the precision of the signal.

(GeV)±SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

Signal Sample±SDm h_dsPlusM_signal

Entries 985Mean 1.967RMS 0.01041

Signal Sample±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 8821Mean 0.01173RMS 0.004675

Signal Sample vs Cut Width±SDm

(GeV)±SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 846Mean 1.972RMS 0.04314

Generic MC Background Sample±SDm

GeV±SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

2

4

6

8

10

Generic MC Background Sample vs Cut Width±SDm h_dsPlusM_generic_range

Entries 1765Mean 0.01291RMS 0.004341

Generic MC Background Sample vs Cut Width±SDm

(GeV)±SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 42Mean 1.985RMS 0.04413

Continuum MC Background Sample±SDm

Cut Width GeV0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 60Mean 0.0133RMS 0.004277

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ

00.20.40.60.8

11.21.4

1.61.8

22.22.4

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.009842RMS 0.005249

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01041RMS 0.005098

Signal Precision vs Cut Width±SDm

Figure 50: Optimization plots for themD+

sselection criterion in the D+

s →K+K−π+π0 decay mode for pion-fitteddata.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2 #

Eve

nts

/ 0.6

MeV

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal Sample±

SDm h_dsPlusM_signalEntries 798Mean 1.968RMS 0.009613

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 8473Mean 0.01167RMS 0.004686

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Conversion Sample±SDm h_dsPlusM_conver

Entries 50Mean 1.956RMS 0.03141

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 210Mean 0.01266RMS 0.004427

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 290Mean 1.973RMS 0.04457

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 549Mean 0.01284RMS 0.004441

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 16Mean 1.969RMS 0.04193

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 19Mean 0.01424RMS 0.00275

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

3

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01RMS 0.005107

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01054RMS 0.00507

Signal Precision vs Cut Width±SDm

Figure 51: Optimization plots for themD+

sselection criterion in the D+

s →K+K−π+π0 decay mode for electron-fitted data.

55

Page 56: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → K+K−π+π0 decay mode

having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Signal SampleBCm h_MBC_signalEntries 697Mean 2.114RMS 0.006525

Signal SampleBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 9174Mean 0.01088RMS 0.004928

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generic MC BackgroundBCm h_MBC_genericEntries 721Mean 2.101RMS 0.03063

Generic MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

2

4

6

8

10

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 2160Mean 0.01272RMS 0.004324

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC BackgroundBCm h_MBC_continuEntries 41Mean 2.104RMS 0.02848

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

00.2

0.4

0.6

0.81

1.2

1.4

1.6

1.82

2.2

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 87Mean 0.01405RMS 0.003503

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008761RMS 0.005318

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Precision vs Cut WidthBCm h_MBC_precision

Entries 19Mean 0.009571RMS 0.005231

Signal Precision vs Cut WidthBCm

Figure 52: Optimization plots for the mBC

selection criterion in the D+s → K+K−π+π0

decay mode for pion-fitted data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 Signal SampleBCm h_MBC_signal

Entries 797Mean 2.114RMS 0.006004

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

7

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 11037Mean 0.01068RMS 0.005024

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Conversion MC SampleBCm h_MBC_converEntries 78Mean 2.106RMS 0.02361

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

00.2

0.4

0.60.8

1

1.21.4

1.61.8

2

2.2

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 360Mean 0.01268RMS 0.004413

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generic MC BackgroundBCm h_MBC_genericEntries 521Mean 2.101RMS 0.03072

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

7

8

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 1552Mean 0.01268RMS 0.004347

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundBCm h_MBC_continuEntries 26Mean 2.106RMS 0.02803

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 53Mean 0.01352RMS 0.003969

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008619RMS 0.005361

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009558RMS 0.005272

Signal Precision vs Cut WidthBCm

Figure 53: Optimization plots for the mBC

selection criterion in the D+s → K+K−π+π0

decay mode for electron-fitted data.

56

Page 57: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in the D+s → K+K−π+π0 decay mode

having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22m Signal Sampleδ h_DeltaM_signal

Entries 628Mean 0.1521RMS 0.006471

m Signal Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 7624Mean 0.01174RMS 0.00456

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6m Generic MC Background Sampleδ h_DeltaM_generic

Entries 617Mean 0.1559RMS 0.02774

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 1397Mean 0.01256RMS 0.004505

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries 23Mean 0.1582RMS 0.02641

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 34Mean 0.01268RMS 0.004083

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

00.2

0.40.60.8

11.21.4

1.6

1.82

2.2

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.0104RMS 0.004984

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries 19Mean 0.01064RMS 0.004974

m Signal Precision vs Cut Widthδ

Figure 54: Optimization plots for the δm se-lection criterion in the D+

s → K+K−π+π0

decay mode for pion-fitted data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m Signal Sampleδ h_DeltaM_signalEntries 682Mean 0.1442RMS 0.004895

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 9980Mean 0.01064RMS 0.005045

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV0

0.05

0.1

0.15

0.2

0.25

0.3

m Conversion MC Sampleδ h_DeltaM_converEntries 95Mean 0.1489RMS 0.02558

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.81

1.2

1.4

1.6

1.82

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 341Mean 0.01273RMS 0.00438

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m Generic MC Background Sampleδ h_DeltaM_genericEntries 404Mean 0.1566RMS 0.02753

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 871Mean 0.01262RMS 0.004493

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 16Mean 0.1529RMS 0.02506

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 37Mean 0.01218RMS 0.004633

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.008652RMS 0.005411

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.009666RMS 0.005272

m Signal Precision vs Cut Widthδ

Figure 55: Optimization plots for the δm se-lection criterion in the D+

s → K+K−π+π0

decay mode for electron-fitted data.

57

Page 58: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆d0 of the e+e− in theD+

s → K+K−π+π0 decay mode having applied all other selection criteria. All plotsare normalized to 586 pb−1 of data.

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Signal Sample0d∆ h_diffD0_signalEntries 537Mean 0.001635RMS 0.002179

Signal Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

1

2

3

4

5

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 6243Mean -0.003973RMS 0.003681

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generic MC Background Sample0d∆ h_diffD0_genericEntries 107Mean 0.0001057

RMS 0.003469

Generic MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

1

2

3

4

5

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 1083Mean -0.004346

RMS 0.003679

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 2Mean 0.000126RMS 0.001621

Continuum MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 21Mean -0.004643RMS 0.003197

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

00.20.40.60.8

11.21.4

1.61.8

22.22.4

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.002975

RMS 0.004142

Significance vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut Width0d∆ h_diffD0_precision

Entries 19Mean -0.0031RMS 0.004148

Precision vs Cut Width0d∆

Figure 56: Optimization plots for the se-lection criterion on ∆d0 in the D+

s →K+K−π+π0 for pion-fitted data.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Signal Sample0d∆ h_diffD0_signalEntries 532Mean 0.0003RMS 0.002135

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

1

2

3

4

5

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 5489Mean -0.004612RMS 0.003344

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Conversion MC Sample0d∆ h_diffD0_converEntries 11Mean 0.0004748RMS 0.001922

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 115Mean -0.004622RMS 0.003253

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample0d∆ h_diffD0_genericEntries 29Mean 0.001385RMS 0.002985

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 332Mean -0.003904RMS 0.003794

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 1Mean -0.001949RMS 1.452e-11

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 8Mean -0.006RMS 0.002291

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5 Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.004022RMS 0.003738

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.003796RMS 0.003938

Precision vs Cut Width0d∆

Figure 57: Optimization plots for the se-lection criterion on ∆d0 in the D+

s →K+K−π+π0 for electron-fitted data.

58

Page 59: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆φ0 of the e+e− in theD+

s → K+K−π+π0 decay mode having applied all other selection criteria. All plotsare normalized to 586 pb−1 of data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal SampleΦ∆ h_dPhi_signalEntries 649Mean -0.05461RMS 0.3249

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 13136Mean 0.06287RMS 0.0785

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 346Mean 0.13RMS 0.3767

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

6

7

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 2257Mean 0.07421RMS 0.08001

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 16Mean -0.1025RMS 0.4575

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 58Mean 0.07603RMS 0.0777

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

00.2

0.40.60.8

11.21.4

1.6

1.82

2.2

Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries 30Mean 0.04927RMS 0.0798

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries 30Mean 0.05179RMS 0.0805

Precision vs Cut WidthΦ∆

Figure 58: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → K+K−π+π0 decay mode for pion-fitted data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal SampleΦ∆ h_dPhi_signalEntries 658Mean -0.002323RMS 0.3071

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 11597Mean 0.07394RMS 0.07537

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Conversion MC SampleΦ∆ h_dPhi_converEntries 62Mean 0.2388RMS 0.148

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 261Mean 0.08709RMS 0.07513

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 101Mean 0.02831RMS 0.3571

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 706Mean 0.05613RMS 0.08308

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 9Mean 0.07942RMS 0.1313

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 24Mean 0.07RMS 0.06922

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.06556RMS 0.07729

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06259RMS 0.07904

Precision vs Cut WidthΦ∆

Figure 59: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → K+K−π+π0 decay mode for electron-fitted data.

59

Page 60: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10.6 D+s → π+π−π+

Given that the branching fraction of D+s → π+π−π+ is 1.11%, we studied the plots in 60, 62,

64, 66 and 68 to arrive at the selection criteria for pion-fitted data, and the plots in 61, 63,65, 67 and 69 to arrive at the selection criteria for electron-fitted data. These are tabulatedin Table 15.

Table 15: Selection criteria for pion-fitted and electron-fitted data in the D+s → π+π−π+

decay mode.Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ± Width Cut Center ± WidthmD+

s1.969 ± 0.013 GeV 1.969 ± 0.012 GeV

mBC 2.112 ± 0.005 GeV 2.112 ± 0.004 GeVδm 0.155 ± 0.009 GeV 0.144 ± 0.006 GeV∆d0 -0.001 m -0.006 m∆φ0 0.06 0.1

The result of these selection criteria, applied to the pion and electron-fitted samples, arepresented in terms of the signal and background yields we can expect in 586 pb−1 of datain Table 16. A signal significance, defined for now simply as NSignalEvents√

NBackgroundEvents, serves as a

measure of comparison between the two sets of criteria and samples.

Table 16: Number of signal and background events expected in pion and electron-fitted datain the D+

s → π+π−π+ decay mode.Expected Number of Pion-Fitted Samples Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 2.99 3.67Conversion Background - 0.28

Generic Background (without Conversions in e-fit) 0.73 0.21Continuum Background 0.60 1.60

Total Background (NBackgroundEvents) 1.33 2.09NSignalEvents√

NBackgroundEvents2.6 2.5

60

Page 61: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → π+π−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data. The top leftplots, for both the pion and electron-fitted sets of data, are the distributions of mD+

sin the

signal MC sample. The top right plot is the signal MC sample accepted by the criterion aswe increase the cut width plotted on the x-axis. For the pion-fitted samples on the left, theplots in the second and third rows correspond to the generic and continuum MC samples,respectively. For the electron-fitted samples on the right, the plots in the second, third andfourth rows correspond to the conversion, generic and continuum MC samples, respectively.For both sets of plots, the bottom left shows the significance of the signal over background.The bottom right plot shows the precision of the signal.

(GeV)±SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Signal Sample±SDm h_dsPlusM_signal

Entries 1787Mean 1.968RMS 0.007636

Signal Sample±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 23495Mean 0.01142RMS 0.004728

Signal Sample vs Cut Width±SDm

(GeV)±SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 55Mean 1.97RMS 0.03984

Generic MC Background Sample±SDm

GeV±SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generic MC Background Sample vs Cut Width±SDm h_dsPlusM_generic_range

Entries 205Mean 0.0118RMS 0.004741

Generic MC Background Sample vs Cut Width±SDm

(GeV)±SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 55Mean 1.985RMS 0.03994

Continuum MC Background Sample±SDm

Cut Width GeV0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 57Mean 0.01432RMS 0.00369

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ

0

0.5

1

1.5

2

2.5

3

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.00965RMS 0.005056

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01035RMS 0.005057

Signal Precision vs Cut Width±SDm

Figure 60: Optimization plots for themD+

sselection criterion in the D+

s →π+π−π+ decay mode for pion-fitted data.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2 #

Eve

nts

/ 0.6

MeV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Signal Sample±SDm h_dsPlusM_signal

Entries 2230Mean 1.968RMS 0.007433

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 29544Mean 0.01142RMS 0.00472

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

Conversion Sample±SDm h_dsPlusM_conver

Entries 8Mean 1.965RMS 0.02147

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 67Mean 0.012RMS 0.004358

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 42Mean 1.969RMS 0.04696

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 61Mean 0.01258RMS 0.004332

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 42Mean 1.973RMS 0.03982

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 118Mean 0.01256RMS 0.00452

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.009976RMS 0.005104

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01046RMS 0.005064

Signal Precision vs Cut Width±SDm

Figure 61: Optimization plots for themD+

sselection criterion in the D+

s →π+π−π+ decay mode for electron-fitteddata.

61

Page 62: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → π+π−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Signal SampleBCm h_MBC_signalEntries 1948Mean 2.114RMS 0.00514

Signal SampleBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 30064Mean 0.01063RMS 0.004993

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundBCm h_MBC_genericEntries 124Mean 2.102RMS 0.02946

Generic MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 478Mean 0.01253RMS 0.004541

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Continuum MC BackgroundBCm h_MBC_continuEntries 116Mean 2.095RMS 0.03224

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 217Mean 0.0135RMS 0.003854

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008576RMS 0.005138

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal Precision vs Cut WidthBCm h_MBC_precision

Entries 19Mean 0.009354RMS 0.005236

Signal Precision vs Cut WidthBCm

Figure 62: Optimization plots for the mBC

selection criterion in the D+s → π+π−π+ de-

cay mode for pion-fitted data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal SampleBCm h_MBC_signalEntries 2446Mean 2.114RMS 0.004762

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 38622Mean 0.01046RMS 0.005074

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Conversion MC SampleBCm h_MBC_converEntries 32Mean 2.109RMS 0.01784

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 170Mean 0.01224RMS 0.004458

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundBCm h_MBC_genericEntries 68Mean 2.098RMS 0.03051

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 245Mean 0.01302RMS 0.004142

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Continuum MC BackgroundBCm h_MBC_continuEntries 84Mean 2.103RMS 0.03357

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 284Mean 0.01186RMS 0.004771

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.009002RMS 0.005329

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009583RMS 0.005279

Signal Precision vs Cut WidthBCm

Figure 63: Optimization plots for the mBC

selection criterion in the D+s → π+π−π+ de-

cay mode for electron-fitted data.

62

Page 63: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in the D+s → π+π−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

m Signal Sampleδ h_DeltaM_signalEntries 1962Mean 0.153RMS 0.005257

m Signal Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 25712Mean 0.01158RMS 0.004634

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m Generic MC Background Sampleδ h_DeltaM_generic

Entries 106Mean 0.1605RMS 0.02614

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 292Mean 0.01244RMS 0.004749

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries 66Mean 0.1554RMS 0.02623

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 103Mean 0.01372RMS 0.004245

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009999RMS 0.004872

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries 19Mean 0.01044RMS 0.004958

m Signal Precision vs Cut Widthδ

Figure 64: Optimization plots for the δm se-lection criterion in the D+

s → π+π−π+ decaymode for pion-fitted data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m Signal Sampleδ h_DeltaM_signalEntries 2388Mean 0.1444RMS 0.004515

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 36489Mean 0.01066RMS 0.005008

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV0

0.02

0.04

0.06

0.08

0.1

0.12

m Conversion MC Sampleδ h_DeltaM_converEntries 43Mean 0.143RMS 0.02841

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 140Mean 0.0124RMS 0.004648

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

m Generic MC Background Sampleδ h_DeltaM_genericEntries 54Mean 0.1563RMS 0.02967

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 132Mean 0.01217RMS 0.004945

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.1

0.2

0.3

0.4

0.5

0.6

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 56Mean 0.1569RMS 0.02526

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 219Mean 0.01224RMS 0.004449

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.008974RMS 0.005393

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.00975RMS 0.005262

m Signal Precision vs Cut Widthδ

Figure 65: Optimization plots for the δm se-lection criterion in the D+

s → π+π−π+ decaymode for electron-fitted data.

63

Page 64: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆d0 of the e+e− in the D+s → π+π−π+

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

Signal Sample0d∆ h_diffD0_signalEntries 1747Mean 0.00158RMS 0.002058

Signal Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 20230Mean -0.004021RMS 0.003629

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample0d∆ h_diffD0_genericEntries 19Mean 0.0007445

RMS 0.003096

Generic MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 203Mean -0.004229

RMS 0.003643

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 6Mean 0.001011RMS 0.002718

Continuum MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 66Mean -0.004182RMS 0.003693

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.003432

RMS 0.003836

Significance vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Precision vs Cut Width0d∆ h_diffD0_precision

Entries 19Mean -0.003212

RMS 0.004133

Precision vs Cut Width0d∆

Figure 66: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → π+π−π+

for pion-fitted data.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal Sample0d∆ h_diffD0_signalEntries 1978Mean 0.000125RMS 0.001964

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 20026Mean -0.004743RMS 0.003223

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m0

0.02

0.04

0.06

0.08

0.1

Conversion MC Sample0d∆ h_diffD0_converEntries 5Mean 0.0004495RMS 0.001577

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 52Mean -0.004651RMS 0.003194

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.01

0.02

0.03

0.04

0.05

Generic MC Background Sample0d∆ h_diffD0_genericEntries 4Mean 0.002666RMS 0.0008586

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 51Mean -0.003598RMS 0.003717

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 8Mean 0.002993RMS 0.002745

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_rangeEntries 104Mean -0.003212RMS 0.004258

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.004558RMS 0.003381

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.004314RMS 0.003517

Precision vs Cut Width0d∆

Figure 67: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → π+π−π+

for electron-fitted data.

64

Page 65: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆φ0 of the e+e− in the D+s → π+π−π+

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Signal SampleΦ∆ h_dPhi_signalEntries 1930Mean -0.05819RMS 0.3138

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 40684Mean 0.06291RMS 0.07818

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 75Mean 0.09369RMS 0.2185

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 545Mean 0.08283RMS 0.08198

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 27Mean 0.2785RMS 0.3641

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 98Mean 0.08367RMS 0.07609

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries 30Mean 0.04585RMS 0.07855

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries 30Mean 0.05098RMS 0.0801

Precision vs Cut WidthΦ∆

Figure 68: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → π+π−π+ decay mode for pion-fitteddata.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.2

0.4

0.6

0.8

1

Signal SampleΦ∆ h_dPhi_signalEntries 2450Mean -0.009748RMS 0.3193

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 43691Mean 0.07474RMS 0.075

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Conversion MC SampleΦ∆ h_dPhi_converEntries 59Mean 0.2532RMS 0.1725

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 126Mean 0.09125RMS 0.08031

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.01

0.02

0.03

0.04

0.05

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 22Mean 0.168RMS 0.3206

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 113Mean 0.07394RMS 0.07929

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

0.6

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 22Mean 0.01264RMS 0.3132

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.20.4

0.6

0.81

1.2

1.41.6

1.82

2.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 195Mean 0.0771RMS 0.07728

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.06002RMS 0.07805

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06076RMS 0.07917

Precision vs Cut WidthΦ∆

Figure 69: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → π+π−π+ decay mode for electron-fitted data.

65

Page 66: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10.7 D+s → K∗+K∗0;K∗+ → K0

Sπ+, K∗0 → K−π+)

Given that the branching fraction of D+s → K∗+K∗0 is ' 1.64%, we studied the plots in 70,

72, 74, 76 and 78 to arrive the selection criteria tabulated for pion-fitted data, and the plotsin 71, 73, 75, 77 and 79 to arrive at the selection criteria for electron-fitted data. These aretabulated in Table 17.

Table 17: Selection criteria for pion-fitted and electron-fitted data in the D+s → K∗+K∗0

decay mode.Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ± Width Cut Center ± WidthmD+

s1.969 ± 0.007 GeV 1.969 ± 0.006 GeV

mBC 2.112 ± 0.007 GeV 2.112 ± 0.005 GeVδm 0.155 ± 0.009 GeV 0.144 ± 0.008 GeV∆d0 -0.004 m -0.005 m∆φ0 0.07 0.13

The result of these selection criteria, applied to the pion and electron-fitted samples, arepresented in terms of the signal and background yields we can expect in 586 pb−1 of datain Table 18. A signal significance, defined for now simply as NSignalEvents√

NBackgroundEvents, serves as a

measure of comparison between the two sets of criteria and samples.

Table 18: Number of signal and background events expected in pion and electron-fitted datain the D+

s → K∗+K∗0 decay mode.Expected Number of Pion-Fitted Samples Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 1.78 2.02Conversion Background - 0.23

Generic Background (without Conversions in e-fit) 1.35 0.63Continuum Background 0.00 0.20

Total Background (NBackgroundEvents) 1.35 1.05NSignalEvents√

NBackgroundEvents1.5 2.0

66

Page 67: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → K∗+K∗0 decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data. The top leftplots, for both the pion and electron-fitted sets of data, are the distributions of mD+

sin the

signal MC sample. The top right plot is the signal MC sample accepted by the criterion aswe increase the cut width plotted on the x-axis. For the pion-fitted samples on the left, theplots in the second and third rows correspond to the generic and continuum MC samples,respectively. For the electron-fitted samples on the right, the plots in the second, third andfourth rows correspond to the conversion, generic and continuum MC samples, respectively.For both sets of plots, the bottom left shows the significance of the signal over background.The bottom right plot shows the precision of the signal.

(GeV)±SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Signal Sample±SDm h_dsPlusM_signal

Entries 1019Mean 1.968RMS 0.007084

Signal Sample±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 13148Mean 0.01104RMS 0.004843

Signal Sample vs Cut Width±SDm

(GeV)±SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 359Mean 1.981RMS 0.04262

Generic MC Background Sample±SDm

GeV±SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Generic MC Background Sample vs Cut Width±SDm h_dsPlusM_generic_range

Entries 696Mean 0.01255RMS 0.004508

Generic MC Background Sample vs Cut Width±SDm

(GeV)±SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 7Mean 2.002RMS 0.03735

Continuum MC Background Sample±SDm

Cut Width GeV0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.009505RMS 0.005151

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.2

0.4

0.6

0.8

1

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01001RMS 0.005133

Signal Precision vs Cut Width±SDm

Figure 70: Optimization plots for themD+

sselection criterion in the D+

s →K∗+K∗0 decay mode for pion-fitted data.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2 #

Eve

nts

/ 0.6

MeV

00.020.040.06

0.080.1

0.120.140.160.18

0.20.22

Signal Sample±SDm h_dsPlusM_signal

Entries 1175Mean 1.968RMS 0.006602

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 15959Mean 0.01102RMS 0.004832

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

Conversion Sample±SDm h_dsPlusM_conver

Entries 19Mean 1.973RMS 0.0429

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 77Mean 0.01159RMS 0.004822

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 219Mean 1.979RMS 0.04569

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.81

1.2

1.4

1.6

1.8

2

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 393Mean 0.01268RMS 0.004289

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 9Mean 1.981RMS 0.03312

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 18Mean 0.01RMS 0.005188

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.20.40.60.8

11.21.4

1.61.8

22.22.4

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.009671RMS 0.005179

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

1.2

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01017RMS 0.005129

Signal Precision vs Cut Width±SDm

Figure 71: Optimization plots for themD+

sselection criterion in the D+

s →K∗+K∗0 decay mode for electron-fitteddata.

67

Page 68: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → K∗+K∗0 decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Signal SampleBCm h_MBC_signalEntries 901Mean 2.114RMS 0.005894

Signal SampleBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

00.20.40.60.8

11.21.41.61.8

22.22.4

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 13089Mean 0.01075RMS 0.00497

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC BackgroundBCm h_MBC_genericEntries 221Mean 2.099RMS 0.02883

Generic MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 730Mean 0.01258RMS 0.004489

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC BackgroundBCm h_MBC_continuEntries 11Mean 2.099RMS 0.0405

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 10Mean 0.014RMS 0.002872

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.009339RMS 0.005067

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Signal Precision vs Cut WidthBCm h_MBC_precision

Entries 19Mean 0.009649RMS 0.00523

Signal Precision vs Cut WidthBCm

Figure 72: Optimization plots for the mBC

selection criterion in the D+s → K∗+K∗0 de-

cay mode for pion-fitted data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

00.02

0.04

0.06

0.08

0.1

0.120.14

0.160.18

0.2

Signal SampleBCm h_MBC_signalEntries 1080Mean 2.114RMS 0.005463

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 16025Mean 0.01058RMS 0.005057

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Conversion MC SampleBCm h_MBC_converEntries 29Mean 2.108RMS 0.02461

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 188Mean 0.01262RMS 0.004357

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.05

0.1

0.15

0.2

0.25

Generic MC BackgroundBCm h_MBC_genericEntries 176Mean 2.097RMS 0.02885

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 609Mean 0.0129RMS 0.004189

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundBCm h_MBC_continuEntries 8Mean 2.107RMS 0.03592

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 19Mean 0.0095RMS 0.005477

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.20.4

0.60.8

11.2

1.4

1.61.8

2

2.2

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008785RMS 0.005303

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009552RMS 0.005272

Signal Precision vs Cut WidthBCm

Figure 73: Optimization plots for the mBC

selection criterion in the D+s → K∗+K∗0 de-

cay mode for electron-fitted data.

68

Page 69: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in the D+s → K∗+K∗0 decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

m Signal Sampleδ h_DeltaM_signalEntries 974Mean 0.1526RMS 0.00566

m Signal Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 11993Mean 0.01168RMS 0.004618

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

m Generic MC Background Sampleδ h_DeltaM_generic

Entries 244Mean 0.1598RMS 0.02598

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 648Mean 0.01278RMS 0.004424

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries 1Mean 0.1419RMS 1.057e-09

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 3Mean 0.0175RMS 0.0008165

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.01034RMS 0.004886

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries 19Mean 0.01044RMS 0.005051

m Signal Precision vs Cut Widthδ

Figure 74: Optimization plots for the δm se-lection criterion in the D+

s → K∗+K∗0 decaymode for pion-fitted data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

m Signal Sampleδ h_DeltaM_signalEntries 1014Mean 0.1444RMS 0.004977

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 14628Mean 0.01076RMS 0.004993

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV0

0.020.040.060.08

0.10.120.140.160.18

0.20.220.24

m Conversion MC Sampleδ h_DeltaM_converEntries 41Mean 0.1603RMS 0.03141

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 129Mean 0.01289RMS 0.004516

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.05

0.1

0.15

0.2

0.25

m Generic MC Background Sampleδ h_DeltaM_genericEntries 128Mean 0.1593RMS 0.02749

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 315Mean 0.01272RMS 0.004388

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 2Mean 0.1419RMS 1.057e-09

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 17Mean 0.0105RMS 0.004899

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009194RMS 0.005217

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.009859RMS 0.005215

m Signal Precision vs Cut Widthδ

Figure 75: Optimization plots for the δm se-lection criterion in the D+

s → K∗+K∗0 decaymode for electron-fitted data.

69

Page 70: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆d0 of the e+e− in the D+s → K∗+K∗0

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Signal Sample0d∆ h_diffD0_signalEntries 745Mean 0.001675RMS 0.00211

Signal Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 8701Mean -0.003963RMS 0.003671

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample0d∆ h_diffD0_genericEntries 33Mean 0.0004952

RMS 0.003778

Generic MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 345Mean -0.004071

RMS 0.003834

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continu

Entries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.003224

RMS 0.003992

Significance vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Precision vs Cut Width0d∆ h_diffD0_precision

Entries 19Mean -0.003283

RMS 0.00402

Precision vs Cut Width0d∆

Figure 76: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → K∗+K∗0

for pion-fitted data.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

00.02

0.040.06

0.08

0.10.12

0.14

0.160.18

0.2

0.22

Signal Sample0d∆ h_diffD0_signalEntries 849Mean 0.0001583RMS 0.002123

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

00.20.40.60.8

11.21.41.61.8

22.22.4

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 8621Mean -0.004697RMS 0.003277

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m0

0.01

0.02

0.03

0.04

0.05

0.06

Conversion MC Sample0d∆ h_diffD0_converEntries 4Mean -0.00109RMS 0.002711

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

00.020.040.060.08

0.10.120.140.160.18

0.20.22

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 36Mean -0.00513RMS 0.00314

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample0d∆ h_diffD0_genericEntries 14Mean 0.0002071RMS 0.004362

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 143Mean -0.003955RMS 0.003964

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 1Mean 0.004046RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 14Mean -0.003RMS 0.004031

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

00.20.40.60.8

11.21.4

1.61.8

22.22.4

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.004338RMS 0.003425

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.004064RMS 0.003715

Precision vs Cut Width0d∆

Figure 77: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → K∗+K∗0

for electron-fitted data.

70

Page 71: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆φ0 of the e+e− in the D+s → K∗+K∗0

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Signal SampleΦ∆ h_dPhi_signalEntries 959Mean -0.05115RMS 0.3092

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

00.20.40.60.8

11.21.41.61.8

22.22.4

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 18988Mean 0.06419RMS 0.07852

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 162Mean 0.09863RMS 0.3122

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.60.8

1

1.2

1.4

1.6

1.82

2.2

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 787Mean 0.06538RMS 0.08284

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 3Mean 0.6RMS 3.868e-09

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries 30Mean 0.05506RMS 0.07901

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries 30Mean 0.05521RMS 0.08025

Precision vs Cut WidthΦ∆

Figure 78: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → K∗+K∗0 decay mode for pion-fitteddata.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Signal SampleΦ∆ h_dPhi_signalEntries 1028Mean 0.002519RMS 0.2973

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 17853Mean 0.07498RMS 0.07488

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Conversion MC SampleΦ∆ h_dPhi_converEntries 35Mean 0.2128RMS 0.2245

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 109Mean 0.07958RMS 0.08385

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 61Mean 0.05819RMS 0.4366

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 328Mean 0.05323RMS 0.08363

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 3Mean -0.06708RMS 1.697e-10

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 26Mean 0.06RMS 0.075

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

00.2

0.40.60.8

11.21.4

1.61.8

22.22.4

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.06893RMS 0.07589

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06464RMS 0.07825

Precision vs Cut WidthΦ∆

Figure 79: Optimization plots for the se-lection criterion on the ∆φ0 of the e+e− inthe D+

s → K∗+K∗0 decay mode for electron-fitted data.

71

Page 72: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10.8 D+s → ηρ+; η → γγ; ρ+ → π+π0

Given that:

• the branching fraction of D+s → ηρ+ is ' 13.1%, and

• the branching fraction of η → γγ is ' 99.95 %,

• the branching fraction of ρ+ → π+π0 is ' 39.31%,

we studied the plots in 80, 82, 84, 86 and 88 to arrive at the selection criteria for pion-fitteddata, and the plots in 81, 83, 85, 87 and 89 to arrive at the selection criteria for electron-fitteddata. These are tabulated in Table 19.

Table 19: Selection criteria for pion-fitted and electron-fitted data in the D+s → ηρ+; η →

γγ; ρ+ → π+π0 decay mode.Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ± Width Cut Center ± WidthmD+

s1.969 ± 0.014 GeV 1.969 ± 0.015 GeV

mBC 2.112 ± 0.006 GeV 2.112 ± 0.004 GeVδm 0.155 ± 0.009 GeV 0.144 ± 0.005 GeV∆d0 -0.003 m -0.007 m∆φ0 0.07 0.13

The result of these selection criteria, applied to the pion and electron-fitted samples, arepresented in terms of the signal and background yields we can expect in 586 pb−1 of datain Table 20. A signal significance, defined for now simply as NSignalEvents√

NBackgroundEvents, serves as a

measure of comparison between the two sets of criteria and samples.

Table 20: Number of signal and background events expected in pion and electron-fitted datain the D+

s → ηρ+; η → γγ; ρ+ → π+π0 decay mode.Expected Number of Pion-Fitted Samples Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 5.54 5.71Conversion Background - 0.85

Generic Background (without Conversions in e-fit) 2.40 0.99Continuum Background 3.60 1.00

Total Background (NBackgroundEvents) 6.00 2.84NSignalEvents√

NBackgroundEvents2.3 3.4

72

Page 73: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → ηρ+; η → γγ; ρ+ → π+π0

decay mode having applied all other selection criteria. All plots are normalized to 586pb−1 of data. The top left plots, for both the pion and electron-fitted sets of data, arethe distributions of mD+

sin the signal MC sample. The top right plot is the signal MC

sample accepted by the criterion as we increase the cut width plotted on the x-axis. Forthe pion-fitted samples on the left, the plots in the second and third rows correspond tothe generic and continuum MC samples, respectively. For the electron-fitted samples on theright, the plots in the second, third and fourth rows correspond to the conversion, genericand continuum MC samples, respectively. For both sets of plots, the bottom left shows thesignificance of the signal over background. The bottom right plot shows the precision of thesignal.

(GeV)±SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Signal Sample±SDm h_dsPlusM_signal

Entries 1244Mean 1.967RMS 0.01308

Signal Sample±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 8929Mean 0.01224RMS 0.004557

Signal Sample vs Cut Width±SDm

(GeV)±SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 269Mean 1.967RMS 0.0415

Generic MC Background Sample±SDm

GeV±SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Generic MC Background Sample vs Cut Width±SDm h_dsPlusM_generic_range

Entries 618Mean 0.01283RMS 0.00416

Generic MC Background Sample vs Cut Width±SDm

(GeV)±SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 117Mean 1.977RMS 0.04124

Continuum MC Background Sample±SDm

Cut Width GeV0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 265Mean 0.01246RMS 0.004545

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ

0

0.5

1

1.5

2

2.5

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01088RMS 0.005071

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01102RMS 0.00503

Signal Precision vs Cut Width±SDm

Figure 80: Optimization plots for themD+

sselection criterion in the D+

s →ηρ+; η → γγ; ρ+ → π+π0 decay mode forpion-fitted data.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s / 0

.6 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Signal Sample±SDm h_dsPlusM_signal

Entries 1078Mean 1.966RMS 0.01235

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

7

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 8721Mean 0.0122RMS 0.004581

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

00.020.04

0.06

0.080.1

0.120.14

0.16

0.180.2

0.22

Conversion Sample±SDm h_dsPlusM_conver

Entries 51Mean 1.956RMS 0.03393

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 189Mean 0.01269RMS 0.004237

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 89Mean 1.967RMS 0.03603

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 302Mean 0.01251RMS 0.004556

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.1

0.2

0.3

0.4

0.5

0.6

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 40Mean 1.963RMS 0.03967

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 55Mean 0.01326RMS 0.004411

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

3

3.5

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01094RMS 0.004914

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.81

1.2

1.4

1.6

1.8

2

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01098RMS 0.005047

Signal Precision vs Cut Width±SDm

Figure 81: Optimization plots for themD+

sselection criterion in the D+

s →ηρ+; η → γγ; ρ+ → π+π0 decay mode forelectron-fitted data.

73

Page 74: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → ηρ+; η → γγ; ρ+ → π+π0

decay mode having applied all other selection criteria. All plots are normalized to 586 pb−1

of data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Signal SampleBCm h_MBC_signalEntries 1002Mean 2.114RMS 0.00705

Signal SampleBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

8

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 12997Mean 0.01105RMS 0.004868

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6 Generic MC BackgroundBCm h_MBC_generic

Entries 390Mean 2.106RMS 0.02815

Generic MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

8

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 1544Mean 0.01262RMS 0.004433

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Continuum MC BackgroundBCm h_MBC_continuEntries 205Mean 2.098RMS 0.03299

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

2

4

6

8

10

12

14

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 612Mean 0.01289RMS 0.004417

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.009243RMS 0.005231

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Precision vs Cut WidthBCm h_MBC_precision

Entries 19Mean 0.009754RMS 0.005177

Signal Precision vs Cut WidthBCm

Figure 82: Optimization plots for the mBC

selection criterion in the D+s → ηρ+; η →

γγ; ρ+ → π+π0 decay mode for pion-fitteddata.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

0

0.1

0.2

0.3

0.4

0.5

Signal SampleBCm h_MBC_signalEntries 1115Mean 2.114RMS 0.005964

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

7

8

9

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 15585Mean 0.01088RMS 0.00494

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV0

0.020.040.060.08

0.10.120.140.160.18

0.20.220.24

Conversion MC SampleBCm h_MBC_converEntries 88Mean 2.109RMS 0.02552

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

00.20.40.60.8

11.21.41.61.8

22.22.4

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 480Mean 0.01202RMS 0.004664

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC BackgroundBCm h_MBC_genericEntries 213Mean 2.103RMS 0.03097

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 711Mean 0.01211RMS 0.00476

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.2

0.4

0.6

0.8

1

Continuum MC BackgroundBCm h_MBC_continuEntries 146Mean 2.104RMS 0.03078

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

7

8

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 405Mean 0.01285RMS 0.004218

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.009181RMS 0.005293

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.40.6

0.81

1.2

1.4

1.61.8

2

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009819RMS 0.00522

Signal Precision vs Cut WidthBCm

Figure 83: Optimization plots for the mBC

selection criterion in the D+s → ηρ+; η →

γγ; ρ+ → π+π0 decay mode for electron-fitteddata.

74

Page 75: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in theD+s → ηρ+; η → γγ; ρ+ → π+π0 decay

mode having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

m Signal Sampleδ h_DeltaM_signalEntries 858Mean 0.1529RMS 0.005457

m Signal Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 10763Mean 0.01164RMS 0.004624

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m Generic MC Background Sampleδ h_DeltaM_generic

Entries 331Mean 0.1541RMS 0.02614

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 990Mean 0.0132RMS 0.004168

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries 142Mean 0.1555RMS 0.02737

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

7

8

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 423Mean 0.01236RMS 0.00475

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

00.20.40.60.8

11.21.41.61.8

22.22.4

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.0103RMS 0.004922

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries 19Mean 0.0105RMS 0.004962

m Signal Precision vs Cut Widthδ

Figure 84: Optimization plots for the δmselection criterion in the D+

s → ηρ+; η →γγ; ρ+ → π+π0 decay mode for pion-fitteddata.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

0

0.1

0.2

0.3

0.4

0.5

m Signal Sampleδ h_DeltaM_signalEntries 931Mean 0.1444RMS 0.004946

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

7

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 13710Mean 0.01077RMS 0.004967

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

00.020.040.060.08

0.10.120.140.160.18

0.20.220.24

m Conversion MC Sampleδ h_DeltaM_converEntries 145Mean 0.1473RMS 0.02805

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 539Mean 0.0126RMS 0.004509

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

m Generic MC Background Sampleδ h_DeltaM_genericEntries 191Mean 0.1513RMS 0.02576

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 630Mean 0.01196RMS 0.004802

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 134Mean 0.1616RMS 0.02757

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 256Mean 0.01296RMS 0.004578

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009231RMS 0.005156

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.81

1.2

1.4

1.6

1.8

2

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.00978RMS 0.005172

m Signal Precision vs Cut Widthδ

Figure 85: Optimization plots for the δmselection criterion in the D+

s → ηρ+; η →γγ; ρ+ → π+π0 decay mode for electron-fitteddata.

75

Page 76: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆d0 of the e+e− in theD+

s → ηρ+; η → γγ; ρ+ → π+π0 decay mode having applied all other selection crite-ria. All plots are normalized to 586 pb−1 of data.

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

Signal Sample0d∆ h_diffD0_signalEntries 681Mean 0.001604RMS 0.002103

Signal Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

1

2

3

4

5

6

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 7905Mean -0.004005RMS 0.003643

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generic MC Background Sample0d∆ h_diffD0_genericEntries 58Mean 0.0009399

RMS 0.002773

Generic MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 631Mean -0.004188

RMS 0.003679

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 21Mean 0.002696RMS 0.002563

Continuum MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 266Mean -0.003417RMS 0.004028

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.20.40.6

0.81

1.21.4

1.6

1.82

2.2

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.003528

RMS 0.003897

Significance vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut Width0d∆ h_diffD0_precision

Entries 19Mean -0.00346RMS 0.003951

Precision vs Cut Width0d∆

Figure 86: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → ηρ+; η →γγ; ρ+ → π+π0 for pion-fitted data.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.1

0.2

0.3

0.4

0.5

0.6

Signal Sample0d∆ h_diffD0_signalEntries 687Mean 1.687e-05RMS 0.002006

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

1

2

3

4

5

6

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 6882Mean -0.004785RMS 0.003205

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Conversion MC Sample0d∆ h_diffD0_converEntries 16Mean -0.0008796RMS 0.002476

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 145Mean -0.005138RMS 0.003059

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample0d∆ h_diffD0_genericEntries 22Mean 0.002356RMS 0.001837

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 273Mean -0.003665RMS 0.003793

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 5Mean 0.003976RMS 0.0006107

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_rangeEntries 70Mean -0.002986RMS 0.004056

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.004575RMS 0.003347

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.81

1.2

1.4

1.6

1.8

2

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.00434RMS 0.003493

Precision vs Cut Width0d∆

Figure 87: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → ηρ+; η →γγ; ρ+ → π+π0 for electron-fitted data.

76

Page 77: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆φ0 of the e+e− in theD+

s → ηρ+; η → γγ; ρ+ → π+π0 decay mode having applied all other selection crite-ria. All plots are normalized to 586 pb−1 of data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal SampleΦ∆ h_dPhi_signalEntries 823Mean -0.04742RMS 0.3298

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

6

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 17168Mean 0.06278RMS 0.07854

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 217Mean 0.06543RMS 0.3888

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 1565Mean 0.068RMS 0.08398

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 51Mean 0.09386RMS 0.2754

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 548Mean 0.06839RMS 0.0788

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

00.2

0.40.60.8

11.21.4

1.6

1.82

2.2

Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries 30Mean 0.05221RMS 0.07967

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries 30Mean 0.05319RMS 0.08035

Precision vs Cut WidthΦ∆

Figure 88: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → ηρ+; η → γγ; ρ+ → π+π0 decay modefor pion-fitted data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal SampleΦ∆ h_dPhi_signalEntries 812Mean -0.005711RMS 0.3258

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

6

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 14539Mean 0.07525RMS 0.07484

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

0.6

Conversion MC SampleΦ∆ h_dPhi_converEntries 74Mean 0.1885RMS 0.2373

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 399Mean 0.07718RMS 0.08113

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 52Mean 0.02851RMS 0.4309

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 561Mean 0.05769RMS 0.08047

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 24Mean -2.231e-05RMS 0.5467

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 146Mean 0.04596RMS 0.08417

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.06976RMS 0.0758

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.81

1.2

1.4

1.6

1.8

2

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.0653RMS 0.07807

Precision vs Cut WidthΦ∆

Figure 89: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → ηρ+; η → γγ; ρ+ → π+π0 decay modefor electron-fitted data.

77

Page 78: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

10.9 D+s → η′π+; η′ → ρ0γ

Given that:

• the branching fraction of D+s → η′π+ is ' 3.8%, and

• the branching fraction of η′ → ρ0γ is ' 29.4%,

we studied the plots in 90, 92, 94, 96 and 98 to arrive at the selection criteria for pion-fitteddata, and we studied the plots in 91, 93, 95, 97 and 99 to arrive at the selection criteria forelectron-fitted data. These are tabulated in Table 21.

Table 21: Selection criteria for pion-fitted and electron-fitted data in the D+s → η′π+; η′ →

ρ0γ decay mode.Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ± Width Cut Center ± WidthmD+

s1.969 ± 0.018 GeV 1.969 ± 0.012 GeV

mBC 2.112 ± 0.004 GeV 2.112 ± 0.004 GeVδm 0.155 ± 0.008 GeV 0.144 ± 0.007 GeV∆d0 -0.004 m -0.006 m∆φ0 0.09 0.11

The result of these selection criteria, applied to the pion and electron-fitted samples, arepresented in terms of the signal and background yields we can expect in 586 pb−1 of datain Table 22. A signal significance, defined for now simply as NSignalEvents√

NBackgroundEvents, serves as a

measure of comparison between the two sets of criteria and samples.

Table 22: Number of signal and background events expected in pion and electron-fitted datain the D+

s → η′π+; η′ → ρ0γ decay mode.Expected Number of Pion-Fitted Samples Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 2.17 2.41Conversion Background - 0.34

Generic Background (without Conversions in e-fit) 0.83 0.21Continuum Background 1.60 1.80

Total Background (NBackgroundEvents) 2.43 2.35NSignalEvents√

NBackgroundEvents1.4 1.6

78

Page 79: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → η′π+; η′ → ρ0γ decay mode

having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.The top left plots, for both the pion and electron-fitted sets of data, are the distributions ofmD+

sin the signal MC sample. The top right plot is the signal MC sample accepted by the

criterion as we increase the cut width plotted on the x-axis. For the pion-fitted samples onthe left, the plots in the second and third rows correspond to the generic and continuum MCsamples, respectively. For the electron-fitted samples on the right, the plots in the second,third and fourth rows correspond to the conversion, generic and continuum MC samples,respectively. For both sets of plots, the bottom left shows the significance of the signal overbackground. The bottom right plot shows the precision of the signal.

(GeV)±SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Signal Sample±SDm h_dsPlusM_signal

Entries 1491Mean 1.968RMS 0.0111

Signal Sample±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

00.20.40.60.8

11.21.4

1.61.8

22.22.4

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 14542Mean 0.01202RMS 0.004621

Signal Sample vs Cut Width±SDm

(GeV)±SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 96Mean 1.965RMS 0.04253

Generic MC Background Sample±SDm

GeV±SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generic MC Background Sample vs Cut Width±SDm h_dsPlusM_generic_range

Entries 166Mean 0.01262RMS 0.004309

Generic MC Background Sample vs Cut Width±SDm

(GeV)±SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 38Mean 1.966RMS 0.04259

Continuum MC Background Sample±SDm

Cut Width GeV0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 95Mean 0.01226RMS 0.004362

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01119RMS 0.004816

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.2

0.4

0.6

0.8

1

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01077RMS 0.005169

Signal Precision vs Cut Width±SDm

Figure 90: Optimization plots for themD+

sselection criterion in the D+

s →η′π+; η′ → ρ0γ decay mode for pion-fitteddata.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2 #

Eve

nts

/ 0.6

MeV

0

0.02

0.04

0.06

0.08

0.1

Signal Sample±SDm h_dsPlusM_signal

Entries 1973Mean 1.968RMS 0.0108

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 19914Mean 0.01196RMS 0.004636

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

Conversion Sample±SDm h_dsPlusM_conver

Entries 15Mean 1.958RMS 0.03112

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 79Mean 0.01169RMS 0.004841

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 57Mean 1.973RMS 0.04258

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 68Mean 0.01337RMS 0.004047

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 60Mean 1.969RMS 0.04414

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 152Mean 0.01222RMS 0.00493

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01079RMS 0.004947

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

1.2

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.0109RMS 0.004972

Signal Precision vs Cut Width±SDm

Figure 91: Optimization plots for themD+

sselection criterion in the D+

s →η′π+; η′ → ρ0γ decay mode for electron-fitted data.

79

Page 80: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → η′π+; η′ → ρ0γ decay

mode having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Signal SampleBCm h_MBC_signalEntries 1791Mean 2.114RMS 0.005965

Signal SampleBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 25771Mean 0.01076RMS 0.004973

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generic MC BackgroundBCm h_MBC_genericEntries 255Mean 2.102RMS 0.03006

Generic MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 823Mean 0.01281RMS 0.004509

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Continuum MC BackgroundBCm h_MBC_continuEntries 172Mean 2.098RMS 0.03207

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

2

4

6

8

10

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 440Mean 0.01273RMS 0.004449

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008834RMS 0.005304

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Signal Precision vs Cut WidthBCm h_MBC_precision

Entries 19Mean 0.00936RMS 0.005241

Signal Precision vs Cut WidthBCm

Figure 92: Optimization plots for the mBC

selection criterion in the D+s → η′π+; η′ →

ρ0γ decay mode for pion-fitted data.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

00.02

0.040.060.08

0.10.120.140.160.18

0.2

0.22

Signal SampleBCm h_MBC_signalEntries 1824Mean 2.114RMS 0.005533

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 27239Mean 0.01059RMS 0.005035

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV0

0.02

0.04

0.06

0.08

0.1

Conversion MC SampleBCm h_MBC_converEntries 33Mean 2.1RMS 0.02166

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 160Mean 0.01195RMS 0.004769

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundBCm h_MBC_genericEntries 108Mean 2.102RMS 0.02986

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

00.2

0.4

0.6

0.81

1.21.4

1.6

1.82

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 361Mean 0.01316RMS 0.004146

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Continuum MC BackgroundBCm h_MBC_continuEntries 100Mean 2.103RMS 0.03012

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

7

8

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 417Mean 0.01252RMS 0.004464

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008689RMS 0.005358

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009308RMS 0.005289

Signal Precision vs Cut WidthBCm

Figure 93: Optimization plots for the mBC

selection criterion in the D+s → η′π+; η′ →

ρ0γ decay mode for electron-fitted data.

80

Page 81: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in the D+s → η′π+; η′ → ρ0γ decay mode

having applied all other selection criteria. All plots are normalized to 586 pb−1 of data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

m Signal Sampleδ h_DeltaM_signalEntries 1581Mean 0.1529RMS 0.005226

m Signal Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.5

1

1.5

2

2.5

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 20989Mean 0.01142RMS 0.004715

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

m Generic MC Background Sampleδ h_DeltaM_generic

Entries 169Mean 0.159RMS 0.02547

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.20.40.6

0.81

1.2

1.4

1.6

1.82

2.2

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 411Mean 0.01257RMS 0.004584

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries 99Mean 0.1607RMS 0.02265

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

1

2

3

4

5

6

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 296Mean 0.01328RMS 0.004171

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.00969RMS 0.005001

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries 19Mean 0.01005RMS 0.00503

m Signal Precision vs Cut Widthδ

Figure 94: Optimization plots for the δm se-lection criterion in the D+

s → η′π+; η′ → ρ0γdecay mode for pion-fitted data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

00.020.040.060.08

0.10.120.140.160.18

0.20.22

m Signal Sampleδ h_DeltaM_signalEntries 1600Mean 0.1443RMS 0.0048

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 24162Mean 0.01067RMS 0.005015

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV0

0.02

0.04

0.06

0.08

0.1

0.12

m Conversion MC Sampleδ h_DeltaM_converEntries 52Mean 0.1466RMS 0.0327

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 130Mean 0.01229RMS 0.00468

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Generic MC Background Sampleδ h_DeltaM_genericEntries 92Mean 0.1577RMS 0.02707

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 187Mean 0.01332RMS 0.003862

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.1

0.2

0.3

0.4

0.5

0.6

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 78Mean 0.1604RMS 0.02035

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 232Mean 0.01257RMS 0.004613

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009279RMS 0.005081

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.009503RMS 0.005252

m Signal Precision vs Cut Widthδ

Figure 95: Optimization plots for the δm se-lection criterion in the D+

s → η′π+; η′ → ρ0γdecay mode for electron-fitted data.

81

Page 82: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆d0 of the e+e− in theD+

s → η′π+; η′ → ρ0γ decay mode having applied all other selection criteria. Allplots are normalized to 586 pb−1 of data.

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Signal Sample0d∆ h_diffD0_signalEntries 1220Mean 0.001642RMS 0.002028

Signal Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

00.20.40.60.8

11.21.4

1.61.8

22.22.4

Signal Sample vs Cut Width0d∆ h_diffD0_signal_range

Entries 14202Mean -0.003999RMS 0.003634

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample0d∆ h_diffD0_genericEntries 18Mean 0.001001RMS 0.003628

Generic MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 198Mean -0.003889

RMS 0.004009

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 9Mean 0.0002284RMS 0.003042

Continuum MC Background Sample0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 92Mean -0.004402RMS 0.003736

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Significance vs Cut Width0d∆ h_diffD0_significance

Entries 19Mean -0.003194

RMS 0.003933

Significance vs Cut Width0d∆

Cut Width (m)-0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Precision vs Cut Width0d∆ h_diffD0_precision

Entries 19Mean -0.003253

RMS 0.004022

Precision vs Cut Width0d∆

Figure 96: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → η′π+; η′ →ρ0γ for pion-fitted data.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.05

0.1

0.15

0.2

0.25

Signal Sample0d∆ h_diffD0_signalEntries 1344Mean 0.0003354RMS 0.001984

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 13893Mean -0.004637RMS 0.003285

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m0

0.02

0.04

0.06

0.08

0.1

0.12

Conversion MC Sample0d∆ h_diffD0_converEntries 6Mean -0.0003523RMS 0.001954

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 59Mean -0.004957RMS 0.003086

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.01

0.02

0.03

0.04

0.05

Generic MC Background Sample0d∆ h_diffD0_genericEntries 4Mean 0.003857RMS 0.003626

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 54Mean -0.002759RMS 0.004636

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.1

0.2

0.3

0.4

0.5

0.6

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 10Mean 0.0008782RMS 0.003213

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.81

1.2

1.4

1.6

1.82

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_rangeEntries 110Mean -0.004018RMS 0.003692

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.004252RMS 0.003528

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.004124RMS 0.003624

Precision vs Cut Width0d∆

Figure 97: Optimization plots for the selec-tion criterion on ∆d0 in the D+

s → η′π+; η′ →ρ0γ for electron-fitted data.

82

Page 83: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the selection criterion on the ∆φ0 of the e+e− in theD+

s → η′π+; η′ → ρ0γ decay mode having applied all other selection criteria. Allplots are normalized to 586 pb−1 of data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Signal SampleΦ∆ h_dPhi_signal

Entries 1447Mean -0.05109RMS 0.3237

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 29987Mean 0.06341RMS 0.07825

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6 Generic MC BackgroundΦ∆ h_dPhi_generic

Entries 94Mean 0.1172RMS 0.3165

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 498Mean 0.07038RMS 0.08498

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 36Mean 0.144RMS 0.5144

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 240Mean 0.0685RMS 0.0815

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries 30Mean 0.05281RMS 0.07846

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries 30Mean 0.05364RMS 0.07961

Precision vs Cut WidthΦ∆

Figure 98: Optimization plots for the selec-tion criterion on the ∆φ0 of the e+e− in theD+

s → η′π+; η′ → ρ0γ decay mode for pion-fitted data.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Signal SampleΦ∆ h_dPhi_signal

Entries 1669Mean 0.01222RMS 0.3221

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 28909Mean 0.07645RMS 0.07412

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Conversion MC SampleΦ∆ h_dPhi_converEntries 59Mean 0.2397RMS 0.1105

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 161Mean 0.07845RMS 0.08162

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 31Mean 0.1313RMS 0.5176

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 121Mean 0.04996RMS 0.08538

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.2

0.4

0.6

0.8

1

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 27Mean 0.1689RMS 0.2997

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.81

1.2

1.4

1.6

1.82

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 248Mean 0.05548RMS 0.0824

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.07121RMS 0.07506

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06782RMS 0.07687

Precision vs Cut WidthΦ∆

Figure 99: Optimization plots for the se-lection criterion on the ∆φ0 of the e+e− inthe D+

s → η′π+; η′ → ρ0γ decay mode forelectron-fitted data.

83

Page 84: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

11 The Effect of Vertex Fitting on Signal Significance

In this section, we describe three different approaches to increasing the signal significanceof our selection criteria by vertex fitting tracks in our events. We are going to stick to theK+K−π+ hadronic decay mode for this discussion, as that is the mode that suffers mostfrom conversion backgrounds, which is what vertexing seeks to reject. First, we are goingto see if vertexing all tracks from the decay of the D∗+

s improves the performance of ourexisting selection criteria. We will see if a cut on the invariant mass of the e+e− pair canoffer a higher signal significance. Second, we will vertex constrain the origin of the softe+e− tracks to see if the performance of the ∆d0 and ∆φ0 can be improved. Third, we willvertex all tracks in the event with the beamspot in a somewhat more complicated procedure,that will be explained in the appropriate section, to see if a higher signal significance canbe achieved. CLEO-c software has a package called FitEvt that is used, in our study, toconstrain the tracks parameters to a single point in 3-D space. This is implemented using theerror matrices of the fitted tracks and is described in [5]. We use the FitEvt::k VertexOnly

fit described in the document.

11.1 Vertex Fitting All Tracks From the D+s

The K+K−π+ and e+e− tracks are constrained, using FitEvt, to originate from one vertex.We present a comparison of the optimization plots for our standard selection criteria appliedon our electron-fitted sample alongside plots from the vertex constrained sample betweenFig 100 and 108. A narrowing of the signal distribution of δm is noted with the vertexconstraint and exploited towards attaining a higher significance. The width of the δm cutis shrunk from 6 MeV to 4 MeV as a consequence of this optimization, as recorded in Table23. The change in signal significance is recorded in Table 24.

Table 23: Selection criteria for electron-fitted data with and without vertex fitting of tracksfrom the D∗+

s in the D+s → K+K−π+ decay mode.

Selection Criterion Electron-Fitted Samples Vertex-Fitted, Electron-Fitted SamplesCut Center ± Width Cut Center ± Width

mD+s

1.969 ± 0.011 GeV 1.969 ± 0.011 GeVmBC 2.112 ± 0.004 GeV 2.112 ± 0.004 GeVδm 0.144 ± 0.006 GeV 0.144 ± 0.004 GeV∆d0 -0.006 m -0.0005 m∆φ0 0.1 0.1

Having achieved a small improvement in the signal significance at the cost of signalyield, we may ask if any improvement may be achieved by selecting on the invariant massof the e+e− pair after vertexing. The idea here is that when we constrain to the interactionpoint e+e− tracks that in reality originate from the conversion of a photon away from theinteraction point, we affect the Lorentz momenta of the e+e− tracks to produce a sharp peak

84

Page 85: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mD+s

selection criterion in the D+s → K+K−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data. Plots onthe figure to the left correspond to simple electron-fitted samples. Plots on the figures to theright correspond to electron-fitted samples where all daughters of the D∗+

s have been vertexconstrained to originate from a single point.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s / 0

.6 M

eV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Signal Sample±SDm h_dsPlusM_signal

Entries 1552Mean 1.968RMS 0.005539

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 23015Mean 0.01105RMS 0.004828

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

Conversion Sample±SDm h_dsPlusM_conver

Entries 22Mean 1.965RMS 0.006441

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 313Mean 0.01137RMS 0.004588

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 45Mean 1.973RMS 0.04187

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 120Mean 0.01217RMS 0.004556

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s / 1

.5 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 3Mean 1.993RMS 0.04464

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

2

4

6

8

10

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.009982RMS 0.005274

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

3

3.5

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.0104RMS 0.005124

Signal Precision vs Cut Width±SDm

Figure 100: Optimization plots for themD+

sselection criterion in the D+

s →K+K−π+ decay mode for electron-fitteddata.

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Signal Sample±SDm h_dsPlusM_signal

Entries 1490Mean 1.968RMS 0.005545

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 22138Mean 0.01101RMS 0.004852

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Conversion Sample±SDm h_dsPlusM_conver

Entries 17Mean 1.965RMS 0.006796

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 249Mean 0.01103RMS 0.00478

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 25Mean 1.977RMS 0.04259

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 #

Eve

nts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 35Mean 0.01316RMS 0.003372

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 4Mean 1.97RMS 0.04792

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

σ

0

2

4

6

8

10

12

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01021RMS 0.005212

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

3

3.5

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01039RMS 0.005135

Signal Precision vs Cut Width±SDm

Figure 101: Optimization plots for themD+

sselection criterion in the D+

s →K+K−π+ decay mode for electron-fitteddata where all tracks in the event havebeen vertex constrained to a single point.

85

Page 86: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the mBC selection criterion in the D+s → K+K−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data. Plots onthe figure to the left correspond to simple electron-fitted samples. Plots on the figures to theright correspond to electron-fitted samples where all daughters of the D∗+

s have been vertexconstrained to originate from a single point.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s / 4

00 k

eV

0

0.2

0.4

0.6

0.8

1

1.2

Signal SampleBCm h_MBC_signalEntries 1820Mean 2.114RMS 0.00454

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

16

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 28817Mean 0.01048RMS 0.005072

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Conversion MC SampleBCm h_MBC_converEntries 112Mean 2.105RMS 0.02291

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 804Mean 0.01213RMS 0.004549

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundBCm h_MBC_genericEntries 85Mean 2.106RMS 0.02837

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 352Mean 0.01248RMS 0.004525

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundBCm h_MBC_continuEntries 7Mean 2.08RMS 0.02003

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 14Mean 0.012RMS 0.004031

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008783RMS 0.005397

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009883RMS 0.005267

Signal Precision vs Cut WidthBCm

Figure 102: Optimization plots for themBC selection criterion in the D+

s →K+K−π+ decay mode for electron-fitteddata.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Signal SampleBCm h_MBC_signalEntries 1707Mean 2.114RMS 0.004377

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

16

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 27326Mean 0.01043RMS 0.005094

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Conversion MC SampleBCm h_MBC_converEntries 61Mean 2.107RMS 0.02024

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 518Mean 0.01188RMS 0.004674

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC BackgroundBCm h_MBC_genericEntries 47Mean 2.101RMS 0.03261

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 146Mean 0.01232RMS 0.004758

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundBCm h_MBC_continuEntries 3Mean 2.098RMS 0.007648

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 21Mean 0.01345RMS 0.003484

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008923RMS 0.005344

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009918RMS 0.005268

Signal Precision vs Cut WidthBCm

Figure 103: Optimization plots for themBC selection criterion in the D+

s →K+K−π+ decay mode for electron-fitteddata where all tracks in the event havebeen vertex constrained to a single point.

86

Page 87: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the δm selection criterion in the D+s → K+K−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data. Plots onthe figure to the left correspond to simple electron-fitted samples. Plots on the figures to theright correspond to electron-fitted samples where all daughters of the D∗+

s have been vertexconstrained to originate from a single point.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s / 4

00 k

eV

0

0.2

0.4

0.6

0.8

1

1.2

m Signal Sampleδ h_DeltaM_signalEntries 1767Mean 0.1443RMS 0.004735

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

16

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 26766Mean 0.01071RMS 0.004985

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.05

0.1

0.15

0.2

0.25

m Conversion MC Sampleδ h_DeltaM_converEntries 159Mean 0.151RMS 0.0308

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 457Mean 0.01201RMS 0.004755

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m Generic MC Background Sampleδ h_DeltaM_genericEntries 93Mean 0.1499RMS 0.02775

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 254Mean 0.01274RMS 0.004388

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s / 1

.2 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 13Mean 0.1671RMS 0.03017

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 1Mean 0.0185RMS 2.42e-10

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009271RMS 0.005219

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.0101RMS 0.005198

m Signal Precision vs Cut Widthδ

Figure 104: Optimization plots for the δmselection criterion in the D+

s → K+K−π+

decay mode for electron-fitted data.

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Signal Sampleδ h_DeltaM_signalEntries 1774Mean 0.1443RMS 0.004326

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

16

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 27944Mean 0.01053RMS 0.005053

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

m Conversion MC Sampleδ h_DeltaM_converEntries 139Mean 0.1432RMS 0.02944

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 622Mean 0.01204RMS 0.004554

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m Generic MC Background Sampleδ h_DeltaM_genericEntries 80Mean 0.153RMS 0.02665

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s0

0.2

0.4

0.6

0.8

1

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 186Mean 0.0129RMS 0.004389

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 5Mean 0.1762RMS 5.491e-10

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 0Mean 0RMS 0

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.008793RMS 0.005417

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.009972RMS 0.005246

m Signal Precision vs Cut Widthδ

Figure 105: Optimization plots for the δmselection criterion in the D+

s → K+K−π+

decay mode for electron-fitted data whereall tracks in the event have been vertexconstrained to a single point.

87

Page 88: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the ∆d0 selection criterion in the D+s → K+K−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data. Plots onthe figure to the left correspond to simple electron-fitted samples. Plots on the figures to theright correspond to electron-fitted samples where all daughters of the D∗+

s have been vertexconstrained to originate from a single point.

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Signal Sample0d∆ h_diffD0_signalEntries 1457Mean 0.0001248RMS 0.001901

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 14764Mean -0.004751RMS 0.003202

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

00.020.040.060.08

0.10.120.140.160.18

0.20.220.24

Conversion MC Sample0d∆ h_diffD0_converEntries 26Mean -0.0009811RMS 0.003759

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 234Mean -0.0047RMS 0.003508

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample0d∆ h_diffD0_genericEntries 8Mean 0.002035RMS 0.003575

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 96Mean -0.003458RMS 0.004098

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s / 0

.4 m

m

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

2

4

6

8

10

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.004282RMS 0.003426

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.004092RMS 0.003631

Precision vs Cut Width0d∆

Figure 106: Optimization plots for the∆d0 selection criterion in the D+

s →K+K−π+ decay mode for electron-fitteddata.

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

0

1

2

3

4

5

6

Signal Sample0d∆ h_diffD0_signalEntries 1418Mean -9.704e-06RMS 0.0002374

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

2

4

6

8

10

12

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 14168Mean -0.005001RMS 0.002874

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Conversion MC Sample0d∆ h_diffD0_converEntries 19Mean -0.0001848RMS 0.0008095

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 186Mean -0.005073RMS 0.002856

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample0d∆ h_diffD0_genericEntries 4Mean -0.0004795RMS 0.0008683

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 38Mean -0.005211RMS 0.00279

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

2

4

6

8

10

12

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.004914RMS 0.002912

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.004914RMS 0.002937

Precision vs Cut Width0d∆

Figure 107: Optimization plots for the∆d0 selection criterion in the D+

s →K+K−π+ decay mode for electron-fitteddata where all tracks in the event havebeen vertex constrained to a single point.

88

Page 89: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Optimization plots for the ∆φ0 selection criterion in the D+s → K+K−π+ decay mode having

applied all other selection criteria. All plots are normalized to 586 pb−1 of data. Plots onthe figure to the left correspond to simple electron-fitted samples. Plots on the figures to theright correspond to electron-fitted samples where all daughters of the D∗+

s have been vertexconstrained to originate from a single point.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.5

1

1.5

2

2.5

3

3.5

4

Signal SampleΦ∆ h_dPhi_signalEntries 1842Mean -0.0009114RMS 0.2938

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 31899Mean 0.07592RMS 0.07445

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

00.2

0.40.6

0.8

11.2

1.4

1.61.8

2

Conversion MC SampleΦ∆ h_dPhi_converEntries 195Mean 0.2367RMS 0.2307

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 566Mean 0.08679RMS 0.07792

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 33Mean 0.08837RMS 0.2633

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 218Mean 0.05968RMS 0.08153

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s / 0

.063

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 2Mean 0.4219RMS 4.949e-09

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

2

4

6

8

10

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.06166RMS 0.07688

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06189RMS 0.07929

Precision vs Cut WidthΦ∆

Figure 108: Optimization plots for the∆φ0 selection criterion in the D+

s →K+K−π+ decay mode for electron-fitteddata.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

Signal SampleΦ∆ h_dPhi_signalEntries 1728Mean 0.004615RMS 0.2682

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 30069Mean 0.07827RMS 0.07277

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

1

2

3

4

5

Conversion MC SampleΦ∆ h_dPhi_converEntries 205Mean 0.1773RMS 0.08966

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

6

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 616Mean 0.1163RMS 0.07429

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 17Mean 0.1428RMS 0.1145

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 77Mean 0.09344RMS 0.07053

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 1Mean 0.1169RMS 9.027e-10

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 7Mean 0.155RMS 0.02

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

2

4

6

8

10

12

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.05225RMS 0.07356

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06164RMS 0.07808

Precision vs Cut WidthΦ∆

Figure 109: Optimization plots for the∆φ0 selection criterion in the D+

s →K+K−π+ decay mode for electron-fitteddata where all tracks in the event havebeen vertex constrained to a single point.

89

Page 90: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 24: Number of signal and background events expected in electron-fitted data with andwithout vertex fitting of tracks from the D∗+

s in the D+s → K+K−π+ decay mode.

Expected Number of Electron-Fitted Samples Vertex-Fitted, Electron-Fitted SamplesEvents in 586 pb−1 and Criteria and Criteria

Signal (NSignalEvents) 13.36 12.84Conversion Background 1.04 0.92

Generic Background (without Conversions in e-fit) 0.42 0.16Continuum Background 0.00 0.00

Total Background (NBackgroundEvents) 1.45 1.07NSignalEvents√

NBackgroundEvents11.1 12.4

in the invariant mass mee at 13 MeV with a width of ∼ 8 MeV as seen in Fig. 110. Havingpredominantly conversion events fall in this peak, we may now ask if rejecting these eventsoffers us a higher overall signal significance than the application of ∆φ0 and ∆d0 criteria.Table 25 summarizes the selection criteria for electron-fitted data with vertex fitting of tracksfrom the D∗+

s in the D+s → K+K−π+ decay mode, with and without a replacement of ∆d0

and ∆φ0 cuts by an mee cut. We accept events with the criterion: |mee −0.013| > 0.005GeVin order to retain roughly similar signal yields. A comparison of the signal significance ispresented in Table 26. Figure 110 depicts the distributions of mee in signal and backgroundMonte Carlo samples without the vertex constraint, after all selection criteria for electron-fitted data we optimized in Section 10.1 have been applied to them. Figure 111 depicts thesame distributions, but with the vertex constraint and without having applied the ∆d0 and∆φ0 selection criteria.

Table 25: Selection criteria for electron-fitted data with vertex fitting of tracks from the D∗+s

in the D+s → K+K−π+ decay mode, with and without a replacement of ∆d0 and ∆φ0 cuts

by an mee cut.Selection Criterion D∗+

s Tracks Vertex-Fitted Samples D∗+s Tracks Vertex-Fitted Samples with mee Cut

Cut Center ± Width Cut Center ± WidthmD+

s1.969 ± 0.011 GeV 1.969 ± 0.011 GeV

mBC 2.112 ± 0.004 GeV 2.112 ± 0.004 GeVδm 0.144 ± 0.004 GeV 0.144 ± 0.004 GeV∆d0 -0.0005 m∆φ0 0.1mee 0.013 ± 0.005 GeV

Having thus established that rejecting conversion events based on the mee after vertexconstraining does not fare better than the ∆φ0 and ∆d0 selection criteria, we may askwhether it can significantly improve upon the latter. The distribution of mee after vertexconstraining and all criteria is presented in Fig. 112. The results of such a comparison ispresented in Table 27. We see that the signal significance doesn’t improve much in spite ofan 22% loss in the signal yield.

Studying the distribution of mee against χ2 in Fig. 113, it seemed that one could alsoreject conversion background events by requiring 0 < χ2 < 11. Doing so, we obtainedthe plot of mee shown in Fig. 114. Now we applied the criterion |mee − 0.010| > 0.002

90

Page 91: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 26: Number of signal and background events expected in electron-fitted samples withvertex fitting of tracks from the D∗+

s in the D+s → K+K−π+ decay mode, with and without

a replacement of ∆d0 and ∆φ0 cuts by an mee cut.Expected Number of D∗+

s Tracks Vertex-Fitted Samples D∗+s Tracks Vertex-Fitted Samples with mee Cut

Events in 586 pb−1 and Criteria without ∆d0 & ∆φ0 CriteriaSignal (NSignalEvents) 12.84 12.68Conversion Background 0.92 3.00

Generic Background (without Conversions in e-fit) 0.16 0.68Continuum Background 0.00 0.2

Total Background (NBackgroundEvents) 1.07 3.88NSignalEvents√

NBackgroundEvents12.4 6.4

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8Signal MC

Continuum MC

Generic-Conversions MC

Conversions MC

eem

Figure 110: Distributions of the invariant mass of the e+e− pair after all selection criteria forelectron-fitted data, optimized in Section 10.1, have been applied to the signal and variousbackground Monte Carlo samples.

GeV to reject the peak in the conversion backgrounds. We obtained the signal yields andsignificances tabulated in Table 28. We conclude that such upper limits on the χ2 does nothelp much either.

91

Page 92: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.40.6

0.8

1

1.2

1.41.6

1.8

2

2.2

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.40.6

0.8

1

1.2

1.41.6

1.8

2

2.2 Signal MC

Continuum MC

Generic-Conversions MC

Conversions MC

eem

Figure 111: Distributions of the invariant mass of the e+e− pair where the daughters ofthe D∗+

s have been vertex constrained as described in the text. ∆φ0 and ∆d0 cuts on theelectrons have not been applied. Slightly different selection criteria, optimized for vertexconstrained kinematic distributions as outlined in the text, are applied. Events within themarked region of mee are rejected.

Table 27: A comparison of signal and background events between samples with plain electron-fitted tracks, samples with the regular selection criteria optimized for vertex-fitted tracks andvertex-fitted samples where mee criteria have been added to the regular criteria.

Expected Number of Plain Electron-Fitted Samples Vertex-Fitted Samples with Vertex-Fitted Samples with mee CutEvents in 586 pb−1 with All Criteria All Criteria and All Other Criteria

Signal (NSignalEvents) 13.36 12.84 9.97Conversion Background 1.04 0.92 0.69

Generic Background (without Conversions in e-fit) 0.42 0.16 0.10Continuum Background 0.0 0.0 0.0

Total Background (NBackgroundEvents) 1.45 1.07 0.79NSignalEvents√

NBackgroundEvents11.1 12.4 11.21

Table 28: Number of signal and background events expected in electron-fitted samples withvertex fitting of tracks from the D∗+

s in the D+s → K+K−π+ decay mode, with and without

a replacement of ∆d0 and ∆φ0 cuts by an mee cut.Expected Number of D∗+

s Tracks Vertex-Fitted Samples D∗+s Tracks Vertex-Fitted Samples with mee Cut D∗+

s Tracks Vertex-Fitted with χ2 < 11Events in 586 pb−1 and Criteria without ∆d0 & ∆φ0 Criteria mee Cut and without ∆d0 & ∆φ0 criteria

Signal (NSignalEvents) 12.84 12.68 7.48Conversion Background 0.92 3.00 0.90

Generic Background (without Conversions in e-fit) 0.16 0.68 0.47Continuum Background 0.00 0.2 0.0

Total Background (NBackgroundEvents) 1.07 3.88 1.37NSignalEvents√

NBackgroundEvents12.4 6.4 6.4

92

Page 93: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8Signal MC

Continuum MC

Generic-Conversions MC

Conversions MC

eem

Figure 112: Distributions of the invariant mass of the e+e− pair where the daughters of theD∗+

s have been vertex constrained and all standard selection criteria applied. Events withinthe marked region of mee are rejected as part of the mee selection criterion.

93

Page 94: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

chi^20 10 20 30 40 50 60 70 80 90 100

ee m

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

h_mee_chisqVtx_signal

chi^20 10 20 30 40 50 60 70 80 90 100

ee m

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

h_mee_chisqVtx_conver

chi^20 10 20 30 40 50 60 70 80 90 100

ee m

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

h_mee_chisqVtx_generic

chi^20 10 20 30 40 50 60 70 80 90 100

ee m

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

h_mee_chisqVtx_continu

Figure 113: mee vs χ2 for signal, conversion and generic Monte Carlo samples after allkinematic criteria, i.e. all except the ∆φ0 and ∆d0 selection criteria, have been applied.

94

Page 95: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

Signal MC

Continuum MC

Generic-Conversions MC

Conversions MC

eem

Figure 114: Distributions of the invariant mass of the e+e− pair where the daughters of theD∗+

s have been vertex constrained and all standard selection criteria applied. Events withinthe marked region of mee are rejected as part of the mee selection criterion.

95

Page 96: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

11.2 Vertex Fitting e+e− Tracks

We may ask if the power of the ∆d0 and ∆φ0 may be significantly improved by vertexconstraining the e+e− tracks. Fig. 115 and 116 show the distributions of the ∆d0 and ∆φ0

having vertex-fitted the e+e− pair for the signal and background Monte Carlo samples. Theyare to be compared with Fig. 106 and 108. The optimal parameters for the selection criteriaare:

|mD+s− 1.969| < 0.011GeV

|mBC − 2.112| < 0.004GeV

|δm− 0.1438| < 0.006GeV

∆d0 > −0.006m

∆φ < 0.1

A comparison with the selection criteria without vertex-fitting is presented in Table 29.It is quite clear that this does not help in improving our signal significance or yield.

Table 29: Number of signal and background events expected in plain electron-fitted samplesand samples where the electron-fitted e+e− tracks have been constrained to a common vertex.

Expected Number of Plain Electron-Fitted Samples e+e− Vertex-Fitted SamplesEvents in 586 pb−1 with All Criteria with All Criteria

Signal (NSignalEvents) 13.36 8.31Conversion Background 1.04 0.75

Generic Background (without Conversions in e-fit) 0.42 0.26Continuum Background 0.0 0.0

Total Background (NBackgroundEvents) 1.45 1.01NSignalEvents√

NBackgroundEvents11.1 8.29

96

Page 97: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Signal Sample0d∆ h_diffD0_signalEntries 902Mean 0.0008977RMS 0.001236

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

1

2

3

4

5

6

7

8

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 9884Mean -0.004423RMS 0.003316

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

Conversion MC Sample0d∆ h_diffD0_converEntries 21Mean 0.0004985RMS 0.0009408

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 179Mean -0.004996RMS 0.003159

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

0

0.01

0.02

0.03

0.04

0.05

Generic MC Background Sample0d∆ h_diffD0_genericEntries 6Mean 0.002274RMS 0.0004686

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 67Mean -0.003933RMS 0.003715

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 0Mean 0RMS 0

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

1

2

3

4

5

6

7

8

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.003826RMS 0.003553

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.003767RMS 0.003772

Precision vs Cut Width0d∆

Figure 115: Optimization plots for the ∆d0

selection criterion in the D+s → K+K−π+ de-

cay mode for electron-fitted data where thecandidate e+e− tracks in the event have beenvertex constrained to a single point.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal SampleΦ∆ h_dPhi_signalEntries 1228Mean -0.008435RMS 0.3602

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

6

7

8

9

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 21693Mean 0.06732RMS 0.0777

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Conversion MC SampleΦ∆ h_dPhi_converEntries 138Mean 0.2495RMS 0.2616

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

00.20.40.60.8

11.21.41.61.8

22.22.4

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 422Mean 0.08958RMS 0.0794

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 24Mean 0.1337RMS 0.2125

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 132Mean 0.06182RMS 0.08047

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 2Mean 0.4255RMS 2.296e-09

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

6

7

8

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.05068RMS 0.07871

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.05595RMS 0.08064

Precision vs Cut WidthΦ∆

Figure 116: Optimization plots for the ∆φ0

selection criterion in the D+s → K+K−π+ de-

cay mode for electron-fitted data where thecandidate e+e− tracks in the event have beenvertex constrained to a single point.

97

Page 98: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

Signal Sample±SDm h_dsPlusM_signal

Entries 970Mean 1.968RMS 0.005554

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

7

8

9

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 14385Mean 0.01104RMS 0.004827

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

00.020.04

0.06

0.080.1

0.120.14

0.160.18

0.20.22

Conversion Sample±SDm h_dsPlusM_conver

Entries 17Mean 1.965RMS 0.007171

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 231Mean 0.01155RMS 0.004531

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 35Mean 1.979RMS 0.04192

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 80Mean 0.01221RMS 0.004723

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 4Mean 1.993RMS 0.04464

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

-1

-0.5

0

0.5

1

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 0Mean 0RMS 0

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

σ

0

1

2

3

4

5

6

7

8

9

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.009952RMS 0.00522

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01039RMS 0.005121

Signal Precision vs Cut Width±SDm

Figure 117: Optimization plots for the mD+s

selection criterion in the D+s → K+K−π+ de-

cay mode for electron-fitted data where thecandidate e+e− tracks in the event have beenvertex constrained to a single point.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Signal SampleBCm h_MBC_signalEntries 1127Mean 2.114RMS 0.004656

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 17804Mean 0.01049RMS 0.005069

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Conversion MC SampleBCm h_MBC_converEntries 87Mean 2.103RMS 0.02361

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 622Mean 0.01209RMS 0.004595

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

Generic MC BackgroundBCm h_MBC_genericEntries 67Mean 2.103RMS 0.02947

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 282Mean 0.01271RMS 0.004391

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundBCm h_MBC_continuEntries 5Mean 2.083RMS 0.02259

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 14Mean 0.012RMS 0.004031

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

7

8

9

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.008808RMS 0.005367

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009849RMS 0.005266

Signal Precision vs Cut WidthBCm

Figure 118: Optimization plots for the mBC

selection criterion in the D+s → K+K−π+ de-

cay mode for electron-fitted data where thecandidate e+e− tracks in the event have beenvertex constrained to a single point.

98

Page 99: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m Signal Sampleδ h_DeltaM_signalEntries 1110Mean 0.1448RMS 0.004569

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 16583Mean 0.01072RMS 0.004974

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

m Conversion MC Sampleδ h_DeltaM_converEntries 113Mean 0.1477RMS 0.03111

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 338Mean 0.01196RMS 0.004641

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m Generic MC Background Sampleδ h_DeltaM_genericEntries 71Mean 0.1498RMS 0.02897

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 162Mean 0.01279RMS 0.004278

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 8Mean 0.1618RMS 0.03579

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 1Mean 0.0185RMS 2.42e-10

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009185RMS 0.005279

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.0101RMS 0.005196

m Signal Precision vs Cut Widthδ

Figure 119: Optimization plots for the δm selection criterion in the D+s → K+K−π+ decay

mode for electron-fitted data where the candidate e+e− tracks in the event have been vertexconstrained to a single point.

99

Page 100: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

11.3 Vertex Fitted Tracks with the Beamspot

In this section, we include the beamspot in our vertex constraints. For every event, we createa fit where all daughters of the D∗+

s and the beampot are constrained to a vertex, and a fitwhere all daughters of the D+

s and the beamspot are constrained to a vertex. The ∆d0 and∆φ0 cuts are not applied as we are trying to see if our new scheme can replace them. Thedifference in the reduced χ2, defined below, between the two fits are plotted in Fig. 120.

χ2red = χ2/n

where n stands for the number of degrees of freedom in the fit. This difference allows us todiscard clearly problematic fits, and looking at the distributions in Fig. 120 we choose tokeep fits with values of χ2

red between -4 and 1.5.We optimize our selection criteria according to Fig. 121 - 125. The optimized selection

criteria are tabulated in Table 30. Now we plot the invariant mass mee from the first vertexfit as shown in Fig. 126. In our rejection cut, we try to keep the signal yield roughly thesame as the signal yield with vertexing just the daughters of the D∗+

s without the beamspotand compare the signal significance in Table 31.

Table 30: Selection criteria for electron-fitted data with vertex fitting of tracks from the D∗+s

and the beamspot, with a replacement of ∆d0 and ∆φ0 cuts by δχ2red and mee cuts.

Selection Criterion Beamspot-Vertex-Fitted Samples withmee replacing ∆d0 & ∆φ0

mD+s

1.969 ± 0.011 GeVmBC 2.112 ± 0.004 GeVδm 0.144 ± 0.004 GeVδχ2

red 0 ± 4mee 0.013 ± 0.003 GeV

Table 31: Number of signal and background events expected with plain electron-fitted sam-ples, and samples with vertex fitting of tracks from the D∗+

s and the beamspot, with areplacement of ∆d0 and ∆φ0 cuts by δχ2

red and mee cuts.Expected Number of Plain Electron-Fitted Samples Vertex-Fitted Samples with Beamspot-Vertex-Fitted Samples withEvents in 586 pb−1 with All Criteria All Criteria mee replacing ∆d0 & ∆φ0

Signal (NSignalEvents) 13.36 12.84 12.45Conversion Background 1.04 0.92 2.13

Generic Background (without Conversions in e-fit) 0.42 0.16 0.73Continuum Background 0.0 0.0 0.2

Total Background (NBackgroundEvents) 1.45 1.07 3.06NSignalEvents√

NBackgroundEvents11.1 12.4 7.1

Now, we may also ask if our δχ2red and mee cuts can help in addition to our ∆d0 and ∆φ0

cuts. Fig. 127 presents the distribution of mee after having applied all the standard selectioncriteria, including ∆d0 > −0.0005 and ∆φ0 < 0.1 as suggested by the optimization plots inFig. 124 and 125. It seems clear than not much improvement can be achieved on the signalsignificance.

100

Page 101: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.5

1

1.5

2

2.5

3

3.5

4

h_diffRedChisq_signal

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

1.2

h_diffRedChisq_conver

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

h_diffRedChisq_generic

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

h_diffRedChisq_continu

Figure 120: The difference in χ2red between the vertex fit with allD∗+

s tracks and the beamspotand the vertex fit with just the D+

s tracks and the beamspot. The top plot is the signal MC,the second is the conversion MC, the third is the generic MC with conversions excluded, andthe lowest plot is the continuum MC.

101

Page 102: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)±SD

m1.94 1.95 1.96 1.97 1.98 1.99 2

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Signal Sample±SDm h_dsPlusM_signal

Entries 1926Mean 1.968RMS 0.005397

Signal Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

16

18

Signal Sample vs Cut Width±SDm h_dsPlusM_signal_range

Entries 28753Mean 0.011RMS 0.00485

Signal Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.5

1

1.5

2

2.5

Conversion Sample±SDm h_dsPlusM_conver

Entries 234Mean 1.968RMS 0.006959

Conversion Sample±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

Conversion MC Sample vs Cut Width±SDm h_dsPlusM_conver_range

Entries 3596Mean 0.0108RMS 0.004922

Conversion MC Sample vs Cut Width±SDm

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Generic MC Background Sample±SDm h_dsPlusM_generic

Entries 144Mean 1.974RMS 0.04401

Generic MC Background Sample±SDm

GeV±SD

m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Generic MC Background Sample vs Cut Width±SD

m h_dsPlusM_generic_range

Entries 343Mean 0.01242RMS 0.004419

Generic MC Background Sample vs Cut Width±SD

m

(GeV)±SD

m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC Background Sample±SDm h_dsPlusM_continu

Entries 11Mean 1.988RMS 0.04314

Continuum MC Background Sample±SDm

Cut Width GeV0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample vs Cut Width±SDm h_dsPlusM_continu_range

Entries 17Mean 0.0105RMS 0.004899

Continuum MC Background Sample vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

σ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Signal Significance vs Cut Width±SDm h_dsPlusM_significance

Entries 20Mean 0.01046RMS 0.005091

Signal Significance vs Cut Width±SDm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

3

Signal Precision vs Cut Width±SDm h_dsPlusM_precision

Entries 20Mean 0.01043RMS 0.005108

Signal Precision vs Cut Width±SDm

Figure 121: Optimization plots for the mD+s

selection criterion in the D+s → K+K−π+ de-

cay mode for electron-fitted data where alltracks from the D∗+

s have been vertex con-strained with the beamspot.

(GeV)BC m2.1 2.105 2.11 2.115 2.12 2.125 2.13 2.135 2.14

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Signal SampleBCm h_MBC_signalEntries 2251Mean 2.114RMS 0.0047

Signal SampleBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

02

4

6

8

10

12

14

16

18

20

Signal Sample vs Cut WidthBCm h_MBC_signal_range

Entries 35517Mean 0.01046RMS 0.005091

Signal Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.5

1

1.5

2

2.5

Conversion MC SampleBCm h_MBC_converEntries 413Mean 2.112RMS 0.01437

Conversion MC SampleBCm

(GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

2

4

6

8

10

12

14

16

18

conver Sample vs Cut WidthBCm h_MBC_conver_range

Entries 4959Mean 0.01101RMS 0.004939

conver Sample vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generic MC BackgroundBCm h_MBC_genericEntries 323Mean 2.098RMS 0.03088

Generic MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

6

Generic MC Background vs Cut WidthBCm h_MBC_generic_range

Entries 1146Mean 0.01282RMS 0.004351

Generic MC Background vs Cut WidthBCm

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Continuum MC BackgroundBCm h_MBC_continuEntries 16Mean 2.103RMS 0.01982

Continuum MC BackgroundBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Continuum MC Background vs Cut WidthBCm h_MBC_continu_range

Entries 50Mean 0.01328RMS 0.003981

Continuum MC Background vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Signal Significance vs Cut WidthBCm h_MBC_significance

Entries 19Mean 0.009491RMS 0.00533

Signal Significance vs Cut WidthBCm

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Signal Precision vs Cut WidthBCm h_MBC_precisionEntries 19Mean 0.009787RMS 0.005291

Signal Precision vs Cut WidthBCm

Figure 122: Optimization plots for the mBC

selection criterion in the D+s → K+K−π+ de-

cay mode for electron-fitted data where alltracks from the D∗+

s have been vertex con-strained with the beamspot.

102

Page 103: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

# E

vent

s0

0.2

0.40.60.8

1

1.21.4

1.6

1.82

2.2

m Signal Sampleδ h_DeltaM_signalEntries 2452Mean 0.1443RMS 0.004455

m Signal Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

02

4

6

8

1012

14

16

18

2022

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries 36452Mean 0.01054RMS 0.005051

m Signal Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

m Conversion MC Sampleδ h_DeltaM_converEntries 867Mean 0.1473RMS 0.02447

m Conversion MC Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

5

10

15

20

25

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries 5855Mean 0.01152RMS 0.004754

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m Generic MC Background Sampleδ h_DeltaM_genericEntries 337Mean 0.1535RMS 0.02593

m Generic MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries 936Mean 0.01267RMS 0.004534

m Generic MC Background vs Cut Widthδ

m (GeV)δ 0.08 0.1 0.12 0.14 0.16 0.18 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continuEntries 31Mean 0.1658RMS 0.02494

m Contiuum MC Background Sampleδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.2

0.4

0.6

0.8

1

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries 56Mean 0.0128RMS 0.004048

m Continuum MC Background vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

1

2

3

4

5

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries 19Mean 0.009236RMS 0.005409

m Signal Significance vs Cut Widthδ

Cut Width (GeV)0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

# E

vent

s

0

0.5

1

1.5

2

2.5

3

m Signal Precision vs Cut Widthδ h_DeltaM_precisionEntries 19Mean 0.009733RMS 0.005296

m Signal Precision vs Cut Widthδ

Figure 123: Optimization plots for the δm selection criterion in the D+s → K+K−π+ decay

mode for electron-fitted data where all tracks from the D∗+s have been vertex constrained

with the beamspot.

103

Page 104: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Signal Sample0d∆ h_diffD0_signalEntries 1803Mean 0.0007338RMS 0.0006425

Signal Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

2

4

6

8

10

12

14

16

Signal Sample vs Cut Width0d∆ h_diffD0_signal_rangeEntries 19288Mean -0.004627RMS 0.003117

Signal Sample vs Cut Width0d∆

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

00.2

0.40.6

0.8

1

1.2

1.4

1.6

1.82

Conversion MC Sample0d∆ h_diffD0_converEntries 222Mean 0.0007827RMS 0.0006551

Conversion MC Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

2

4

6

8

10

12

Conversion MC Sample vs Cut Width0d∆ h_diffD0_conver_range

Entries 2387Mean -0.004598RMS 0.003136

Conversion MC Sample vs Cut Width0d∆

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC Background Sample0d∆ h_diffD0_genericEntries 23Mean 0.0005324RMS 0.0007218

Generic MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.2

0.4

0.6

0.8

1

1.2

Generic MC Background Sample vs Cut Width0d∆ h_diffD0_generic_range

Entries 244Mean -0.004664RMS 0.003104

Generic MC Background Sample vs Cut Width0d∆

(m)0d∆ -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample0d∆ h_diffD0_continuEntries 1Mean 3.176e-07RMS 5.927e-16

Continuum MC Background Sample0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background Sample vs Cut Width0d∆ h_diffD0_continu_range

Entries 10Mean -0.005RMS 0.002872

Continuum MC Background Sample vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Significance vs Cut Width0d∆ h_diffD0_significanceEntries 19Mean -0.004447RMS 0.003221

Significance vs Cut Width0d∆

Cut Width (m)-0.01 -0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008 0.01

# E

vent

s

0

0.5

1

1.5

2

2.5

3

Precision vs Cut Width0d∆ h_diffD0_precisionEntries 19Mean -0.00435RMS 0.003298

Precision vs Cut Width0d∆

Figure 124: Optimization plots for the ∆d0

selection criterion in the D+s → K+K−π+

decay mode for electron-fitted data where alltracks from the D∗+

s have been vertex con-strained with the beamspot.

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Signal SampleΦ∆ h_dPhi_signalEntries 1803Mean 0.001603RMS 0.3007

Signal SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

2

4

6

8

10

12

14

Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries 31209Mean 0.07737RMS 0.07325

Signal Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

1

2

3

4

5

Conversion MC SampleΦ∆ h_dPhi_converEntries 222Mean 0.1682RMS 0.1349

Conversion MC SampleΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

1

2

3

4

5

6

Conversion MC Sample vs Cut WidthΦ∆ h_dPhi_conver_range

Entries 765Mean 0.1045RMS 0.08089

Conversion MC Sample vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generic MC BackgroundΦ∆ h_dPhi_genericEntries 23Mean 0.1429RMS 0.1154

Generic MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries 106Mean 0.08019RMS 0.07743

Generic MC Background vs Cut WidthΦ∆

(GeV)Φ∆ -1.5 -1 -0.5 0 0.5 1 1.5

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC BackgroundΦ∆ h_dPhi_continuEntries 1Mean 0.1173RMS 1.112e-09

Continuum MC BackgroundΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries 7Mean 0.155RMS 0.02

Continuum MC Background vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

2

4

6

8

10

12

Significance vs Cut WidthΦ∆ h_dPhi_significanceEntries 30Mean 0.05695RMS 0.07245

Significance vs Cut WidthΦ∆

Cut Width (GeV)-0.1 -0.05 0 0.05 0.1 0.15 0.2

# E

vent

s

0

0.5

1

1.5

2

2.5

3

3.5

Precision vs Cut WidthΦ∆ h_dPhi_precisionEntries 30Mean 0.06162RMS 0.07806

Precision vs Cut WidthΦ∆

Figure 125: Optimization plots for the ∆φ0

selection criterion in the D+s → K+K−π+ de-

cay mode for electron-fitted data where alltracks from the D∗+

s have been vertex con-strained with the beamspot.

104

Page 105: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 Signal MC

Continuum MC

Generic-Conversions MC

Conversions MC

eem

Figure 126: Distributions of the invariant mass of the e+e− pair where the daughters of theD∗+

s have been vertex constrained along with the beam-spot. The ∆d0 and ∆φ0 cuts arereplaced by a δχ2

red and a rejection of the marked region in mee.

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(GeV)ee m0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.050

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 Signal MC

Continuum MC

Generic-Conversions MC

Conversions MC

eem

Figure 127: Distributions of the invariant mass of the e+e− pair where the daughters of theD∗+

s have been vertex constrained along with the beam-spot. All standard selection criteriahave been applied, including ∆d0 > −0.0005 and ∆φ0 < 0.1.

105

Page 106: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.5

1

1.5

2

2.5

3

h_diffRedChisq_signal

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

0.3

h_diffRedChisq_conver

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.02

0.04

0.06

0.08

0.1

h_diffRedChisq_generic

-10 -8 -6 -4 -2 0 2 4 6 8 10-1

-0.5

0

0.5

1

h_diffRedChisq_continu

Figure 128: The difference in χ2red between the vertex fit with allD∗+

s tracks and the beamspotand the vertex fit with just the D+

s tracks and the beamspot. This is plotted after all thestandard selection criteria, including the ∆d0 and ∆φ0 have been applied.

106

Page 107: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12 Estimating Background Events in the Signal Region

from Monte Carlo and Data in the Sidebands

In this section we estimate the number of background events expected in the signal regionfor each of the hadronic decay modes of the D+

s . To do this, we study the sidebands of thesignal regions in the mBC and δm distributions of both Monte Carlo backgrounds and datain each of the modes. When we refer to either of the kinematic distributions, we imply thatall other selection criteria have been applied before plotting the distribution.

The signal regions in the mBC and δm distributions are kept blinded in data for thisprocedure. The regions in the distributions corresponding to values of the mBC and δmgreater than or less than the signal region are called the sideband regions. The distributionsof the mBC and δm in the sideband regions of data are extrapolated into the signal regionusing two pre-determined shapes to estimate the number of background events we expectthere. The first shape is obtained by fitting the distributions of mBC and δm in the simulatedbackground Monte Carlo. We refer to this as the MC shape in the rest of this section. Thesecond shape is determined by fitting the distributions of mBC and δm in the sidebandregions of data. This is referred to as the data shape in the rest of this section.

The backgrounds are estimated for each of the hadronic decay modes of the D+s . However,

there are not enough data and Monte Carlo simulation points at the end our selection criteriain the distributions for each of the modes to make a meaningful fit that may be normalizedto extract a shape. Therefore, we add the contributions from each mode to produce asummed distribution of mBC and a summed distribution of δm. These distributions areused to determine the data and MC shapes for the mBC and δm distributions as describedin Sections 12.1 and 12.2 respectively.

The data and MC shapes are then scaled to fit the sideband regions of data in each of theindividual modes, for both the mBC and δm distributions. This is described, mode by mode,in the following sub-sections between 12.3 and 12.11. For each mode, we obtain four numbersfor the estimated background from our fits extrapolating into the signal region – one for thedata shape in the mBC distribution, one for the MC shape in the mBC distribution, one forthe data shape in the δm distribution and one for the MC shape in the mBC distribution.The average of the values and statistical uncertainties obtained from the the data and MCshapes in the mBC distribution is used as the primary estimate for the background in eachmode. The difference between this value and the average of the data and MC shape numbersfor the δm distribution is quoted as the systematic uncertainty of our method for each mode.These numbers are summarized in Section 12.12.

Having thus obtained a summary of the background numbers expected for each of themodes, we are in a position to quantify the signal significance that can be achieved for apredicted number of signal events found in a given mode. This is described in Section 12.13.

The scale factors for the various Monte Carlo samples that constitute the simulation ofbackground events are outlined below. It is important to get these scales correct as ourdetermined MC shapes depend on it.

Generic MC This is known to have a scale factor Sgen = 0.052 ± 0.002.

107

Page 108: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Continuum MC This is known to have a scale factor Scont = 0.2.

Conversion MC As described earlier, given that our Generic MC sample is not electron-fitted, we veto events in the Generic MC that have D∗+

s → D+s γ and replace them with

privately produced electron-fitted Monte Carlo events. We must first ensure that thenumber of D∗+

s → D+s γ events we expect in our Generic MC is within uncertainties of

the number of such events we find. To do this, we first compute the efficiency of ourn-tuplizer in keeping such events:

εD+s

=NafterNTuple

ConversionsD+s

N beforeNTuple

ConversionsD+s

(37)

εD−s

=NafterNTuple

ConversionsD−s

N beforeNTuple

ConversionsD−s

(38)

∆εD+s(stat) =

(1 − εD+s)εD+

s

N beforeNTuple

ConversionsD+s

(39)

∆εD−s(stat) =

(1 − εD−s)εD−

s

N beforeNTuple

ConversionsD+s

(40)

where N beforeNTuple

ConversionsD+s

and N beforeNTuple

ConversionsD−s

are the number of sample events of D∗+s →

D+s γ andD∗−

s → D−s γ respectively we started with, andN afterNTuple

ConversionsD+s

andNafterNTuple

ConversionsD−s

are the number of events that remained in those samples after the n-tuplizer.

Given that N beforeNTuple

ConversionsD+s

=4511222, N beforeNTuple

ConversionsD−s

=4896941, NafterNTuple

ConversionsD+s

=106893,

and NafterNTuple

ConversionsD−s

=115969, we evaluate:

εD+s

= 0.02370 ± 0.00007(stat) (41)

εD−s

= 0.02368 ± 0.00007(stat) (42)

Then the number of D∗+s → D+

s γ and D∗−s → D−

s γ events in 586 ± 6 pb−1 of GenericMC expected to be seen after the n-tuplizer are:

NafterNTuple

expD∗+s →D+

s γ= LσD∗±

s D∓sB(D∗+

s → D+s γ)

εD+s

2(43)

NafterNTuple

expD∗−s →D−

s γ= LσD∗±

s D∓sB(D∗−

s → D−s γ)

εD−s

2(44)

∆NafterNTuple

expD∗+s →D+

s γ= NexpD∗+

s →D+s γ

(

∆L

L

)2

+

(

∆σ

σ

)2

+

(

∆B

B

)2

+

(

∆εD+s

εD+s

)2

(45)

∆NafterNTuple

expD∗−s →D−

s γ= NexpD∗−

s →D−s γ

(

∆L

L

)2

+

(

∆σ

σ

)2

+

(

∆B

B

)2

+

(

∆εD+s

εD+s

)2

(46)

(47)

108

Page 109: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

where L = 586 ± 6 pb−1 is the luminosity of the sample, σD∗±s D∓

s= 948 ± 36 pb is

the production cross section of D∗±s D∓

s at 4170 MeV, and B(D∗+s → D+

s γ) = 0.942 ±0.007 is the branching fraction of D∗+

s → D+s γ. With these values, we calculate:

NafterNTuple

expD∗+s →D+

s γ= 6200 ± 250 (48)

NafterNTuple

expD∗−s →D−

s γ= 6200 ± 250 (49)

Now, the number of D∗−s → D−

s γ surviving in the Generic MC after the n-tuplizer are:

NafterNTuple

seenD∗+s →D+

s γ= NafterNTuple

D∗+s →D+

s γSgen (50)

NafterNTuple

seenD∗−s →D−

s γ= NafterNTuple

D∗−s →D−

s γSgen (51)

∆NafterNTuple

seenD∗+s →D+

s γ= NafterNTuple

seenD∗+s →D+

s γ

(

∆Sgen

Sgen

)

(52)

∆NafterNTuple

seenD∗−s →D−

s γ= NafterNTuple

seenD∗−s →D−

s γ

(

∆Sgen

Sgen

)

(53)

where ND∗+s →D+

s γ is the number of events left over after the n-tuplizer in the GenericMC sample and NseenD∗+

s →D+s γ is that number divided by Sgen. This is found to be:

NafterNTuple

seenD∗+s →D+

s γ= 6340 ± 260 (54)

NafterNTuple

seenD∗−s →D−

s γ= 6310 ± 260 (55)

The expected and seen number of events after n-tuplizing are within each other’sstandard deviation and no problem is noted. Now we can calculate the conversionscales as follows:

SD+s con =

NafterNTuple

seenD∗+s →D+

s γ

NafterNTuple

ConversionsD+s

(56)

SD−s con =

NafterNTuple

seenD∗−s →D−

s γ

NafterNTuple

ConversionsD−s

(57)

∆SD+s con = SD+

s con

(

∆NafterNTuple

seenD∗+s →D+

s γ

NafterNTuple

seenD∗+s →D+

s γ

)2

+1

NafterNTuple

ConversionsD+s

(58)

∆SD−s con = SD−

s con

(

∆NafterNTuple

seenD∗−s →D−

s γ

NafterNTuple

seenD∗−s →D−

s γ

)2

+1

NafterNTuple

ConversionsD−s

(59)

109

Page 110: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

So now, we can calculate:

SD+s con =

6340 ± 260

106893= 0.059 ± 0.003 (60)

SD−s con =

6310 ± 260

115969= 0.054 ± 0.002 (61)

We use the scale factors for the conversion background samples derived in Equations 60for the rest of the document.

110

Page 111: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 32: Maximum likelihood fit parameters for the MC shape in mBC distribution.

Fit Parameters Valuep0 -3.91135e+02p1 1.91233e+02

Table 33: Maximum likelihood fit parameters for the data shape in mBC distribution.

Fit Parameters Valuep0 -2.79836e+02p1 1.38607e+02

12.1 Determining the Shape of the mBC Distribution

The distribution of mBC in the data and Monte Carlo are added up for all modes andpresented in Fig. 129. The Monte Carlo is fitted to the function 62 between 2.060 GeV and2.155 GeV. It is depicted in the figure as a black curve and shall be called the MC shape.The data is also fitted to the same function, but between the disconnected domains of 2.060to 2.100 GeV and 2.124 to 2.155 GeV. It is depicted in the figure as a magenta curve andshall be referred to as the data shape. Each sideband region, it may be noted, is separatedfrom the signal region by half the width of the signal region. This is done in order to avoidcontaminating the sideband region with signal.

y = (p0 + p1x)√

2.155 − x/GeV (62)

The maximum likelihood fit parameters of the MC shape and data shape are tabulatedin Tables 32 33, respectively.

111

Page 112: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

2

4

6

8

10

12

14

16

18

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

2

4

6

8

10

12

14

16

18

h_MBC_physicsEntries 138Mean 2.087RMS 0.03765

h_MBC_conver_DspEntries 1696Mean 2.092RMS 0.03909

- e+ e±s D→ ±*

s Distribution for Sum of Backgrounds in DBCmSignal MC

Continuum MC

Generic-Conversions MC

Conversions MC

Data

Figure 129: Distributions of mBC in Monte Carlo and data. The blue region is distribution ofmBC in Continuum MC. On top of that, in green, is stacked the Generic MC with Conversiontype events vetoed. The Conversion MC is stacked on top of that in red. The black curve isfitted to the sum of the aforementioned background distributions. The Signal MC is stackedon top of the background MC to show roughly what expect to see when we unblind data.Data points, blinded in the signal region, are overlaid in magenta. The magenta curve isfitted to the data in the sideband regions, as described in the text.

112

Page 113: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 34: Maximum likelihood fit parameters for the MC shape in δm distribution.

Fit Parameters Valuep0 -2.45787e+03p1 6.02306e+03p2 -2.39666e+03p3 1.65951e+03

Table 35: Maximum likelihood fit parameters for the Data shape in δm distribution.

Fit Parameters Valuep0 2.38215e+03p1 -8.89072e+03p2 2.35325e+03p3 -2.76871e+03

12.2 Determining the Shape of the δm Distribution

As we have done in the case of the mBC distribution, the distribution of δm in the data andMonte Carlo are added up for all modes and presented in Fig. 130. However, to furtherincrease the sample sizes, the width of the mBC cuts for each of the modes have been doubled.The Monte Carlo is fitted to a third order Chebyshev polynomial 63 between 0.100 GeV and0.250 GeV. It is depicted in the figure as a black curve and shall be called the MC shape.The data is also fitted to the same function, but between the disconnected domains of 0.1000to 0.1298 GeV and 0.1578 to 0.2500 GeV. It is depicted in the figure as a magenta curve andshall be referred to as the data shape. Each sideband region, it may be noted, is separatedfrom the signal region by half the width of the signal region.

y = p0 + p1T1 + p2T2 + p3T3 (63)

The maximum likelihood fit parameters of the MC shape and data shape are tabulatedin Tables 34 35, respectively.

113

Page 114: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

5

10

15

20

25

30

35

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

5

10

15

20

25

30

35

- e+ e±s D→ ±*

sm Distribution for Sum of Backgrounds in Dδh_DeltaM_physicsEntries 342Mean 0.1821RMS 0.05878

h_DeltaM_conver_DspEntries 3415Mean 0.1855RMS 0.0513Signal MC

Continuum MC

Generic-Conversions MC

Conversions MC

Data

Figure 130: Distributions of δm in Monte Carlo and data. The blue region is distribution ofδm in Continuum MC. On top of that, in green, is stacked the Generic MC with Conversiontype events vetoed. The Conversion MC is stacked on top of that in red. The black curve isfitted to the sum of the aforementioned background distributions. The Signal MC is stackedon top of the background MC to show roughly what expect to see when we unblind data.Data points, blinded in the signal region, are overlaid in magenta. The magenta curve isfitted to the data in the sideband regions, as described in the text.

114

Page 115: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12.3 Estimating the Background in the D+s → K+K−π+ Mode

Having found the generic MC shape and data shape in the mBC distribution in Section 12.1,we now proceed to scale those shapes to fit data in the sideband regions of the D+

s →K+K−π+ mode. The signal region is centered at 2.112 GeV with a width of 0.008 GeV.The sideband regions are separated from the signal region by half the width of the signalregion. The sideband regions extend from 2.060 to 2.104 GeV and 2.120 to 2.155 GeV. Themaximum likelihood fits are displayed in Fig. 131 and the values for the scale parametersare presented in Table 36.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

1

2

3

4

5

6

7

8

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

1

2

3

4

5

6

7

8

±π - K+ K→ ±s Distributions in Mode DBCm

Signal MC: 16 Entries

Continuum MC: 1 Entries

Generic MC: 4 Entries

Continuum MC: 1 Entries

Data: 11 Entries

Figure 131: The various backgrounds and signal MC expected in the vicinity of the signalregion in mBC distribution of the D+

s → K+K−π+ mode. The data, blinded in the signalregion, is overlaid in magenta points. The black and magenta curves are MC and data shapes

scaled by maximum likelihood to the points of data in the sideband regions.

Also, having found the generic MC and data shapes in the δm distribution in Section12.2, we can now scale those to fit data in the sideband regions of δm in the D+

s → K+K−π+

mode. The signal region is centered at 0.1438 GeV with a width of 0.012 GeV. The sidebandregions are separated from the signal region by half the width of the signal region. Thesideband regions extend from 0.1000 to 0.1318 GeV and 0.1558 to 0.2500 GeV. The maximumlikelihood fits are displayed in Fig. 132 and the values for the scale parameters are presentedin Table 36.

115

Page 116: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 36: Maximum likelihood fit parameters to estimate background in theD+s → K+K−π+

modeScale for Shape ValuemBC MC shape 1.03798e-01δm MC shape 9.35684e-02mBC data shape 7.75452e-02δm data shape 6.54773e-02

Table 37: Estimates of the background in the signal region of the D+s → K+K−π+ mode

using four fits outlined above.

Mode mBC δmMC shape data shape MC shape data shape

K+K−π+ 1.10 ± 0.39 1.00 ± 0.35 2.06 ± 0.49 1.61 ± 0.38

The four different fits give us four estimates of the background in the signal region.These are tabulated in Table 37. The uncertainties noted in the table are statistical and areestimated by assuming Poisson statistics on the number of data points in the sidebands. Itis calculated as given in Eq. 64 where b is the estimated number of background events andNside is the number of events observed in the data sidebands.

∆b =b√Nside

(64)

116

Page 117: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

2

4

6

8

10

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

2

4

6

8

10

±π - K+ K→ ±sm Distributions in Mode Dδ

Signal MC: 16 Entries

Continuum MC: 2 Entries

Generic MC: 4 Entries

Conversion MC: 8 Entries

Data: 24 Entries

Figure 132: The various backgrounds and signal MC expected in the vicinity of the signalregion in δm distribution of the D+

s → K+K−π+ mode. The data, blinded in the signalregion, is overlaid in magenta points. The black and magenta curves are MC and data shapes

scaled by maximum likelihood to the points of data in the sideband regions.

117

Page 118: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12.4 Estimating the Background in the D+s → KSK

+ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV with awidth of 0.014 GeV. The sideband regions extend from 2.060 to 2.098 GeV and 2.126 to2.155 GeV. The maximum likelihood fits are displayed in Fig. 133 and the values for thescale parameters are presented in Table 38.

The signal region in the δm distribution is centered at 0.1438 GeV with a width of 0.012GeV. The sideband regions extend from 0.1000 to 0.1318 GeV and 0.1558 to 0.2500 GeV. Themaximum likelihood fits are displayed in Fig. 134 and the values for the scale parametersare presented in Table 38.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

± K0S K→ ±

s Distributions in Mode DBCm

Signal MC: 3 Entries

Continuum MC: 0 Entries

Generic MC: 0 Entries

Continuum MC: 0 Entries

Data: 5 Entries

Figure 133: The various backgrounds and signal MC expected in the vicinity of the signalregion in mBC distribution of the D+

s → KSK+ mode. The data, blinded in the signal region,

is overlaid in magenta points. The black and magenta curves are MC and data shapes scaledby maximum likelihood to the points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal region. Theseare tabulated in Table 39.

118

Page 119: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 38: Maximum likelihood fit parameters to estimate background in the D+s → KSK

+

modeScale for Shape ValuemBC MC shape 4.86292e-02δm MC shape 4.29587e-02mBC data shape 5.25423e-03δm data shape 4.28206e-03

Table 39: Estimates of the background in the signal region of the D+s → KSK

+ mode usingfour fits outlined above.

Mode mBC δmMC shape data shape MC shape data shape

KSK+ 0.90 ± 0.45 0.80 ± 0.40 0.12 ± 0.12 0.10 ± 0.10

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

± K0S K→ ±

sm Distributions in Mode Dδ

Signal MC: 3 Entries

Continuum MC: 0 Entries

Generic MC: 1 Entries

Conversion MC: 2 Entries

Data: 1 Entries

Figure 134: The various backgrounds and signal MC expected in the vicinity of the signalregion in δm distribution of the D+

s → KSK+ mode. The data, blinded in the signal region,

is overlaid in magenta points. The black and magenta curves are MC and data shapes scaledby maximum likelihood to the points of data in the sideband regions.

119

Page 120: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12.5 Estimating the Background in the D+s → ηπ+; η → γγ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV with awidth of 0.016 GeV. The sideband regions extend from 2.060 to 2.096 GeV and 2.128 to2.155 GeV. The maximum likelihood fits are displayed in Fig. 135 and the values for thescale parameters are presented in Table 40.

The signal region in the δm distribution of this mode is centered at 0.1438 GeV with awidth of 0.016 GeV. The sideband regions extend from 0.1000 to 0.1278 GeV and 0.1598 to0.2500 GeV. The maximum likelihood fits are displayed in Fig. 136 and the values for thescale parameters are presented in Table 40.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

γ γ → η, η ±π → ±s Distributions in Mode DBCm

Signal MC: 2 Entries

Continuum MC: 4 Entries

Generic MC: 0 Entries

Continuum MC: 4 Entries

Data: 6 Entries

Figure 135: The various backgrounds and signal MC expected in the vicinity of the signalregion in mBC distribution of the D+

s → ηπ+; η → γγ mode. The data, blinded in the signalregion, is overlaid in magenta points. The black and magenta curves are MC and data shapes

scaled by maximum likelihood to the points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal region. Theseare tabulated in Table 41.

120

Page 121: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 40: Maximum likelihood fit parameters to estimate background in the D+s → ηπ+; η →

γγ mode

Scale for Shape ValuemBC MC shape 7.05486e-02δm MC shape 6.18039e-02mBC data shape 3.33356e-02δm data shape 2.68789e-02

Table 41: Estimates of the background in the signal region of the D+s → ηπ+; η → γγ mode

using four fits outlined above.

Mode mBC δmMC shape data shape MC shape data shape

ηπ+ 1.48 ± 0.74 1.32 ± 0.66 1.02 ± 0.39 0.79 ± 0.30

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

γ γ → η, η ±π → ±sm Distributions in Mode Dδ

Signal MC: 2 Entries

Continuum MC: 4 Entries

Generic MC: 0 Entries

Conversion MC: 1 Entries

Data: 9 Entries

Figure 136: The various backgrounds and signal MC expected in the vicinity of the signalregion in δm distribution of the D+

s → ηπ+; η → γγ mode. The data, blinded in the signalregion, is overlaid in magenta points. The black and magenta curves are MC and data shapes

scaled by maximum likelihood to the points of data in the sideband regions.

121

Page 122: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12.6 Estimating the Background in the D+s → η′π+; η′ → π+π−η; η →

γγ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV with a widthof 0.022 GeV. The sideband regions extend from 2.060 to 2.090 GeV and 2.134 to 2.155 GeV.The maximum likelihood fits are displayed in Fig. 137 and since no data point fell withinour sideband region, no fit could be made.

The signal region in the δm distribution of this mode is centered at 0.1438 GeV with awidth of 0.026 GeV. The sideband regions extend from 0.1000 to 0.1178 GeV and 0.1698 to0.2500 GeV. The maximum likelihood fits are displayed in Fig. 138.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.1

0.2

0.3

0.4

0.5

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.1

0.2

0.3

0.4

0.5

γ γ → η, η -π +π →’ η’, η ±π → ±s Distributions in Mode DBCm

Signal MC: 1 Entries

Continuum MC: 0 Entries

Generic MC: 0 Entries

Continuum MC: 0 Entries

Data: 0 Entries

Figure 137: The various backgrounds and signal MC expected in the vicinity of the signalregion in mBC distribution of the D+

s → η′π+; η′ → π+π−η; η → γγ mode. The data, blindedin the signal region, is overlaid in magenta points. The black and magenta curves are MC

and data shapes scaled by maximum likelihood to the points of data in the sideband regions.

Not much could be estimated of the background expected in the signal region. This istabulated in Table 42.

122

Page 123: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

γ γ → η, η -π +π →’ η’, η ±π → ±sm Distributions in Mode Dδ

Signal MC: 1 Entries

Continuum MC: 0 Entries

Generic MC: 0 Entries

Conversion MC: 1 Entries

Data: 1 Entries

Figure 138: The various backgrounds and signal MC expected in the vicinity of the signalregion in δm distribution of the D+

s → η′π+; η′ → π+π−η; η → γγ mode. The data, blindedin the signal region, is overlaid in magenta points. The black and magenta curves are MC

and data shapes scaled by maximum likelihood to the points of data in the sideband regions.

Table 42: Estimates of the background in the signal region of the D+s → η′π+; η′ →

π+π−η; η → γγ mode using four fits outlined above.

Mode mBC δmMC shape data shape MC shape data shape

η′π+ 0.00 + 0.68 0.00 + 0.59 0.00 + 0.34 0.00 + 0.26

123

Page 124: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 43: Maximum likelihood fit parameters to estimate background in the D+s →

K+K−π+π0 modeScale for Shape ValuemBC MC shape 1.68672e-01δm MC shape 1.52049e-01mBC data shape 1.10339e-01δm data shape 8.99227e-02

Table 44: Estimates of the background in the signal region of the D+s → K+K−π+π0 mode

using four fits outlined above.

Mode mBC δmMC shape data shape MC shape data shape

K+K−π+π0 1.78 ± 0.49 1.63 ± 0.45 2.54 ± 0.54 1.99 ± 0.43

12.7 Estimating the Background in the D+s → K+K−π+π0 Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV with awidth of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV and 2.120 to2.155 GeV. The maximum likelihood fits are displayed in Fig. 139 and the values for thescale parameters are presented in Table 43.

The signal region in the δm distribution of this mode is centered at 0.1438 GeV with awidth of 0.012 GeV. The sideband regions extend from 0.1000 to 0.1318 GeV and 0.1558 to0.2500 GeV. The maximum likelihood fits are displayed in Fig. 140 and the values for thescale parameters are presented in Table 43.

The four different fits give us four estimates of the background in the signal region. Theseare tabulated in Table 44.

124

Page 125: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

0π ±π - K+ K→ ±s Distributions in Mode DBCm

Signal MC: 6 Entries

Continuum MC: 3 Entries

Generic MC: 19 Entries

Continuum MC: 3 Entries

Data: 21 Entries

Figure 139: The various backgrounds and signal MC expected in the vicinity of the signalregion in mBC distribution of the D+

s → K+K−π+π0 mode. The data, blinded in the signalregion, is overlaid in magenta points. The black and magenta curves are MC and data shapes

scaled by maximum likelihood to the points of data in the sideband regions.

125

Page 126: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0π ±π - K+ K→ ±sm Distributions in Mode Dδ

Signal MC: 5 Entries

Continuum MC: 2 Entries

Generic MC: 18 Entries

Conversion MC: 4 Entries

Data: 31 Entries

Figure 140: The various backgrounds and signal MC expected in the vicinity of the signalregion in δm distribution of the D+

s → K+K−π+π0 mode. The data, blinded in the signalregion, is overlaid in magenta points. The black and magenta curves are MC and data shapes

scaled by maximum likelihood to the points of data in the sideband regions.

126

Page 127: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12.8 Estimating the Background in the D+s → π+π−π+ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV with awidth of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV and 2.120 to2.155 GeV. The maximum likelihood fits are displayed in Fig. 141 and the values for thescale parameters are presented in Table 45.

The signal region in the δm distribution of this mode is centered at 0.1438 GeV with awidth of 0.012 GeV. The sideband regions extend from 0.1000 to 0.1318 GeV and 0.1558 to0.2500 GeV. The maximum likelihood fits are displayed in Fig. 142 and the values for thescale parameters are presented in Table 45.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

±π -π +π → ±s Distributions in Mode DBCm

Signal MC: 4 Entries

Continuum MC: 17 Entries

Generic MC: 3 Entries

Continuum MC: 17 Entries

Data: 17 Entries

Figure 141: The various backgrounds and signal MC expected in the vicinity of the signalregion in mBC distribution of the D+

s → π+π−π+ mode. The data, blinded in the signalregion, is overlaid in magenta points. The black and magenta curves are MC and data shapes

scaled by maximum likelihood to the points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal region. Theseare tabulated in Table 46.

127

Page 128: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 45: Maximum likelihood fit parameters to estimate background in the D+s → π+π−π+

modeScale for Shape ValuemBC MC shape 1.55698e-01δm MC shape 1.40353e-01mBC data shape 1.05085e-01δm data shape 8.56409e-02

Table 46: Estimates of the background in the signal region of the D+s → π+π−π+ mode

using four fits outlined above.

Mode mBC δmMC shape data shape MC shape data shape

π+π−π+ 1.64 ± 0.48 1.50 ± 0.43 2.42 ± 0.53 1.90 ± 0.41

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

6

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

6

±π -π +π → ±sm Distributions in Mode Dδ

Signal MC: 4 Entries

Continuum MC: 11 Entries

Generic MC: 2 Entries

Conversion MC: 2 Entries

Data: 29 Entries

Figure 142: The various backgrounds and signal MC expected in the vicinity of the signalregion in δm distribution of the D+

s → π+π−π+ mode. The data, blinded in the signal region,is overlaid in magenta points. The black and magenta curves are MC and data shapes scaledby maximum likelihood to the points of data in the sideband regions.

128

Page 129: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12.9 Estimating the Background in the D+s → K∗+K∗0 Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV with awidth of 0.010 GeV. The sideband regions extend from 2.060 to 2.102 GeV and 2.122 to2.155 GeV. The maximum likelihood fits are displayed in Fig. 143 and the values for thescale parameters are presented in Table 47.

The signal region in the δm distribution of this mode is centered at 0.1438 GeV with awidth of 0.016 GeV. The sideband regions extend from 0.1000 to 0.1278 GeV and 0.1598 to0.2500 GeV. The maximum likelihood fits are displayed in Fig. 144 and the values for thescale parameters are presented in Table 47.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

*0K*pm K→ ±s Distributions in Mode DBCm

Signal MC: 2 Entries

Continuum MC: 1 Entries

Generic MC: 8 Entries

Continuum MC: 1 Entries

Data: 15 Entries

Figure 143: The various backgrounds and signal MC expected in the vicinity of the signalregion in mBC distribution of the D+

s → K∗+K∗0 mode. The data, blinded in the signalregion, is overlaid in magenta points. The black and magenta curves are MC and data shapes

scaled by maximum likelihood to the points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal region. Theseare tabulated in Table 48.

129

Page 130: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 47: Maximum likelihood fit parameters to estimate background in the D+s → K∗+K∗0

modeScale for Shape ValuemBC MC shape 1.25192e-01δm MC shape 1.12174e-01mBC data shape 7.22271e-02δm data shape 5.82375e-02

Table 48: Estimates of the background in the signal region of the D+s → K∗+K∗0 mode

using four fits outlined above.

Mode mBC δmMC shape data shape MC shape data shape

K∗+K∗0 1.65 ± 0.55 1.50 ± 0.50 2.21 ± 0.61 1.72 ± 0.48

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

*0K*pm K→ ±sm Distributions in Mode Dδ

Signal MC: 2 Entries

Continuum MC: 0 Entries

Generic MC: 5 Entries

Conversion MC: 1 Entries

Data: 20 Entries

Figure 144: The various backgrounds and signal MC expected in the vicinity of the signalregion in δm distribution of the D+

s → K∗+K∗0 mode. The data, blinded in the signal region,is overlaid in magenta points. The black and magenta curves are MC and data shapes scaledby maximum likelihood to the points of data in the sideband regions.

130

Page 131: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12.10 Estimating the Background in the D+s → ηρ+; η → γγ; ρ+ →

π+π0 Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV with awidth of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV and 2.120 to2.155 GeV. The maximum likelihood fits are displayed in Fig. 145 and the values for thescale parameters are presented in Table 49.

The signal region in the δm distribution of this mode is centered at 0.1438 GeV with awidth of 0.010 GeV. The sideband regions extend from 0.1000 to 0.1338 GeV and 0.1538 to0.2500 GeV. The maximum likelihood fits are displayed in Fig. 146 and the values for thescale parameters are presented in Table 49.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s Distributions in Mode DBCm

Signal MC: 8 Entries

Continuum MC: 24 Entries

Generic MC: 8 Entries

Continuum MC: 24 Entries

Data: 32 Entries

Figure 145: The various backgrounds and signal MC expected in the vicinity of the signalregion in mBC distribution of the D+

s → ηρ+; η → γγ; ρ+ → π+π0 mode. The data, blindedin the signal region, is overlaid in magenta points. The black and magenta curves are MC

and data shapes scaled by maximum likelihood to the points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal region. Theseare tabulated in Table 50.

131

Page 132: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 49: Maximum likelihood fit parameters to estimate background in the D+s → ηρ+; η →

γγ; ρ+ → π+π0 mode

Scale for Shape ValuemBC MC shape 2.59496e-01δm MC shape 2.33921e-01mBC data shape 1.65995e-01δm data shape 1.36454e-01

Table 50: Estimates of the background in the signal region of the D+s → ηρ+; η → γγ; ρ+ →

π+π0 mode using four fits outlined above.

Mode mBC δmMC shape data shape MC shape data shape

ηρ+ 2.74 ± 0.61 2.50 ± 0.56 3.19 ± 0.54 2.52 ± 0.43

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

0π ±π → ±ρ, γ γ → η, ±ρ η → ±sm Distributions in Mode Dδ

Signal MC: 7 Entries

Continuum MC: 22 Entries

Generic MC: 8 Entries

Conversion MC: 6 Entries

Data: 49 Entries

Figure 146: The various backgrounds and signal MC expected in the vicinity of the signalregion in δm distribution of the D+

s → ηρ+; η → γγ; ρ+ → π+π0 mode. The data, blinded inthe signal region, is overlaid in magenta points. The black and magenta curves are MC anddata shapes scaled by maximum likelihood to the points of data in the sideband regions.

132

Page 133: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12.11 Estimating the Background in the D+s → η′π+; η′ → ρ0γ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV with awidth of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV and 2.12 to 2.155GeV. The maximum likelihood fits are displayed in Fig. 147 and the values for the scaleparameters are presented in Table 51.

The signal region in the δm distribution of this mode is centered at 0.1438 GeV with awidth of 0.014 GeV. The sideband regions extend from 0.1000 to 0.1298 GeV and 0.1578 to0.2500 GeV. The maximum likelihood fits are displayed in Fig. 148 and the values for thescale parameters are presented in Table 51.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

γ 0ρ →’ η’, η ±π → ±s Distributions in Mode DBCm

Signal MC: 3 Entries

Continuum MC: 16 Entries

Generic MC: 4 Entries

Continuum MC: 16 Entries

Data: 22 Entries

Figure 147: The various backgrounds and signal MC expected in the vicinity of the signalregion in mBC distribution of the D+

s → η′π+; η′ → ρ0γ mode. The data, blinded in thesignal region, is overlaid in magenta points. The black and magenta curves are MC and data

shapes scaled by maximum likelihood to the points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal region. Theseare tabulated in Table 52.

133

Page 134: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 51: Maximum likelihood fit parameters to estimate background in the D+s →

η′π+; η′ → ρ0γ mode

Scale for Shape ValuemBC MC shape 1.81647e-01δm MC shape 1.63745e-01mBC data shape 6.66708e-02δm data shape 5.37577e-02

Table 52: Estimates of the background in the signal region of the D+s → η′π+; η′ → ρ0γ

mode using four fits outlined above.

Mode mBC δmMC shape data shape MC shape data shape

η′π+ 1.92 ± 0.51 1.75 ± 0.47 1.79 ± 0.52 1.39 ± 0.40

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

γ 0ρ →’ η’, η ±π → ±sm Distributions in Mode Dδ

Signal MC: 2 Entries

Continuum MC: 15 Entries

Generic MC: 4 Entries

Conversion MC: 2 Entries

Data: 19 Entries

Figure 148: The various backgrounds and signal MC expected in the vicinity of the signalregion in δm distribution of the D+

s → η′π+; η′ → ρ0γ mode. The data, blinded in the signalregion, is overlaid in magenta points. The black and magenta curves are MC and data shapes

scaled by maximum likelihood to the points of data in the sideband regions.

134

Page 135: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 53: Summary of the estimates for the background in the signal region for all the modeswe have studied.

Mode mBC δmBackground ± (Stat) ± (Syst)

MC Shape Data Shape MC Shape Data Shape

K+K−π+ 1.10 ± 0.39 1.00 ± 0.35 2.06 ± 0.49 1.61 ± 0.38 1.05 ± 0.37 ± 0.79KSK

+ 0.90 ± 0.45 0.80 ± 0.40 0.12 ± 0.12 0.10 ± 0.10 0.85 ± 0.43 ± 0.74ηπ+ 1.48 ± 0.74 1.32 ± 0.66 1.02 ± 0.39 0.79 ± 0.30 1.40 ± 0.70 ± 0.49

η′π+; η′ → π+π−η 0.00 + 0.68 0.00 + 0.59 0.00 + 0.34 0.00 + 0.26 0.00 + 0.63 + 0.00K+K−π+π0 1.78 ± 0.49 1.63 ± 0.45 2.54 ± 0.54 1.99 ± 0.43 1.70 ± 0.47 ± 0.56π+π−π+ 1.64 ± 0.48 1.50 ± 0.43 2.42 ± 0.53 1.90 ± 0.41 1.57 ± 0.45 ± 0.59K∗+K∗0 1.65 ± 0.55 1.50 ± 0.50 2.21 ± 0.61 1.72 ± 0.48 1.58 ± 0.53 ± 0.40ηρ+ 2.74 ± 0.61 2.50 ± 0.56 3.19 ± 0.54 2.52 ± 0.43 2.62 ± 0.59 ± 0.23

η′π+; η′ → ρ0γ 1.92 ± 0.51 1.75 ± 0.47 1.79 ± 0.52 1.39 ± 0.40 1.84 ± 0.49 ± 0.25

12.12 Summary of Estimated Background in the Various Modes

Given that we determined the shape of themBC distribution in Section 12.1 without looseningother cuts (as we did for the δm distribution), that the distribution itself is less peaked, andthat the difference between the predictions of the MC shape and data shape is lower thanin the δm distribution, we choose to use the predictions of this distribution as the primaryestimate of the backgrounds in each mode.

For each mode, we quote the mean of the MC shape and data shape predictions in themBC

distribution as the estimate of the background we expect in the signal region for that mode.The statistical errors from these two predictions are averaged to obtain the statistical errorfor this estimate. The absolute value of the difference between this estimate and the meanof the predictions from the two shapes in the δm distribution is quoted as the systematicerror. This is tabulated for each mode in Table 53

12.13 Predicted Signal Significances

It is clear from our optimization and background estimation studies that we do not expectequally significant results from each of the hadronic decay modes we are studying. Forinstance, it is clear that the D+

s → K+K−π+ decay mode will contribute more significantlythan any other mode due to the marked excess of expected signal yield over the estimatedbackground in its signal region. It therefore behooves us to establish a clear measure of signalsignificance over estimated background, calculate what signal significance we expect in eachmode based on a Monte Carlo estimate of the signal and the background we’ve estimatedfrom data in section 12.12, and converge on a group of modes to unblind together in orderto achieve the most significant result.

In order to establish a measure of our signal significance, we assume that the uncertaintyin our estimated background is shaped as a Gaussian with a standard deviation equal to thequadrature sum of the statistical and systematic uncertainties in the estimated background.

135

Page 136: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Then we calculate the Poisson probability of such a background fluctuating to higher thanthe number of events we find in the signal region on unblinding. In effect, we convolutea Gaussian smeared background with a Poisson distribution to model the probability of itfluctuating to the yield we see in data. So, if we call the background estimate b with astandard deviation of σ, and unblind our data to discover n events in the signal region, wemay estimate the probability for it to be a fluctuation of the background as P given in Eq.65. We may express this probability, P , in terms of the number of standard deviations in aGaussian that one must go out to in order to exclude a region of such probability, and wewill use this number as a measure of signal significance.

P (b, σ, n) =

∑i=∞i=n

∫ x=∞x=0

xi

i!e−[x+ 1

2( x−b

σ)2]dx

∫ x=∞x=0

e−1

2( x−b

σ)2

dx(65)

The signal significance projected for each individual hadronic decay mode of the D+s is

tabulated in Table 54. The uncertainty on the estimated background is the quadrature sumof the statistical and systematic uncertainties. The projected signal is estimated by MonteCarlo. As expected, the D+

s → K+K−π+ mode is projected to give us the highest signalsignificance among individual modes of 5.40. However, we notice that summing all modes cangive us a significance of 6.39, which is higher than any of the individual mode. We discoverthat discarding D+

s → η′π+; η′ → π+π−η, the mode of lowest significance, from the sum ofall modes gives us a higher total significances of 6.51. However, if we discard the next modeof lowest signal significance, the D+

s → ηπ+; η → γγ, our total signal significance beginsto drop. The increase in signal significance from 6.39 to 6.51 corresponds to an decrease inprobability from 1.70×10−10 to 7.34×10−11. We decide to forgo this decrease for an alreadyremarkably low value of probability in order to keep the yield in signal we expect to get fromunblinding all modes together.

136

Page 137: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 54: The projected signal significance expected for each individual hadronic decay modeof the D+

s , as well as various modes combined.

Hadronic Decay Mode Estimated Background Projected Signal Signal Significance

K+K−π+ 1.05 ± 0.37 ± 0.79 13.65 5.40KSK

+ 0.85 ± 0.43 ± 0.74 3.02 1.95ηπ+ (2) 1.40 ± 0.70 ± 0.49 1.81 1.25

η′π+; η′ → π+π−η (1) 0.00 + 0.63 + 0.00 1.20 0.98K+K−π+π0 1.70 ± 0.47 ± 0.56 4.85 2.71π+π−π+ 1.57 ± 0.45 ± 0.59 3.75 2.03K∗+K∗0 1.58 ± 0.53 ± 0.40 1.99 1.65

ηρ+; η → γγ 2.62 ± 0.59 ± 0.23 5.49 2.59η′π+ 1.84 ± 0.49 ± 0.25 2.42 1.52

Sum of All Modes 12.60 ± 2.50 ± 1.08 38.18 6.39Sum except (1) 12.60 ± 2.10 ± 1.08 36.98 6.51

Sum except (1) & (2) 11.20 ± 1.61 ± 2.25 35.17 6.35

137

Page 138: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

12.14 Check on the Modeling of Material in the Detector

In order to make sure that the Monte Carlo simulation models the material budget of thedetector that contributes towards the conversion of photons into e+e− pairs, we draw upa comparison between the number of conversion-type events in Monte Carlo and data. Toselect for conversion-type events, we look on the “wrong-side” of the ∆d0 and ∆φ0 criteria.Such a comparison is presented in Table 55. The ratio data/MC for the conversion-typeevents is found to be 1.12 ± 0.19, which makes it consistent with accurate modeling of thematerial.

Table 55: A comparison between the numbers of conversion-type events in the Monte Carloand data. The Signal MC column contains the number of events from D∗+

s → D+s e

+e−

MC that remain after our criteria that select out conversion-type events. Conversion MC

contain numbers of events from D∗+s → D+

s γ MC that remain. Generic MC contain numbersof events from Generic MC simulation where D∗+

s → D+s γ events have been rejected at the

level of event generation. Continuum MC contains numbers of light-quark phenomena thatremain after our criteria. Sum MC is the sum of the aforementioned numbers from MonteCarlo simulations. Data contains the number of events left in data. The ratio of numbers ofdata over Monte Carlo events are summarized in the data/MC column.

Hadronic Decay Mode Signal MC Conversion MC Generic MC Continuum MC Sum MC Data dataMC

K+K−π+ 3.1 ± 0.21 7.6 ± 0.69 1.1 ± 0.25 0 ± 0 8.8 ± 0.74 9 ± 3 1 ± 0.35KSK

+ 0.65 ± 0.048 2.1 ± 0.35 0.52 ± 0.17 0 ± 0 2.7 ± 0.39 2 ± 1.4 0.75 ± 0.54ηπ+ 0.38 ± 0.025 1.3 ± 0.27 0 ± 0 1.2 ± 0.49 2.5 ± 0.56 2 ± 1.4 0.81 ± 0.6

η′π+; η′ → π+π−η 0.32 ± 0.023 0.96 ± 0.24 0.1 ± 0.074 0 ± 0 1.1 ± 0.25 2 ± 1.4 1.9 ± 1.4K+K−π+π0 1.1 ± 0.11 2.2 ± 0.36 3.1 ± 0.42 0.8 ± 0.4 6.2 ± 0.69 10 ± 3.2 1.6 ± 0.54π+π−π+ 0.78 ± 0.049 2.6 ± 0.39 0.68 ± 0.19 2.4 ± 0.69 5.7 ± 0.82 10 ± 3.2 1.8 ± 0.61K∗+K∗0 0.47 ± 0.041 1.3 ± 0.28 2 ± 0.33 0.2 ± 0.2 3.5 ± 0.48 0 ± 0 0 ± nanηρ+ 1.1 ± 0.11 1.9 ± 0.33 1.2 ± 0.25 2.6 ± 0.72 5.7 ± 0.83 2 ± 1.4 0.35 ± 0.26

η′π+; η′ → ρ0γ 0.53 ± 0.038 1.6 ± 0.3 1.1 ± 0.25 2.4 ± 0.69 5.1 ± 0.8 0 ± 0 0 ± nanTotal 8.43 ± 0.28 21.56 ± 1.14 9.80 ± 0.74 9.60 ± 1.38 41.3 ± 1.95 37 ± 6.1 1.12 ± 0.19

138

Page 139: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Mode Signal Selection EfficiencyK+K−π+ 0.0729375 ± 0.00191083KSK

+ 0.0596716 ± 0.00172834ηπ+ 0.0854525 ± 0.00206827η′π+ 0.0530136 ± 0.00162907

K+K−π+π0 0.0254806 ± 0.00112941π+π−π+ 0.0992191 ± 0.00222866K∗+K∗0 0.0355927 ± 0.00133483ηρ+ 0.0315879 ± 0.00125749η′π+ 0.0637765 ± 0.0017868

Table 56: Selection efficiencies for reconstructing the D∗+s → D+

s e+e− signal in each of the

decay modes of the D+s .

13 Efficiency of Selection Criteria for reconstructing

D∗+s → D+

s e+e−

In order to estimate the branching fraction for our signal channel, D∗+s → D+

s e+e−, and

ultimately the ratio of branching fractions:

K =B(D∗+

s → D+s e

+e−)

B(D∗+s → D+

s γ)

we need to know the efficiency of our selection criteria for each of the hadronic decay modesof the D+

s meson. This is determined by applying our selection criteria on the Monte Carlosimulations of our signal in each of the modes. The efficiency for each mode may be calculatedby dividing the number of sample events remaining within the signal region of the mBC

distribution, having applied all other cuts, by the number of produced sample events. Suchdistributions of the mBC for each mode with marked signal regions are presented in Fig. 149- 157. Measurements of these selection efficiencies are presented in Table 56.

139

Page 140: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / 2

MeV

0

0.005

0.01

0.015

0.02

0.025

±π - K+ K→ ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

h_MBC_signalEntries 1783Mean 2.114RMS 0.005737

±π - K+ K→ ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

Figure 149: Signal efficiency for reconstruct-ing D∗+

s → D+s e

+e− in D+s → K+K−π+ as

represented in the mBC distribution.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / 2

MeV

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

± K0S K→ ±

s, D- e+ e±s D→ ±*

s Distribution for DBC

Signal Monte Carlo mh_MBC_signal

Entries 1335Mean 2.114RMS 0.005896

± K0S K→ ±

s, D- e+ e±s D→ ±*

s Distribution for DBC

Signal Monte Carlo m

Figure 150: Signal efficiency for reconstruct-ing D∗+

s → D+s e

+e− in D+s → KSK

+ as rep-resented in the mBC distribution.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / 2

MeV

0

0.005

0.01

0.015

0.02

0.025

0.03

γ γ → η, η ±π → ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

h_MBC_signalEntries 1913Mean 2.114RMS 0.005952

γ γ → η, η ±π → ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

Figure 151: Signal efficiency for reconstruct-ing D∗+

s → D+s e

+e− in D+s → ηπ+ as repre-

sented in the mBC distribution.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / 2

MeV

0

0.005

0.01

0.015

0.02γ γ → η, η -π +π →’ η’, η ±π → ±

s, D- e+ e±s D→ ±*

s Distribution for DBC

Signal Monte Carlo mh_MBC_signal

Entries 1141Mean 2.114RMS 0.00567

γ γ → η, η -π +π →’ η’, η ±π → ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

Figure 152: Signal efficiency for reconstruct-ing D∗+

s → D+s e

+e− in D+s → η′π+ as repre-

sented in the mBC distribution.

140

Page 141: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / 2

MeV

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0π ±π - K+ K→ ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

h_MBC_signalEntries 697Mean 2.113RMS 0.01252

0π ±π - K+ K→ ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

Figure 153: Signal efficiency for reconstruct-ing D∗+

s → D+s e

+e− in D+s → K+K−π+π0 as

represented in the mBC distribution.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / 2

MeV

0

0.005

0.01

0.015

0.02

0.025

0.03

±π -π +π → ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

h_MBC_signalEntries 2407Mean 2.114RMS 0.006755

±π -π +π → ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

Figure 154: Signal efficiency for reconstruct-ing D∗+

s → D+s e

+e− in D+s → π+π−π+ as

represented in the mBC distribution.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / 2

MeV

0

0.002

0.004

0.006

0.008

0.01

*0K*pm K→ ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

h_MBC_signalEntries 870Mean 2.113RMS 0.01063

*0K*pm K→ ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

Figure 155: Signal efficiency for reconstruct-ing D∗+

s → D+s e

+e− in D+s → K∗+K∗0 as

represented in the mBC distribution.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / 2

MeV

0

0.002

0.004

0.006

0.008

0.01

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

h_MBC_signalEntries 953Mean 2.113RMS 0.01029

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

Figure 156: Signal efficiency for reconstruct-ing D∗+

s → D+s e

+e− in D+s → ηρ+ as repre-

sented in the mBC distribution.

141

Page 142: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / 2

MeV

0

0.005

0.01

0.015

0.02

γ 0ρ →’ η’, η ±π → ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

h_MBC_signalEntries 1620Mean 2.114RMS 0.007987

γ 0ρ →’ η’, η ±π → ±s, D- e+ e±

s D→ ±*s Distribution for D

BCSignal Monte Carlo m

Figure 157: Signal efficiency for reconstructing D∗+s → D+

s e+e− inD+

s → η′π+ as representedin the mBC distribution.

142

Page 143: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

14 Signal Yields and Selection Efficiencies for D∗+s →

D+s γ

In this section, we measure the selection efficiencies and yields for D∗+s → D+

s γ where theD+

s decays through the 9 hadronic decays modes we have focused on for this analysis. For allmodes, we begin by generating a Monte Carlo sample of D∗+

s → D+s γ where the D+

s is forcedto decay through the mode we are investigating while the D−

s is allowed to decay generically.Selection criteria very similar to those used for the corresponding D∗+

s → D+s e

+e− analysisare used, though with a wider δm selection criterion. The reason for this can be seenfrom the δm distribution of the K+K−π+ channel as shown in Fig. 158. The low-endtail implies that a loss in the reconstructed energy of photons is expected. This may notbe well modeled in Monte Carlo, and to avoid possible discrepancies between Monte Carloand data in that region, a larger region containing the peak is selected. Next, we studythe mBC distribution of various backgrounds where the D∗+

s is incorrectly reconstructedusing the D−

s . These backgrounds are accounted for in data before calculating the signalyield for each mode, as summarized in Table 57 along with the signal selection efficiencies.The calculated branching fraction B(D∗+

s → D+s γ) does not include an estimate for the

systematic uncertainty arising from the reconstruction of the D+s and γ and hence is not

a result we shall publish. It is presented as a check on our method of obtaining the signalyields and selection efficiencies. We expect the uncertainty from the reconstruction of theD+

s to cancel between B(D∗+s → D+

s e+e−) and B(D∗+

s → D+s γ) and hence report this ratio.

A similar summary for the generic MC is presented in Table 58. Discrepancies between therecovered branching fractions and the value for it programmed into the Generic Monte Carlosimulation result from inconsistencies between the decay models of the D+

s in the GenericMonte Carlo and our signal Monte Carlo simulations. The manner in which we measure oursignal selection efficiency and evaluate the various backgrounds before we estimate the signalyield is described in detail for the K+K−π+ mode.

143

Page 144: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 57: Signal yields and efficiencies for D∗+s → D+

s γ from all the modes of decay of the D+s

relevant for our measurement of the ratio B(D∗+s → D+

s e+e−)/B(D∗+

s → D+s γ). B(D+

s → i)is the known branching fraction for D+

s to decay via the ith hadronic mode we are studying.εiDsγ is the efficiency of our selection criteria for the mode. N i

Dsγ is the signal yield observedfor this mode. B(D∗+

s → D+s γ) is the branching fraction for D∗+

s → D+s e

+e− inferred fromthis mode. Error [1] on the inferred branching fraction is the statistical error from the finalfit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i. Error [3]encapsulates the systematic uncertainties from the signal efficiency, the integrated luminosityand the production cross section for D∗±

s D∓s . Error [4] encapsulates the systematic error

arising from the fit. Disclaimer: This estimate of the branching fraction for D∗+s → D+

s γdoes not include systematic uncertainties from the reconstruction of the D+

s and γ, andtherefore shall not be published as an independent result. It is presented here for a swiftcheck on our method of obtaining the signal yields and efficiencies.

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ ± (stat) ± (syst) B(D∗+

s → D+s γ) Inferred

K+K−π+ 0.055 ± 0.0028 0.339 ± 0.002 9114 ± 110 ± 201 0.880 ± 0.011[1] ± 0.045[2] ± 0.035[3] ± 0.019[4]

KSK+ 0.0149 ± 0.0009 0.2573 ± 0.0004 1902 ± 57 ± 45 0.893 ± 0.027[1] ± 0.054[2] ± 0.035[3]0.021[4]

D+s → ηπ+; η → γγ 0.00621 ± 0.00083 0.3310 ± 0.0015 1037 ± 46 ± 37 0.908 ± 0.040[1] ± 0.121[2] ± 0.036[3] ± 0.032[4]

D+s → η′π+; η′ → π+π−η; η → γγ 0.00666 ± 0.00070 0.2101 ± 0.0013 691 ± 34 ± 40 0.889 ± 0.043[1] ± 0.094[2] ± 0.035[3] ± 0.052[4]

D+s → K+K−π+π0 0.056 ± 0.005 0.1225 ± 0.0010 3592 ± 118 ± 72 0.943 ± 0.031[1] ± 0.085[2] ± 0.038[3] ± 0.019[4]

D+s → π+π−π+ 0.0111 ± 0.0008 0.4583 ± 0.0018 2745 ± 93 ± 52 0.971 ± 0.033[1] ± 0.070[2] ± 0.038[3] ± 0.018[4]

D+s → K∗+K∗0 0.0164 ± 0.0012 0.1913 ± 0.0012 1570 ± 74 ± 13 0.900 ± 0.043[1] ± 0.066[2] ± 0.036[3] ± 0.007[4]

D+s → ηρ+; η → γγ; ρ+ → π+π0 0.0348 ± 0.0031 0.1839 ± 0.0013 3170 ± 161 ± 313 0.891 ± 0.045[1] ± 0.080[2] ± 0.036[3] ± 0.088[4]

D+s → η′π+; η′ → ρ0γ 0.0112 ± 0.0012 0.3171 ± 0.0015 1531 ± 80 ± 122 0.778 ± 0.041[1] ± 0.085[2] ± 0.031[3] ± 0.062[4]

Table 58: Signal yields and efficiencies for D∗+s → D+

s γ from all the modes of decay of the D+s

relevant for our measurement of the ratio B(D∗+s → D+

s e+e−)/B(D∗+

s → D+s γ) in Generic

Monte Carlo. B(D+s → i) is the known branching fraction for D+

s to decay via the ith

hadronic mode we are studying. εiDsγ is the efficiency of our selection criteria for the mode.N i

Dsγ is the signal yield observed for this mode. B(D∗+s → D+

s γ) is the branching fractionfor D∗+

s → D+s e

+e− inferred from this mode. Error [1] on the inferred branching fractionis the statistical error from the final fit. Error [2] encapsulates the systematic uncertaintiesfrom the signal efficiency and the uncertainty in the number of produced generic MC eventsas described in Section 7.1.

i (Mode) B(D+s → i) εiDsγ N i

Dsγ B(D∗+s → D+

s γ)

K+K−π+ 0.0537 0.339 ± 0.002 9364 ± 40 0.9259 ± 0.0040[1] ± 0.0043[2]

KSK+ 0.01465 0.25727 ± 0.00043 2006 ± 17 0.9581 ± 0.0083[1] ± 0.0018[2]

D+s → ηπ+; η → γγ 0.0061 0.3310 ± 0.0015 998 ± 27 0.8933 ± 0.0240[1] ± 0.0043[2]

D+s → η′π+; η′ → π+π−η; η → γγ 0.00633 0.2101 ± 0.0013 690 ± 11 0.9341 ± 0.0149[1] ± 0.0058[2]

D+s → K+K−π+π0 0.0525 0.1225 ± 0.0010 3178 ± 49 0.8894 ± 0.0138[1] ± 0.0073[2]

D+s → π+π−π+ 0.0103 0.4583 ± 0.0018 2706 ± 43 1.0327 ± 0.0162[1] ± 0.0041[2]

D+s → K∗+K∗0 0.01628 0.1913 ± 0.0012 1644 ± 22 0.9502 ± 0.0129[1] ± 0.0058[2]

D+s → ηρ+; η → γγ; ρ+ → π+π0 0.0298 0.1839 ± 0.0013 2993 ± 87 0.9829 ± 0.0284[1] ± 0.0070[2]

D+s → η′π+; η′ → ρ0γ 0.0111 0.3171 ± 0.0015 1930 ± 45 0.9886 ± 0.0231[1] ± 0.0049[2]

144

Page 145: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 59: Selection criteria for D∗+s → D+

s γ events where D+s → K+K−π+. The δm cut has

been widened to accomodate the wider peak for the signal in this distribution.Selection Criterion Cut Center ± Width

mD+s

1.969 ± 0.011 GeVδm 0.140 ± 0.02 GeV

γ Shower Energy 10 MeV to 2.0 GeVγ Hot Crystals None

Tracks Matched to γ Noneγ E9/E25 Unfolded 99 percentile

14.1 D+s → K+K−π+

We begin with a Monte Carlo signal sample of D∗+s → D+

s γ events where D+s decays to

K+K−π+ and the D−s is allowed to decay generically. The selection criteria applied are

tabulated in Table 59. Instead of the cuts on ∆d0 and ∆φ0, which are applicable to the softe+e− pair, we have some selection criteria on the γ that is kept common across all modes ofdecay of the D+

s and shall not be repeated in subsequent tables of this section. A plot of theδm distribution is presented in Fig. 158.

m (GeV)δ 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Effic

ienc

y / M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

KKpi→ s, Dγ s D→ *sm Distribution in Signal Sample of Dδ

h_DeltaM_converEntries 123021Mean 0.1328RMS 0.02796

KKpi→ s, Dγ s D→ *sm Distribution in Signal Sample of Dδ

Figure 158: Distribution of δm in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → K+K−π+. The plot is normalized so as to directly read out the efficiency ofthe δm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last selection cri-terion, we produce a plot of the mBC distribution of the signal sample, having applied all

145

Page 146: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

other criteria, as shown in Fig. 159. For a handle on the shape of the peak in this plot, weproduce one more plot – that of mBC where the D+

s and the photon are matched to theirgenerated counterparts in the Monte Carlo simulation. This plot, shown in Fig. 160, isfitted to a Crystal Ball function of the form given in Eq. 66 that has the power law shoulderon the higher side of the central peak and also contains a wide Gaussian on this shoulder.The shape of this peak is attenuated by a scaling factor and added to a background shapemodeled by Eq. 67 to fit the mBC distribution of the signal Monte Carlo between 2.08 and2.15 GeV as shown in 159. The signal efficiency of our selection criteria is read off from thisplot as the integral of the fit to the data within the marked region minus the backgroundcurve within that region.

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCmh_MBC_converEntries 131187Mean 2.112RMS 0.01754

±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCm

Figure 159: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → K+K−π+. The plot is normalized so as to directly read out the efficiency ofthe mBC selection criterion.

f(x; x0, σ0, α, n,N0, x1, σ1, N1) = N1 exp

(

−(x− x1)2

2σ21

)

+ N0 ·

A ·(

B + x−x0

σ0

)−n

, for α < x−x0

σ0

exp(

− (x−x0)2

2σ20

)

, for x−x0

σ0≤ α

(66)

where

A =(n

α

)n

exp

(

−α2

2

)

,

146

Page 147: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

±π - K+ K→ ±s

, Dγ ±s D→±*

s Distribution in Matched Signal Sample ofDBCmh_MBC_conver_matched

Entries 67120Mean 2.114RMS 0.005232

±π - K+ K→ ±s

, Dγ ±s D→±*

s Distribution in Matched Signal Sample ofDBCm

Figure 160: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → K+K−π+.

B =n

α− α

f(x; x0, p, C0, C1, C2, C3) = (C0 + C1x+ C2x2 + C3x

3)(x− x0)p, 0 < p < 1 (67)

The mBC distribution in data contain more features than just a signal peak. A structuredbackground emerges from events where our selection criteria reconstructs the D∗+

s incorrectlyusing the D−

s and the γ. The D−s would then have been reconstructed from its decay to

K+K−π−. A Monte Carlo sample where the D∗+s decays to D+

s γ but only the D−s is forced

to decay to K+K−π− is generated to help us model this background in data. For reasonsthat will soon become clear, this background is decomposed into two components. The firstincludes cases where the D−

s and the photon are matched to their generated counterpartsin Monte Carlo. The mBC distribution of these events is shown in Fig. 161. The secondcomponent includes cases where the D−

s has been matched but the photon failed to matchthe photon from the D∗+

s decay at the generator level of the Monte Carlo simulation. Theseevents have mBC distributed as shown in Fig. 162. These two components are cleft apart andfitted separately in data because there is no reason for such combinatorial backgrounds tomaintain the same ratio to one another as modeled in our privately produced Monte Carlo.

Fig. 161 is fitted to a function that contains a Crystal Ball shape with the power lawon the high side, a wide Gaussian on the high side, and another Gaussian on the lower sideof the center of the Crystal Ball as described by Eq. 68. The fit is restricted to 2.08 GeV< mBC < 2.15 GeV.

147

Page 148: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00005

0.0001

0.00015

0.0002

0.00025

±π - K+ K→ ±s Wrong Sign with Matched Photon of DBCm h_MBC_wrongConver_matched

Entries 58236Mean 2.114RMS 0.009616

±π - K+ K→ ±s Wrong Sign with Matched Photon of DBCm

Figure 161: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and where both

the D−s and the γ have been matched to their generated counterparts in the Monte Carlo

simulation. This distribution has been fitted to a shape described by Eq. 68.

f(x; x0, σ0, α, n,N0, x1, σ1, N1, x2, σ2, N2) = N1 exp

(

−(x− x1)2

2σ21

)

+ N0 ·

A ·(

B + x−x0

σ0

)−n

, for α < x−x0

σ0

exp(

− (x−x0)2

2σ20

)

, for x−x0

σ0≤ α

+ N2 exp

(

−(x− x2)2

2σ22

)

(68)

where

A =(n

α

)n

exp

(

−α2

2

)

,

B =n

α− α

Fig. 162 is fitted to a function that contains a Crystal Ball centered around the higheredge of the trapezoidal shape with the power law on the higher side of the Gaussian, andcontinued analytically on the lower side with a straight line as described by Eq. 69. The fit

148

Page 149: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

GeV2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

±π - K+ K→ ±s Wrong Sign with Unmatched Photon of DBCm h_MBC_wrongConver_unmatched

Entries 150840Mean 2.108RMS 0.01801

±π - K+ K→ ±s Wrong Sign with Unmatched Photon of DBCm

Figure 162: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and the D−

s has beenmatched to its generated counterpart but the γ has failed to match the photon from theD∗+

s decay at the generator level of the Monte Carlo simulation. This distribution has beenfitted to a shape described by Eq. 69.

is restricted to 2.08GeV < mBC < 2.15GeV

f(x; x, σ, α, n, β,N) = N0 ·

A ·(

B + x−xσ

)−n, for α < x−x

σ

exp(

− (x−x)2

2σ2

)

, for β ≥ x−xσ

≤ α

C +D x−xσ, for x−x

σ< β

(69)

where

A =(n

α

)n

exp

(

−α2

2

)

,

B =n

α− α,

C =

(

1 +β2

σ2

)

exp

(

− β2

2σ2

)

,

D =−βσ2

exp

(

− β2

2σ2

)

Having established the shapes of the signal and various backgrounds, we first studythe mBC distribution of the Generic Monte Carlo sample to see how well our fits fare inreproducing the branching fraction for B(D∗+

s → D+s γ) that had been programmed into the

149

Page 150: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

simulation. The plot of mBC and the fits of the signal and various backgrounds to it arepresented in Fig. 163. The lowest curve is a function of the form given in Eq. 67 thatmodels the continuum and featureless combinatorial backgrounds. The curve above that isa scaled version of the shape fitted to the plot in Fig. 161. Above that is a scaled version ofthe shape fitted to the plot in Fig. 162. On top of these backgrounds lies the signal peak,which is a scaled version of the shape fitted to Fig. 160. The fit is restricted to the range2.08GeV < mBC < 2.15GeV. The signal yield is measured by the integral of the highestcurve that includes the signal peak minus the integral of all the backgrounds between 2.08and 2.15 GeV. This may be combined with the efficiency of our selection criteria εiDsγ , theintegrated luminosity of data being used L, the cross section for producing D∗±

s D∓s (values

given in Section 7) and the value for B(D+s → K+K−π+) programmed into the simulation to

give us an estimate for B(D∗+s → D+

s γ as tabulated in Table 60. We find the thus estimatedvalue for B(D∗+

s → D+s γ) equal to 0.9259 ± 0.0058 to be 2.8σ away from the programmed

value of 0.942 in the Monte Carlo simulation.

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

500

1000

1500

2000

±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in generic for DBCmh_MBC_genericEntries 984743Mean 2.105RMS 0.02466

h_MBC_genericEntries 984743Mean 2.105RMS 0.02466

±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in generic for DBCm

Figure 163: Distribution of mBC of D∗+s → D+

s γ events where D+s → K+K−π+ in 586 pb−1

of Generic Monte Carlo.

We present the distribution of mBC in data in Fig. 164. It is fitted to the signal andbackground shapes as described in the previous paragraph. The ratio of amplitudes forthe signal peak shape to the shape for the incorrectly reconstructed D∗+

s with the photonstrictly unmatched (second curve from the top) is carried over as a constant from the fitto the generic MC. A systematic uncertainty is evaluated by repeating this fit without suchconstraints on the ratio. The signal yield is measured by subtracting the integral of allthe backgrounds from the integral of the total fit between 2.08 and 2.15 GeV, as describedearlier. This, again, may be combined with the efficiency of our selection criteria εiDsγ, the

150

Page 151: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 60: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] encapsulates the systematic uncertainties from the signal efficiencyand the uncertainty in the number of produced generic MC events.

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ B(D∗+

s → D+s γ) Inferred

K+K−π+ 0.0537 0.339 ± 0.002 9364 ± 40 0.9259 ± 0.0040[1] ± 0.0043[2]

integrated luminosity of data being used L, the cross section for producing D∗±s D∓

s andthe currently accepted value for B(D+

s → K+K−π+) from the Review of Particle Physics2008 [2] to give us an estimate for B(D∗+

s → D+s γ) as tabulated in Table 61. We find

the estimated value for B(D∗+s → D+

s γ) equal to 0.880 ± 0.060 to be roughly 1σ awayfrom the currently accepted value of 0.942 ± 0.007. We shall not, however, publish thismeasurement of B(D∗+

s → D+s γ) as it is not what we set out to do. We expect systematic

uncertainties arising from the reconstruction of the D+s to cancel between measurements of

B(D∗+s → D+

s e+e−) and B(D∗+

s → D+s γ), which is why we set out to report the ratio of

branching fractions B(D∗+s → D+

s e+e−)/B(D∗+

s → D+s γ). Arriving at a result for this ratio

will only require us to report the signal yields and efficiencies for D∗+s → D+

s γ for each ofthe decay modes of the D+

s .

(GeV)BCM2.08 2.09 2.1 2.11 2.12 2.13 2.14 2.15

Num

ber o

f Eve

nts

/ MeV

200400

600

800

10001200

1400

16001800

2000

2200

Figure 164: Distribution of mBC of D∗+s → D+

s γ events where D+s → K+K−π+ in 586 pb−1

of data.

151

Page 152: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 61: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i.Error [3] encapsulates the systematic uncertainties from the signal efficiency, the integratedluminosity and the production cross section forD∗±

s D∓s . Error [4] encapsulates the systematic

error arising from the fit.i (Decay Mode of D+

s ) B(D+s → i) εiDsγ N i

Dsγ ± (stat) ± (syst) B(D∗+s → D+

s γ) Inferred

K+K−π+ 0.055 ± 0.0028 0.339 ± 0.002 9114 ± 110 ± 201 0.880 ± 0.011[1] ± 0.045[2] ± 0.035[3] ± 0.019[4]

152

Page 153: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 62: Selection criteria for D∗+s → D+

s γ events where D+s → KSK

+. The δm cut hasbeen widened to accomodate the wider peak for the signal in this distribution.

Selection Criterion Cut Center ± WidthmD+

s1.969 ± 0.008 GeV

δm 0.140 ± 0.02 GeV

14.2 D+s → KSK

+

We begin with a Monte Carlo signal sample of D∗+s → D+

s γ events where D+s → KSK

+ andthe D−

s is allowed to decay generically. The selection criteria applied are tabulated in Table62. Fig. 165 depicts the δm distribution of this signal sample and the region selected by ourcriterion.

m (GeV)δ 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Effic

ienc

y / M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

± K0S K→ ±

s, Dγ±s D→

±*sm Distribution in Signal Sample of Dδ

h_DeltaM_converEntries 1228275Mean 0.1306RMS 0.03036

± K0S K→ ±

s, Dγ±s D→

±*sm Distribution in Signal Sample of Dδ

Figure 165: Distribution of δm in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → KSK+. The plot is normalized so as to directly read out the efficiency of the

δm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last selection cri-terion, we produce a plot of the mBC distribution of the signal sample, having applied allother criteria, as shown in Fig. 166. We extract the shape of the peak from the plot of mBC

where the D+s and the photon are matched to their generated counterparts in the Monte

Carlo simulation as shown in Fig. 167. The equations that parameterize all fits and therange they are fitted in are identical to those used in the K+K−π+ mode.

Structured backgrounds arising from incorrectly reconstructed D∗+s are simulated as done

previously for the K+K−π+ mode. Fig. 168 shows the structure of the D−s matched and

153

Page 154: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.01

0.02

0.03

0.04

0.05

± K0S K→ ±

s, Dγ ±s D→

±*s Distribution in Signal Sample of DBCm

h_MBC_converEntries 837283Mean 2.113RMS 0.01593

± K0S K→ ±

s, Dγ ±s D→

±*s Distribution in Signal Sample of DBCm

Figure 166: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → KSK+. The plot is normalized so as to directly read out the efficiency of the

mBC selection criterion.

Table 63: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] encapsulates the systematic uncertainties from the signal efficiencyand the uncertainty in the number of produced generic MC events.

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ B(D∗+

s → D+s γ) Inferred

KSK+ 0.01465 0.25727 ± 0.00043 2006 ± 17 0.9581 ± 0.0083[1] ± 0.0018[2]

photon matched background, and our fit to parameterize this shape. The background withthe D−

s matched and a photon that failed matching is shown in Fig. 169 along with our fitto parameterize the shape.

As a check on how well our background and signal estimation performs, we present theoverall fit to generic MC, as described for the K+K−π+ mode, in Fig. 170. Our measurementof the signal selection efficiency and the signal yield is presented in Table 63. We find thethus estimated value for B(D∗+

s → D+s γ) equal to 0.9616 ± 0.0085 to be 2.3σ away from the

programmed value of 0.942 in the Monte Carlo simulation.We present the distribution of mBC in data and our fits to estimate the signal yield over

the backgrounds, as described for the K+K−π+ mode, in Fig. 164. Our measurements ofthe signal efficiency and signal yield are presented in Table 64. We find the estimated valuefor B(D∗+

s → D+s γ) equal to 0.893 ± 0.073 to be roughly 0.7σ away from the currently

154

Page 155: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

± K0S K→ ±

s, Dγ ±s D→

±*s Distribution in Matched Signal Sample ofDBCm

h_MBC_conver_matched

Entries 485944Mean 2.114RMS 0.005168

± K0S K→ ±

s, Dγ ±s D→

±*s Distribution in Matched Signal Sample ofDBCm

Figure 167: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → KSK+.

accepted value of 0.942 ± 0.007.

Table 64: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i.Error [3] encapsulates the systematic uncertainties from the signal efficiency, the integratedluminosity and the production cross section forD∗±

s D∓s . Error [4] encapsulates the systematic

error arising from the fit.i (Decay Mode of D+

s ) B(D+s → i) εiDsγ N i

Dsγ B(D∗+s → D+

s γ) Inferred

KSK+ 0.0149 ± 0.0009 0.2573 ± 0.0004 1902 ± 57 ± 45 0.893 ± 0.027[1] ± 0.054[2] ± 0.035[3]0.021[4]

155

Page 156: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

± K0S K→ ±

s Wrong Sign with Matched Photon of DBCmh_MBC_wrongConver_matched

Entries 12498Mean 2.114RMS 0.009609

± K0S K→ ±

s Wrong Sign with Matched Photon of DBCm

Figure 168: Combinatorial background in the mBC distribution consisting of events wherethe D∗+

s has been reconstructed out of the D−s and the γ, and where both the D−

s and theγ have been matched to their generated counterparts in the Monte Carlo simulation. Thisdistribution has been fitted to a shape described by Eq. 68.

156

Page 157: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

GeV2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

± K0S K→ ±

s Wrong Sign with Unmatched Photon of DBCmh_MBC_wrongConver_unmatched

Entries 25672Mean 2.11RMS 0.01763

± K0S K→ ±

s Wrong Sign with Unmatched Photon of DBCm

Figure 169: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and the D−

s has beenmatched to its generated counterpart but the γ has failed to match the photon from theD∗+

s decay at the generator level of the Monte Carlo simulation. This distribution has beenfitted to a shape described by Eq. 69.

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

100

200

300

400

500

± K0S K→ ±

s, Dγ ±s D→

±*s Distribution in generic for DBCm

h_MBC_genericEntries 165846Mean 2.106RMS 0.02408

h_MBC_genericEntries 165846Mean 2.106RMS 0.02408

± K0S K→ ±

s, Dγ ±s D→

±*s Distribution in generic for DBCm

Figure 170: Distribution of mBC of D∗+s → D+

s γ events where D+s → KSK

+ in 586 pb−1 ofGeneric Monte Carlo.

157

Page 158: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

100

200

300

400

500

± K0S K→ ±

s, Dγ ±s D→

±*s Distribution in Data for DBCm

h_MBC_physicsEntries 9954Mean 2.106RMS 0.02385

± K0S K→ ±

s, Dγ ±s D→

±*s Distribution in Data for DBCm

Figure 171: Distribution of mBC of D∗+s → D+

s γ events where D+s → KSK

+ in 586 pb−1 ofdata.

158

Page 159: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 65: Selection criteria for D∗+s → D+

s γ events where D+s → ηπ+; η → γγ. The δm cut

has been widened to accomodate the wider peak for the signal in this distribution.Selection Criterion Cut Center ± Width

mD+s

1.969 ± 0.016 GeVδm 0.140 ± 0.02 GeV

14.3 D+s → ηπ+; η → γγ

We begin with a Monte Carlo signal sample of D∗+s → D+

s γ events where D+s → ηπ+; η → γγ

and the D−s is allowed to decay generically. The selection criteria applied are tabulated in

Table 65. Fig. 172 depicts the δm distribution of this signal sample and the region selectedby our criterion.

m (GeV)δ 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Effic

ienc

y / M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022γ γ → η, η ±π → ±

s, Dγ±s D→

±*sm Distribution in Signal Sample of Dδ

h_DeltaM_converEntries 168203Mean 0.1301RMS 0.03074

γ γ → η, η ±π → ±s, Dγ±

s D→±*

sm Distribution in Signal Sample of Dδ

Figure 172: Distribution of δm in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → ηπ+; η → γγ. The plot is normalized so as to directly read out the efficiencyof the δm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last selection cri-terion, we produce a plot of the mBC distribution of the signal sample, having applied allother criteria, as shown in Fig. 173. We extract the shape of the peak from the plot of mBC

where the D+s and the photon are matched to their generated counterparts in the Monte

Carlo simulation as shown in Fig. 174. The equations that parameterize all fits and therange they are fitted in are identical to those used in the K+K−π+ mode.

Structured backgrounds arising from incorrectly reconstructed D∗+s are simulated as done

previously for the K+K−π+ mode. Fig. 175 shows the structure of the D−s matched and

159

Page 160: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

γ γ → η, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCmh_MBC_converEntries 108925Mean 2.113RMS 0.01554

γ γ → η, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCm

Figure 173: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → ηπ+; η → γγ. The plot is normalized so as to directly read out the efficiencyof the mBC selection criterion from the area under the fit within the signal region.

Table 66: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical er-ror from the final fit. Error [2] encapsulates the systematic uncertainties from the signalefficiency, the integrated luminosity and the production cross section for D∗±

s D∓s .

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ B(D∗+

s → D+s γ) Inferred

D+s → ηπ+; η → γγ 0.0061 0.3310 ± 0.0015 998 ± 27 0.8933 ± 0.0240[1] ± 0.0043[2]

photon matched background, and our fit to parameterize this shape. The background withthe D−

s matched and a photon that failed matching is shown in Fig. 176 along with our fitto parameterize the shape.

As a check on how well our background and signal estimation performs, we present theoverall fit to generic MC, as described for the K+K−π+ mode, in Fig. 177. Our measurementof the signal selection efficiency and the signal yield is presented in Table 66. We find thethus estimated value for B(D∗+

s → D+s γ) equal to 0.893 ± 0.024 to be 2σ away from the

programmed value of 0.942 in the Monte Carlo simulation.We present the distribution of mBC in data and our fits to estimate the signal yield over

the backgrounds, as described for the K+K−π+ mode, in Fig. 178. Our measurements ofthe signal efficiency and signal yield are presented in Table 67. We find the estimated valuefor B(D∗+

s → D+s γ) equal to 0.908 ± 0.136 to be roughly 0.25σ away from the currently

160

Page 161: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045γ γ → η, η ±π → ±

s, Dγ ±s D→

±*s Distribution in Matched Signal Sample ofDBCm

h_MBC_conver_matched

Entries 65111Mean 2.114RMS 0.005679

γ γ → η, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Matched Signal Sample ofDBCm

Figure 174: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → ηπ+; η → γγ.

accepted value of 0.942 ± 0.007.

Table 67: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i.Error [3] encapsulates the systematic uncertainties from the signal efficiency, the integratedluminosity and the production cross section forD∗±

s D∓s . Error [4] encapsulates the systematic

error arising from the fit.i (Decay Mode of D+

s ) B(D+s → i) εiDsγ N i

Dsγ B(D∗+s → D+

s γ) Inferred

D+s → ηπ+; η → γγ 0.00621 ± 0.00083 0.3310 ± 0.0015 1037 ± 46 ± 37 0.908 ± 0.040[1] ± 0.121[2] ± 0.036[3] ± 0.032[4]

161

Page 162: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

γ γ → η, η ±π → ±s Wrong Sign with Matched Photon of DBCm h_MBC_wrongConver_matched

Entries 6635Mean 2.114RMS 0.009729

γ γ → η, η ±π → ±s Wrong Sign with Matched Photon of DBCm

Figure 175: Combinatorial background in the mBC distribution consisting of events wherethe D∗+

s has been reconstructed out of the D−s and the γ, and where both the D−

s and theγ have been matched to their generated counterparts in the Monte Carlo simulation. Thisdistribution has been fitted to a shape described by Eq. 68.

162

Page 163: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

GeV2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

γ γ → η, η ±π → ±s Wrong Sign with Unmatched Photon of DBCm h_MBC_wrongConver_unmatched

Entries 11435Mean 2.11RMS 0.01772

γ γ → η, η ±π → ±s Wrong Sign with Unmatched Photon of DBCm

Figure 176: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and the D−

s has beenmatched to its generated counterpart but the γ has failed to match the photon from theD∗+

s decay at the generator level of the Monte Carlo simulation. This distribution has beenfitted to a shape described by Eq. 69.

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

50

100

150

200

250

γ γ → η, η ±π → ±s, Dγ ±

s D→±*

s Distribution in generic for DBCmh_MBC_genericEntries 101863Mean 2.103RMS 0.02774

h_MBC_genericEntries 101863Mean 2.103RMS 0.02774

γ γ → η, η ±π → ±s, Dγ ±

s D→±*

s Distribution in generic for DBCm

Figure 177: Distribution of mBC of D∗+s → D+

s γ events where D+s → ηπ+; η → γγ in 586

pb−1 of Generic Monte Carlo.

163

Page 164: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

50

100

150

200

250

γ γ → η, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Data for DBCmh_MBC_physicsEntries 9048Mean 2.103RMS 0.02694

γ γ → η, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Data for DBCm

Figure 178: Distribution of mBC of D∗+s → D+

s γ events where D+s → ηπ+; η → γγ in 586

pb−1 of data.

164

Page 165: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 68: Selection criteria for D∗+s → D+

s γ events where D+s → η′π+; η′ → π+π−η; η → γγ.

The δm cut has been widened to accomodate the wider peak for the signal in this distribution.Selection Criterion Cut Center ± Width

mD+s

1.969 ± 0.011 GeVδm 0.140 ± 0.020 GeV

14.4 D+s → η′π+; η′ → π+π−η; η → γγ

We begin with a Monte Carlo signal sample of D∗+s → D+

s γ events where D+s → η′π+; η′ →

π+π−η; η → γγ and the D−s is allowed to decay generically. The selection criteria applied

are tabulated in Table 68. Fig. 179 depicts the δm distribution of this signal sample andthe region selected by our criterion.

m (GeV)δ 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Effic

ienc

y / M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδh_DeltaM_converEntries 128441Mean 0.1274RMS 0.03308

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδ

Figure 179: Distribution of δm in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → η′π+; η′ → π+π−η; η → γγ. The plot is normalized so as to directly read outthe efficiency of the δm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last selection cri-terion, we produce a plot of the mBC distribution of the signal sample, having applied allother criteria, as shown in Fig. 180. We extract the shape of the peak from the plot of mBC

where the D+s and the photon are matched to their generated counterparts in the Monte

Carlo simulation as shown in Fig. 181. The equations that parameterize all fits and therange they are fitted in are identical to those used in the K+K−π+ mode.

Structured backgrounds arising from incorrectly reconstructed D∗+s are simulated as done

previously for the K+K−π+ mode. Fig. 182 shows the structure of the D−s matched and

165

Page 166: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.005

0.01

0.015

0.02

0.025

0.03

γ γ → η, η -π +π →’ η’, η ±π → ±s

, Dγ ±s D→

±*

s Distribution in Signal Sample of DBCm

h_MBC_converEntries 62602Mean 2.113RMS 0.01554

γ γ → η, η -π +π →’ η’, η ±π → ±s

, Dγ ±s D→

±*

s Distribution in Signal Sample of DBCm

Figure 180: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → η′π+; η′ → π+π−η; η → γγ. The plot is normalized so as to directly read outthe efficiency of the mBC selection criterion from the area under the fit within the signalregion.

photon matched background, and our fit to parameterize this shape. The background withthe D−

s matched and a photon that failed matching is shown in Fig. 183 along with our fitto parameterize the shape.

As a check on how well our background and signal estimation performs, we present theoverall fit to generic MC, as described for the K+K−π+ mode, in Fig. 184. Our measurementof the signal selection efficiency and the signal yield is presented in Table 69. We find thethus estimated value for B(D∗+

s → D+s γ) equal to 0.934 ± 0.016 to be 0.5σ away from the

programmed value of 0.942 in the Monte Carlo simulation.We present the distribution of mBC in data and our fits to estimate the signal yield over

the backgrounds, as described for the K+K−π+ mode, in Fig. 185. Our measurements of

Table 69: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical er-ror from the final fit. Error [2] encapsulates the systematic uncertainties from the signalefficiency, the integrated luminosity and the production cross section for D∗±

s D∓s .

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ B(D∗+

s → D+s γ) Inferred

D+s → η′π+; η′ → π+π−η; η → γγ 0.00633 0.2101 ± 0.0013 690 ± 11 0.9341 ± 0.0149[1] ± 0.0058[2]

166

Page 167: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.005

0.01

0.015

0.02

0.025

γ γ → η, η -π +π →’ η’, η ±π → ±s

, Dγ ±s D→

±*s

Distribution in Matched Signal Sample ofDBCmh_MBC_conver_matched

Entries 37270Mean 2.114RMS 0.005654

γ γ → η, η -π +π →’ η’, η ±π → ±s

, Dγ ±s D→

±*s

Distribution in Matched Signal Sample ofDBCm

Figure 181: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → η′π+; η′ → π+π−η; η → γγ.

the signal efficiency and signal yield are presented in Table 70. We find the estimated valuefor B(D∗+

s → D+s γ) equal to 0.889 ± 0.121 to be roughly 0.44σ away from the currently

accepted value of 0.942 ± 0.007.

Table 70: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i.Error [3] encapsulates the systematic uncertainties from the signal efficiency, the integratedluminosity and the production cross section forD∗±

s D∓s . Error [4] encapsulates the systematic

error arising from the fit.i (Decay Mode of D+

s ) B(D+s → i) εiDsγ N i

Dsγ B(D∗+s → D+

s γ) Inferred

D+s → η′π+; η′ → π+π−η; η → γγ 0.00666 ± 0.00070 0.2101 ± 0.0013 691 ± 34 ± 40 0.889 ± 0.043[1] ± 0.094[2] ± 0.035[3] ± 0.052[4]

167

Page 168: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.000005

0.00001

0.000015

0.00002

γ γ → η, η -π +π →’ η’, η ±π → ±s Wrong Sign with Matched Photon of DBCm

h_MBC_wrongConver_matched

Entries 4171Mean 2.114RMS 0.009844

γ γ → η, η -π +π →’ η’, η ±π → ±s Wrong Sign with Matched Photon of DBCm

Figure 182: Combinatorial background in the mBC distribution consisting of events wherethe D∗+

s has been reconstructed out of the D−s and the γ, and where both the D−

s and theγ have been matched to their generated counterparts in the Monte Carlo simulation. Thisdistribution has been fitted to a shape described by Eq. 68.

168

Page 169: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

GeV2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.000005

0.00001

0.000015

0.00002

0.000025

γ γ → η, η -π +π →’ η’, η ±π → ±s Wrong Sign with Unmatched Photon of DBCm

h_MBC_wrongConver_unmatched

Entries 8087Mean 2.11RMS 0.01773

γ γ → η, η -π +π →’ η’, η ±π → ±s Wrong Sign with Unmatched Photon of DBCm

Figure 183: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and the D−

s has beenmatched to its generated counterpart but the γ has failed to match the photon from theD∗+

s decay at the generator level of the Monte Carlo simulation. This distribution has beenfitted to a shape described by Eq. 69.

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

20

40

60

80

100

120

γ γ → η, η -π +π →’ η’, η ±π → ±s

, Dγ ±s D→±*

s Distribution in generic for DBCmh_MBC_genericEntries 44473Mean 2.11RMS 0.02106

h_MBC_genericEntries 44473Mean 2.11RMS 0.02106

γ γ → η, η -π +π →’ η’, η ±π → ±s

, Dγ ±s D→±*

s Distribution in generic for DBCm

Figure 184: Distribution of mBC of D∗+s → D+

s γ events where D+s → η′π+; η′ → π+π−η; η →

γγ in 586 pb−1 of Generic Monte Carlo.

169

Page 170: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

20

40

60

80

100

120

140

γ γ → η, η -π +π →’ η’, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Data for DBCmh_MBC_physicsEntries 2410Mean 2.11RMS 0.01924

γ γ → η, η -π +π →’ η’, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Data for DBCm

Figure 185: Distribution of mBC of D∗+s → D+

s γ events where D+s → η′π+; η′ → π+π−η; η →

γγ in 586 pb−1 of data.

170

Page 171: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 71: Selection criteria for D∗+s → D+

s γ events where D+s → K+K−π+π0. The δm cut

has been widened to accomodate the wider peak for the signal in this distribution.Selection Criterion Cut Center ± Width

mD+s

1.969 ± 0.010 GeVδm 0.140 ± 0.020 GeV

14.5 D+s → K+K−π+π0

We begin with a Monte Carlo signal sample of D∗+s → D+

s γ events where D+s → K+K−π+π0

and the D−s is allowed to decay generically. The selection criteria applied are tabulated in

Table 71. Fig. 186 depicts the δm distribution of this signal sample and the region selectedby our criterion.

m (GeV)δ 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Effic

ienc

y / M

eV

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδh_DeltaM_converEntries 52730Mean 0.1299RMS 0.03119

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδ

Figure 186: Distribution of δm in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → K+K−π+π0. The plot is normalized so as to directly read out the efficiency ofthe δm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last selection cri-terion, we produce a plot of the mBC distribution of the signal sample, having applied allother criteria, as shown in Fig. 187. We extract the shape of the peak from the plot of mBC

where the D+s and the photon are matched to their generated counterparts in the Monte

Carlo simulation as shown in Fig. 188. The equations that parameterize all fits and therange they are fitted in are identical to those used in the K+K−π+ mode.

Structured backgrounds arising from incorrectly reconstructed D∗+s are simulated as done

previously for the K+K−π+ mode. Fig. 189 shows the structure of the D−s matched and

171

Page 172: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0π ±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCmh_MBC_converEntries 65905Mean 2.11RMS 0.02151

0π ±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCm

Figure 187: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → K+K−π+π0. The plot is normalized so as to directly read out the efficiency ofthe mBC selection criterion from the area under the fit within the signal region.

Table 72: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical er-ror from the final fit. Error [2] encapsulates the systematic uncertainties from the signalefficiency, the integrated luminosity and the production cross section for D∗±

s D∓s .

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ B(D∗+

s → D+s γ) Inferred

D+s → K+K−π+π0 0.0525 0.1225 ± 0.0010 3178 ± 49 0.8894 ± 0.0138[1] ± 0.0073[2]

photon matched background, and our fit to parameterize this shape. The background withthe D−

s matched and a photon that failed matching is shown in Fig. 190 along with our fitto parameterize the shape.

As a check on how well our background and signal estimation performs, we present theoverall fit to generic MC, as described for the K+K−π+ mode, in Fig. 191. Our measurementof the signal selection efficiency and the signal yield is presented in Table 72. We find thethus estimated value for B(D∗+

s → D+s γ) equal to 0.889 ± 0.016 to be 3.3σ away from the

programmed value of 0.942 in the Monte Carlo simulation.We present the distribution of mBC in data and our fits to estimate the signal yield over

the backgrounds, as described for the K+K−π+ mode, in Fig. 192. Our measurements ofthe signal efficiency and signal yield are presented in Table 73. We find the estimated valuefor B(D∗+

s → D+s γ) equal to 0.943 ± 0.100 to be roughly 0.01σ away from the currently

172

Page 173: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0π ±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in Matched Signal Sample ofDBCmh_MBC_conver_matched

Entries 23505Mean 2.114RMS 0.006885

0π ±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in Matched Signal Sample ofDBCm

Figure 188: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → K+K−π+π0.

accepted value of 0.942 ± 0.007.

Table 73: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i.Error [3] encapsulates the systematic uncertainties from the signal efficiency, the integratedluminosity and the production cross section forD∗±

s D∓s . Error [4] encapsulates the systematic

error arising from the fit.i (Decay Mode of D+

s ) B(D+s → i) εiDsγ N i

Dsγ B(D∗+s → D+

s γ) Inferred

D+s → K+K−π+π0 0.056 ± 0.005 0.1225 ± 0.0010 3592 ± 118 ± 72 0.943 ± 0.031[1] ± 0.085[2] ± 0.038[3] ± 0.019[4]

173

Page 174: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00002

0.00004

0.00006

0.00008

0π ±π - K+ K→ ±s Wrong Sign with Matched Photon of DBCm h_MBC_wrongConver_matched

Entries 19753Mean 2.113RMS 0.01085

0π ±π - K+ K→ ±s Wrong Sign with Matched Photon of DBCm

Figure 189: Combinatorial background in the mBC distribution consisting of events wherethe D∗+

s has been reconstructed out of the D−s and the γ, and where both the D−

s and theγ have been matched to their generated counterparts in the Monte Carlo simulation. Thisdistribution has been fitted to a shape described by Eq. 68.

174

Page 175: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

GeV2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0π ±π - K+ K→ ±s

Wrong Sign with Unmatched Photon of DBCm h_MBC_wrongConver_unmatched

Entries 59537Mean 2.106RMS 0.01931

0π ±π - K+ K→ ±s

Wrong Sign with Unmatched Photon of DBCm

Figure 190: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and the D−

s has beenmatched to its generated counterpart but the γ has failed to match the photon from theD∗+

s decay at the generator level of the Monte Carlo simulation. This distribution has beenfitted to a shape described by Eq. 69.

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

200

400

600

800

1000

1200

1400

0π ±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in generic for DBCmh_MBC_genericEntries 2012532Mean 2.099RMS 0.02981

h_MBC_genericEntries 2012532Mean 2.099RMS 0.02981

0π ±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in generic for DBCm

Figure 191: Distribution of mBC of D∗+s → D+

s γ events where D+s → K+K−π+π0 in 586

pb−1 of Generic Monte Carlo.

175

Page 176: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

200

400

600

800

1000

1200

1400

1600

1800

0π ±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in Data for DBCmh_MBC_physicsEntries 131164Mean 2.099RMS 0.02989

0π ±π - K+ K→ ±s, Dγ ±

s D→±*

s Distribution in Data for DBCm

Figure 192: Distribution of mBC of D∗+s → D+

s γ events where D+s → K+K−π+π0 in 586

pb−1 of data.

176

Page 177: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 74: Selection criteria for D∗+s → D+

s γ events where D+s → π+π−π+. The δm cut has

been widened to accomodate the wider peak for the signal in this distribution.Selection Criterion Cut Center ± Width

mD+s

1.969 ± 0.012 GeVδm 0.140 ± 0.020 GeV

14.6 D+s → π+π−π+

We begin with a Monte Carlo signal sample of D∗+s → D+

s γ events where D+s → π+π−π+

and the D−s is allowed to decay generically. The selection criteria applied are tabulated in

Table 74. Fig. 193 depicts the δm distribution of this signal sample and shows why thecorresponding selection criterion had to be widened relative to the D∗+

s → D+s e

+e− signalselection.

m (GeV)δ 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Effic

ienc

y / M

eV

0

0.005

0.01

0.015

0.02

0.025

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδh_DeltaM_converEntries 160419Mean 0.1341RMS 0.02688

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδ

Figure 193: Distribution of δm in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → π+π−π+. The plot is normalized so as to directly read out the efficiency of theδm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last selection cri-terion, we produce a plot of the mBC distribution of the signal sample, having applied allother criteria, as shown in Fig. 194. We extract the shape of the peak from the plot of mBC

where the D+s and the photon are matched to their generated counterparts in the Monte

Carlo simulation as shown in Fig. 195. The equations that parameterize all fits and therange they are fitted in are identical to those used in the K+K−π+ mode.

Structured backgrounds arising from incorrectly reconstructed D∗+s are simulated as done

177

Page 178: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

±π -π +π → ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCmh_MBC_converEntries 158636Mean 2.112RMS 0.01631

±π -π +π → ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCm

Figure 194: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → π+π−π+. The plot is normalized so as to directly read out the efficiency of themBC selection criterion from the area under the fit within the signal region.

Table 75: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical er-ror from the final fit. Error [2] encapsulates the systematic uncertainties from the signalefficiency, the integrated luminosity and the production cross section for D∗±

s D∓s .

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ B(D∗+

s → D+s γ) Inferred

D+s → π+π−π+ 0.0103 0.4583 ± 0.0018 2706 ± 43 1.0327 ± 0.0162[1] ± 0.0041[2]

previously for the K+K−π+ mode. Fig. 196 shows the structure of the D−s matched and

photon matched background, and our fit to parameterize this shape. The background withthe D−

s matched and a photon that failed matching is shown in Fig. 197 along with our fitto parameterize the shape.

As a check on how well our background and signal estimation performs, we present theoverall fit to generic MC, as described for the K+K−π+ mode, in Fig. 198. Our measurementof the signal selection efficiency and the signal yield is presented in Table 75. We find thethus estimated value for B(D∗+

s → D+s γ) equal to 1.0327 ± 0.0167 to be 5.4σ away from the

programmed value of 0.942 in the Monte Carlo simulation.We present the distribution of mBC in data and our fits to estimate the signal yield over

the backgrounds, as described for the K+K−π+ mode, in Fig. 199. Our measurements ofthe signal efficiency and signal yield are presented in Table 76. We find the estimated value

178

Page 179: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

±π -π +π → ±s

, Dγ ±s D→±*

s Distribution in Matched Signal Sample ofDBCmh_MBC_conver_matched

Entries 90795Mean 2.114RMS 0.005252

±π -π +π → ±s

, Dγ ±s D→±*

s Distribution in Matched Signal Sample ofDBCm

Figure 195: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → π+π−π+.

for B(D∗+s → D+

s γ) equal to 0.971 ± 0.088 to be roughly 0.3σ away from the currentlyaccepted value of 0.942 ± 0.007.

Table 76: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i.Error [3] encapsulates the systematic uncertainties from the signal efficiency, the integratedluminosity and the production cross section forD∗±

s D∓s . Error [4] encapsulates the systematic

error arising from the fit.i (Decay Mode of D+

s ) B(D+s → i) εiDsγ N i

Dsγ B(D∗+s → D+

s γ) Inferred

D+s → π+π−π+ 0.0111 ± 0.0008 0.4583 ± 0.0018 2745 ± 93 ± 52 0.971 ± 0.033[1] ± 0.070[2] ± 0.038[3] ± 0.018[4]

179

Page 180: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

±π -π +π → ±s

Wrong Sign with Matched Photon of DBCm h_MBC_wrongConver_matched

Entries 16878Mean 2.113RMS 0.009599

±π -π +π → ±s

Wrong Sign with Matched Photon of DBCm

Figure 196: Combinatorial background in the mBC distribution consisting of events wherethe D∗+

s has been reconstructed out of the D−s and the γ, and where both the D−

s and theγ have been matched to their generated counterparts in the Monte Carlo simulation. Thisdistribution has been fitted to a shape described by Eq. 68.

180

Page 181: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

GeV2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00002

0.00004

0.00006

0.00008

0.0001

±π -π +π → ±s Wrong Sign with Unmatched Photon of DBCm h_MBC_wrongConver_unmatched

Entries 34669Mean 2.109RMS 0.01784

±π -π +π → ±s Wrong Sign with Unmatched Photon of DBCm

Figure 197: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and the D−

s has beenmatched to its generated counterpart but the γ has failed to match the photon from theD∗+

s decay at the generator level of the Monte Carlo simulation. This distribution has beenfitted to a shape described by Eq. 69.

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

200

400

600

800

1000

±π -π +π → ±s, Dγ ±

s D→±*

s Distribution in generic for DBCmh_MBC_genericEntries 636947Mean 2.099RMS 0.02969

h_MBC_genericEntries 636947Mean 2.099RMS 0.02969

±π -π +π → ±s, Dγ ±

s D→±*

s Distribution in generic for DBCm

Figure 198: Distribution of mBC of D∗+s → D+

s γ events where D+s → π+π−π+ in 586 pb−1

of Generic Monte Carlo.

181

Page 182: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

200

400

600

800

1000

±π -π +π → ±s

, Dγ ±s D→

±*s Distribution in Data for DBCm

h_MBC_physicsEntries 64136Mean 2.099RMS 0.02951

±π -π +π → ±s

, Dγ ±s D→

±*s Distribution in Data for DBCm

Figure 199: Distribution of mBC of D∗+s → D+

s γ events where D+s → π+π−π+ in 586 pb−1

of data.

182

Page 183: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 77: Selection criteria for D∗+s → D+

s γ events where D+s → K∗+K∗0. The δm cut has

been widened to accomodate the wider peak for the signal in this distribution.Selection Criterion Cut Center ± Width

mD+s

1.969 ± 0.006 GeVmBC 2.112 ± 0.005 GeVδm 0.140 ± 0.020 GeV

14.7 D+s → K∗+K∗0

We begin with a Monte Carlo signal sample of D∗+s → D+

s γ events where D+s → K∗+K∗0

and the D−s is allowed to decay generically. The selection criteria applied are tabulated in

Table 77. Fig. 200 depicts the δm distribution of this signal sample and shows why thecorresponding selection criterion had to be widened relative to the D∗+

s → D+s e

+e− signalselection.

m (GeV)δ 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Effic

ienc

y / M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδh_DeltaM_converEntries 88847Mean 0.1308RMS 0.03006

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδ

Figure 200: Distribution of δm in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → K∗+K∗0. The plot is normalized so as to directly read out the efficiency of theδm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last selection cri-terion, we produce a plot of the mBC distribution of the signal sample, having applied allother criteria, as shown in Fig. 201. We extract the shape of the peak from the plot of mBC

where the D+s and the photon are matched to their generated counterparts in the Monte

Carlo simulation as shown in Fig. 202. The equations that parameterize all fits and therange they are fitted in are identical to those used in the K+K−π+ mode.

183

Page 184: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

*0K*pm K→ ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCmh_MBC_converEntries 79839Mean 2.111RMS 0.01884

*0K*pm K→ ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCm

Figure 201: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → K∗+K∗0. The plot is normalized so as to directly read out the efficiency of themBC selection criterion from the area under the fit within the signal region.

Table 78: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical er-ror from the final fit. Error [2] encapsulates the systematic uncertainties from the signalefficiency, the integrated luminosity and the production cross section for D∗±

s D∓s .

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ B(D∗+

s → D+s γ) Inferred

D+s → K∗+K∗0 0.01628 0.1913 ± 0.0012 1644 ± 22 0.9502 ± 0.0129[1] ± 0.0058[2]

Structured backgrounds arising from incorrectly reconstructed D∗+s are simulated as done

previously for the K+K−π+ mode. Fig. 203 shows the structure of the D−s matched and

photon matched background, and our fit to parameterize this shape. The background withthe D−

s matched and a photon that failed matching is shown in Fig. 204 along with our fitto parameterize the shape.

As a check on how well our background and signal estimation performs, we present theoverall fit to generic MC, as described for the K+K−π+ mode, in Fig. 205. Our measurementof the signal selection efficiency and the signal yield is presented in Table 78. We find thethus estimated value for B(D∗+

s → D+s γ) equal to 0.950 ± 0.014 to be 0.6σ away from the

programmed value of 0.942 in the Monte Carlo simulation.We present the distribution of mBC in data and our fits to estimate the signal yield over

the backgrounds, as described for the K+K−π+ mode, in Fig. 206. Our measurements of

184

Page 185: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.005

0.01

0.015

0.02

0.025

0.03

*0K*pm K→ ±s

, Dγ ±s D→±*

s Distribution in Matched Signal Sample ofDBCmh_MBC_conver_matched

Entries 38056Mean 2.114RMS 0.00568

*0K*pm K→ ±s

, Dγ ±s D→±*

s Distribution in Matched Signal Sample ofDBCm

Figure 202: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → K∗+K∗0.

the signal efficiency and signal yield are presented in Table 79. We find the estimated valuefor B(D∗+

s → D+s γ) equal to 0.900 ± 0.087 to be roughly 0.5σ away from the currently

accepted value of 0.942 ± 0.007.

Table 79: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i.Error [3] encapsulates the systematic uncertainties from the signal efficiency, the integratedluminosity and the production cross section forD∗±

s D∓s . Error [4] encapsulates the systematic

error arising from the fit.i (Decay Mode of D+

s ) B(D+s → i) εiDsγ N i

Dsγ B(D∗+s → D+

s γ) Inferred

D+s → K∗+K∗0 0.0164 ± 0.0012 0.1913 ± 0.0012 1570 ± 74 ± 13 0.900 ± 0.043[1] ± 0.066[2] ± 0.036[3] ± 0.007[4]

185

Page 186: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00001

0.00002

0.00003

0.00004

0.00005

*0K*pm K→ ±s Wrong Sign with Matched Photon of DBCm h_MBC_wrongConver_matched

Entries 10429Mean 2.113RMS 0.01033

*0K*pm K→ ±s Wrong Sign with Matched Photon of DBCm

Figure 203: Combinatorial background in the mBC distribution consisting of events wherethe D∗+

s has been reconstructed out of the D−s and the γ, and where both the D−

s and theγ have been matched to their generated counterparts in the Monte Carlo simulation. Thisdistribution has been fitted to a shape described by Eq. 68.

186

Page 187: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

GeV2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

*0K*pm K→ ±s Wrong Sign with Unmatched Photon of DBCm

h_MBC_wrongConver_unmatched

Entries 26422Mean 2.108RMS 0.01821

*0K*pm K→ ±s Wrong Sign with Unmatched Photon of DBCm

Figure 204: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and the D−

s has beenmatched to its generated counterpart but the γ has failed to match the photon from theD∗+

s decay at the generator level of the Monte Carlo simulation. This distribution has beenfitted to a shape described by Eq. 69.

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

100

200

300

400

500

*0K*pm K→ ±s, Dγ ±

s D→±*

s Distribution in generic for DBCmh_MBC_genericEntries 468239Mean 2.101RMS 0.02853

h_MBC_genericEntries 468239Mean 2.101RMS 0.02853

*0K*pm K→ ±s, Dγ ±

s D→±*

s Distribution in generic for DBCm

Figure 205: Distribution of mBC of D∗+s → D+

s γ events where D+s → K∗+K∗0 in 586 pb−1

of Generic Monte Carlo.

187

Page 188: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

100

200

300

400

500

600

*0K*pm K→ ±s

, Dγ ±s D→

±*s Distribution in Data for DBCm

h_MBC_physicsEntries 31276Mean 2.101RMS 0.0289

*0K*pm K→ ±s

, Dγ ±s D→

±*s Distribution in Data for DBCm

Figure 206: Distribution of mBC of D∗+s → D+

s γ events where D+s → K∗+K∗0 in 586 pb−1

of data.

188

Page 189: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 80: Selection criteria for D∗+s → D+

s γ events where D+s → ηρ+. The δm cut has been

widened to accomodate the wider peak for the signal in this distribution.Selection Criterion Cut Center ± Width

mD+s

1.969 ± 0.015 GeVδm 0.140 ± 0.020 GeV

14.8 D+s → ηρ+; η → γγ; ρ+ → π+π0

We begin with a Monte Carlo signal sample of D∗+s → D+

s γ events where D+s → ηρ+; η →

γγ; ρ+ → π+π0 and the D−s is allowed to decay generically. The selection criteria applied are

tabulated in Table 80. Fig. 207 depicts the δm distribution of this signal sample and showswhy the corresponding selection criterion had to be widened relative to the D∗+

s → D+s e

+e−

signal selection.

m (GeV)δ 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Effic

ienc

y / M

eV

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδh_DeltaM_converEntries 70624Mean 0.1301RMS 0.03088

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδ

Figure 207: Distribution of δm in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → ηρ+. The plot is normalized so as to directly read out the efficiency of the δmselection criterion.

To obtain the selection efficiency using the condition on mBC as our last selection cri-terion, we produce a plot of the mBC distribution of the signal sample, having applied allother criteria, as shown in Fig. 208. We extract the shape of the peak from the plot of mBC

where the D+s and the photon are matched to their generated counterparts in the Monte

Carlo simulation as shown in Fig. 209. The equations that parameterize all fits and therange they are fitted in are identical to those used in the K+K−π+ mode.

Structured backgrounds arising from incorrectly reconstructed D∗+s are simulated as done

189

Page 190: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.005

0.01

0.015

0.02

0.0250π ±π → ±ρ, γ γ → η, ±ρ η → ±

s, Dγ ±s D→

±*s Distribution in Signal Sample of DBCm

h_MBC_converEntries 86609Mean 2.112RMS 0.01977

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCm

Figure 208: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → ηρ+; η → γγ; ρ+ → π+π0. The plot is normalized so as to directly read out theefficiency of the mBC selection criterion from the area under the fit within the signal region.

Table 81: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical er-ror from the final fit. Error [2] encapsulates the systematic uncertainties from the signalefficiency, the integrated luminosity and the production cross section for D∗±

s D∓s .

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ B(D∗+

s → D+s γ) Inferred

D+s → ηρ+; η → γγ; ρ+ → π+π0 0.0298 0.1839 ± 0.0013 2993 ± 87 0.9829 ± 0.0284[1] ± 0.0070[2]

previously for the K+K−π+ mode. Fig. 210 shows the structure of the D−s matched and

photon matched background, and our fit to parameterize this shape. The background withthe D−

s matched and a photon that failed matching is shown in Fig. 211 along with our fitto parameterize the shape.

As a check on how well our background and signal estimation performs, we present theoverall fit to generic MC, as described for the K+K−π+ mode, in Fig. 212. Our measurementof the signal selection efficiency and the signal yield is presented in Table 81. We find thethus estimated value for B(D∗+

s → D+s γ) equal to 0.983 ± 0.029to be 1.4σ away from the

programmed value of 0.942 in the Monte Carlo simulation.We present the distribution of mBC in data and our fits to estimate the signal yield over

the backgrounds, as described for the K+K−π+ mode, in Fig. 213. Our measurements ofthe signal efficiency and signal yield are presented in Table 82. We find the estimated value

190

Page 191: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s

, Dγ ±s D→

±*s

Distribution in Matched Signal Sample ofDBCmh_MBC_conver_matched

Entries 35675Mean 2.114RMS 0.007945

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s

, Dγ ±s D→

±*s

Distribution in Matched Signal Sample ofDBCm

Figure 209: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D∗+

s → D+s γ events where D+

s → ηρ+; η → γγ; ρ+ → π+π0.

for B(D∗+s → D+

s γ) equal to 0.891 ± 0.132 to be roughly 0.4σ away from the currentlyaccepted value of 0.942 ± 0.007.

Table 82: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i.Error [3] encapsulates the systematic uncertainties from the signal efficiency, the integratedluminosity and the production cross section forD∗±

s D∓s . Error [4] encapsulates the systematic

error arising from the fit.i (Decay Mode of D+

s ) B(D+s → i) εiDsγ N i

Dsγ B(D∗+s → D+

s γ) Inferred

D+s → ηρ+; η → γγ; ρ+ → π+π0 0.0348 ± 0.0031 0.1839 ± 0.0013 3170 ± 161 ± 313 0.891 ± 0.045[1] ± 0.080[2] ± 0.036[3] ± 0.088[4]

191

Page 192: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s Wrong Sign with Matched Photon of DBCm h_MBC_wrongConver_matched

Entries 18269Mean 2.113RMS 0.01172

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s Wrong Sign with Matched Photon of DBCm

Figure 210: Combinatorial background in the mBC distribution consisting of events wherethe D∗+

s has been reconstructed out of the D−s and the γ, and where both the D−

s and theγ have been matched to their generated counterparts in the Monte Carlo simulation. Thisdistribution has been fitted to a shape described by Eq. 68.

192

Page 193: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

GeV2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00002

0.00004

0.00006

0.00008

0.0001

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s Wrong Sign with Unmatched Photon of DBCm

h_MBC_wrongConver_unmatched

Entries 36095Mean 2.109RMS 0.01926

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s Wrong Sign with Unmatched Photon of DBCm

Figure 211: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and the D−

s has beenmatched to its generated counterpart but the γ has failed to match the photon from theD∗+

s decay at the generator level of the Monte Carlo simulation. This distribution has beenfitted to a shape described by Eq. 69.

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

200

400

600

800

1000

1200

1400

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s

, Dγ ±s D→±*

s Distribution in generic for DBCmh_MBC_genericEntries 1141283Mean 2.102RMS 0.02981

h_MBC_genericEntries 1141283Mean 2.102RMS 0.02981

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s

, Dγ ±s D→±*

s Distribution in generic for DBCm

Figure 212: Distribution of mBC of D∗+s → D+

s γ events where D+s → ηρ+; η → γγ; ρ+ →

π+π0 in 586 pb−1 of Generic Monte Carlo.

193

Page 194: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

200

400

600

800

1000

1200

1400

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s, Dγ ±

s D→±*

s Distribution in Data for DBCmh_MBC_physicsEntries 102004Mean 2.102RMS 0.02961

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s, Dγ ±

s D→±*

s Distribution in Data for DBCm

Figure 213: Distribution of mBC of D∗+s → D+

s γ events where D+s → ηρ+; η → γγ; ρ+ →

π+π0 in 586 pb−1 of data.

194

Page 195: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 83: Selection criteria for D∗+s → D+

s γ events where D+s → η′π+; η′ → ρ0γ. The δm

cut has been widened to accomodate the wider peak for the signal in this distribution.Selection Criterion Cut Center ± Width

mD+s

1.969 ± 0.012 GeVδm 0.140 ± 0.020 GeV

14.9 D+s → η′π+; η′ → ρ0γ

We begin with a Monte Carlo signal sample of D+s → η′π+; η′ → ρ0γ and the D−

s is allowedto decay generically. The selection criteria applied are tabulated in Table 83. Fig. 214depicts the δm distribution of this signal sample and shows why the corresponding selectioncriterion had to be widened relative to the D∗+

s → D+s e

+e− signal selection.

m (GeV)δ 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Effic

ienc

y / M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018 → ±

s, Dγ±

s D→±*sm Distribution in Signal Sample of Dδ

h_DeltaM_converEntries 115574Mean 0.1328RMS 0.02824

→ ±s

, Dγ±s D→±*

sm Distribution in Signal Sample of Dδ

Figure 214: Distribution of δm in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → η′π+; η′ → ρ0γ. The plot is normalized so as to directly read out the efficiencyof the δm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last selection cri-terion, we produce a plot of the mBC distribution of the signal sample, having applied allother criteria, as shown in Fig. 215. We extract the shape of the peak from the plot of mBC

where the D+s and the photon are matched to their generated counterparts in the Monte

Carlo simulation as shown in Fig. 216. The equations that parameterize all fits and therange they are fitted in are identical to those used in the K+K−π+ mode.

Structured backgrounds arising from incorrectly reconstructed D∗+s are simulated as done

previously for the K+K−π+ mode. Fig. 217 shows the structure of the D−s matched and

195

Page 196: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.01

0.02

0.03

0.04

0.05

γ 0ρ →’ η’, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCmh_MBC_converEntries 120133Mean 2.112RMS 0.01761

γ 0ρ →’ η’, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Signal Sample of DBCm

Figure 215: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D+

s → η′π+; η′ → ρ0γ. The plot is normalized so as to directly read out the efficiencyof the mBC selection criterion from the area under the fit within the signal region.

Table 84: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical er-ror from the final fit. Error [2] encapsulates the systematic uncertainties from the signalefficiency, the integrated luminosity and the production cross section for D∗±

s D∓s .

i (Decay Mode of D+s ) B(D+

s → i) εiDsγ N iDsγ B(D∗+

s → D+s γ) Inferred

D+s → η′π+; η′ → ρ0γ 0.0111 0.3171 ± 0.0015 1930 ± 45 0.9886 ± 0.0231[1] ± 0.0049[2]

photon matched background, and our fit to parameterize this shape. The background withthe D−

s matched and a photon that failed matching is shown in Fig. 218 along with our fitto parameterize the shape.

As a check on how well our background and signal estimation performs, we present theoverall fit to generic MC, as described for the K+K−π+ mode, in Fig. 219. Our measurementof the signal selection efficiency and the signal yield is presented in Table 84. We find thethus estimated value for B(D∗+

s → D+s γ) equal to 0.989 ± 0.024 to be about 2σ away from

the programmed value of 0.942 in the Monte Carlo simulation.We present the distribution of mBC in data and our fits to estimate the signal yield over

the backgrounds, as described for the K+K−π+ mode, in Fig. 220. Our measurements ofthe signal efficiency and signal yield are presented in Table 85. We find the estimated valuefor B(D∗+

s → D+s γ) equal to 0.778 ± 0.117 to be roughly 1.4σ away from the currently

196

Page 197: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.01

0.02

0.03

0.04

0.05γ 0ρ →’ η’, η ±π → ±

s, Dγ ±s D→

±*s Distribution in Matched Signal Sample ofDBCm

h_MBC_conver_matched

Entries 60580Mean 2.114RMS 0.006421

γ 0ρ →’ η’, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Matched Signal Sample ofDBCm

Figure 216: Distribution of mBC in the signal Monte Carlo sample of D∗+s → D+

s γ eventswhere D∗+

s → D+s γ events where D+

s → η′π+; η′ → ρ0γ.

accepted value of 0.942 ± 0.007.

Table 85: εiDsγ is the efficiency of our selection criteria for the mode. N iDsγ is the signal

yield observed for this mode. B(D∗+s → D+

s γ) is the branching fraction for D∗+s → D+

s e+e−

inferred from this mode. Error [1] on the inferred branching fraction is the statistical errorfrom the final fit. Error [2] arises from the uncertainty in the branching fraction for D+

s → i.Error [3] encapsulates the systematic uncertainties from the signal efficiency, the integratedluminosity and the production cross section forD∗±

s D∓s . Error [4] encapsulates the systematic

error arising from the fit.i (Decay Mode of D+

s ) B(D+s → i) εiDsγ N i

Dsγ B(D∗+s → D+

s γ) Inferred

D+s → η′π+; η′ → ρ0γ 0.0112 ± 0.0012 0.3171 ± 0.0015 1531 ± 80 ± 122 0.778 ± 0.041[1] ± 0.085[2] ± 0.031[3] ± 0.062[4]

197

Page 198: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BC m2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00001

0.00002

0.00003

0.00004

0.00005

γ 0ρ →’ η’, η ±π → ±s

Wrong Sign with Matched Photon of DBCm h_MBC_wrongConver_matched

Entries 11431Mean 2.113RMS 0.01065

γ 0ρ →’ η’, η ±π → ±s

Wrong Sign with Matched Photon of DBCm

Figure 217: Combinatorial background in the mBC distribution consisting of events wherethe D∗+

s has been reconstructed out of the D−s and the γ, and where both the D−

s and theγ have been matched to their generated counterparts in the Monte Carlo simulation. Thisdistribution has been fitted to a shape described by Eq. 68.

198

Page 199: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

GeV2.04 2.06 2.08 2.1 2.12 2.14 2.16

Effic

ienc

y / M

eV

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

γ 0ρ →’ η’, η ±π → ±s Wrong Sign with Unmatched Photon of DBCm

h_MBC_wrongConver_unmatched

Entries 24519Mean 2.109RMS 0.01865

γ 0ρ →’ η’, η ±π → ±s Wrong Sign with Unmatched Photon of DBCm

Figure 218: Combinatorial background structured in the mBC distribution consisting ofevents where the D∗+

s has been reconstructed out of the D−s and the γ, and the D−

s has beenmatched to its generated counterpart but the γ has failed to match the photon from theD∗+

s decay at the generator level of the Monte Carlo simulation. This distribution has beenfitted to a shape described by Eq. 69.

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

100

200

300

400

500

600

700

800

900

γ 0ρ →’ η’, η ±π → ±s, Dγ ±

s D→±*

s Distribution in generic for DBCmh_MBC_genericEntries 691787Mean 2.099RMS 0.02988

h_MBC_genericEntries 691787Mean 2.099RMS 0.02988

γ 0ρ →’ η’, η ±π → ±s, Dγ ±

s D→±*

s Distribution in generic for DBCm

Figure 219: Distribution of mBC of D∗+s → D+

s γ events where D+s → η′π+; η′ → ρ0γ in 586

pb−1 of Generic Monte Carlo.

199

Page 200: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCm2.04 2.06 2.08 2.1 2.12 2.14 2.16

# Ev

ents

/ M

eV

0

100

200

300

400

500

600

700

800

900

γ 0ρ →’ η’, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Data for DBCmh_MBC_physicsEntries 65190Mean 2.1RMS 0.02984

γ 0ρ →’ η’, η ±π → ±s, Dγ ±

s D→±*

s Distribution in Data for DBCm

Figure 220: Distribution of mBC of D∗+s → D+

s γ events where D+s → η′π+; η′ → ρ0γ in 586

pb−1 of data.

200

Page 201: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 86: Data and estimated backgrounds in the signal region used to estimate the numbersof signal events found in each mode and the corresponding significance of the signal. Expectednumbers of signal events from Monte Carlo simulations also listed.

Mode Yield Found in the Estimated Background Subtracted Expected Signal Yield SignalSignal Region Background Yield in Signal Region from Monte Carlo Significance

i Y ie+e−

Bie+e−

N ie+e−

± stat ± syst ± stat ± syst ± statK+K−π+ 14 1.05 ± 0.37 ± 0.79 12.95 ± 3.76 ± 0.79 13.65 ± 0.65 5.13KSK

+ 1 0.85 ± 0.43 ± 0.74 0.15 ± 1.09 ± 0.74 3.02 ± 0.15 0.73ηπ+ 4 1.40 ± 0.70 ± 0.49 2.60 ± 2.12 ± 0.49 1.81 ± 0.08 1.66

η′π+; η′ → π+π−η 4 0.00 + 0.63 + 0.00 4.00 ± 2.10 ± 0.00 1.20 ± 0.06 2.68K+K−π+π0 6 1.70 ± 0.47 ± 0.56 4.30 ± 2.49 ± 0.56 4.85 ± 0.29 2.34π+π−π+ 7 1.57 ± 0.45 ± 0.59 5.43 ± 2.68 ± 0.59 3.75 ± 0.17 2.79K∗+K∗0 4 1.58 ± 0.53 ± 0.40 2.42 ± 2.07 ± 0.40 1.99 ± 0.11 1.65ηρ+ 7 2.62 ± 0.59 ± 0.23 4.38 ± 2.71 ± 0.23 5.49 ± 0.31 2.23

η′π+; η′ → ρ0γ 4 1.84 ± 0.49 ± 0.25 2.16 ± 2.06 ± 0.25 2.42 ± 0.12 1.52Sum of all modes 51 12.61 ± 2.50 ± 1.08 38.39 ± 7.32 ± 1.53 38.18 ± 0.83 6.39

15 Un-blinding Data and Results

Having estimated, for each decay mode of the D+s , the background levels in the signal

region for the reconstruction of D∗+s → D+

s e+e− (Section 12), the efficiency of our selection

criteria in reconstructing the D∗+s → D+

s e+e−, and the yields and efficiencies of our selection

criteria in reconstructing the D∗+s → D+

s γ, we are now in a position to unblind our dataand observe the yield in the signal region of D∗+

s → D+s e

+e−. We unblind our data in themBC kinematic variable, as that is the variable we obtained our primary estimate of thebackground from. We count the yield in the signal region and subtract off the estimatedbackground to determine the background subtrated yield. This is tabulated in Table 86,along with the signal significance of observing such a signal over the background and thenumber of signal events expected from Monte Carlo simulations. The unblinded plots forthe individual modes are presented in the following sub-sections.

The statistical and systematic uncertainties in the estimated backgrounds have beenderived in Section 12. The systematic uncertainties from the estimated backgrounds simplycarry over as the systematic uncertainties in the estimated number of signal events. Thestatistical uncertainties in the estimated number of signal events is the quadrature sum,denoted by the symbol ⊕, of the statistical uncertainties in the estimated background andone standard deviation of the Poisson distribution with mean equal to the yields. That is,

∆N ie+e−(stat) = ∆Bi

e+e−(stat) ⊕ ∆Y ie+e−

where,

• i refers to a hadronic decay mode of the D+s ,

• ∆Y ie+e−

=√

Y ie+e−

is the statistical uncertainty in the yield of data found in the signalregion for the ith mode,

201

Page 202: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

• ∆Bie+e−(stat) is the statistical uncertainty in the number of background events to

D∗+s → D+

s e+e− we expect in the signal region for the ith mode,

• N ie+e−

(stat) is the statistical uncertainty in the background subtracted yield in oursignal region for the ith mode.

The efficiencies for our selection criteria in each of the modes have been tabulated inTable 56 in Section 13. Using the relation:

LσB(D∗+s → D+

s e+e−)B(Ds → i)εi

D+s e+e−

= N ie+e−

we can compute the absolute branching fraction B(D∗+s → D+

s e+e−) with each and all modes

using the number of signal events for each channel tabulated in Table 86 and Eq. 70 & 71.Values for the absolute branching fraction computed thus are tabulated in Table 87.

B(D∗+s → D+

s e+e−) =

N ie+e−

LσB(Ds → i)εiD+

s e+e−

(70)

B(D∗+s → D+

s e+e−) =

ΣiNie+e−

Lσ∑

iB(Ds → i)εiD+

s e+e−

(71)

Additional symbols in these equations are described as follows.

• L is the integrated luminosity of data, 586 ± 6 pb−1, we are studying,

• σ is the production cross section of D±s D

∗∓s at 4170 MeV e+e− collisions,

• B(D+s → i) is the branching fraction of the D+

s decaying to the ith mode,

• εiD+

s e+e−the selection efficiency for the D∗+

s → D+s e

+e− selection criteria, for the ith

mode of D+s decay,

The statistical uncertainty in the selection efficiencies are calculated by assuming Poissonstatistics for Monte Carlo simulation events that pass the selection criteria. The statisticaland systematic uncertainties in the absolute branching fraction for a given mode are calcu-lated using Eq. 72 and Eq. 73.

∆B(D∗+s → D+

s e+e−)(stat)

B(D∗+s → D+

s e+e−)

=∆N i

e+e−(stat)

N ie+e−

(72)

∆B(D∗+s → D+

s e+e−)(syst)

B(D∗+s → D+

s e+e−)

=∆L

L⊕ ∆σ

σ⊕ ∆N i

e+e−(syst)

N ie+e−

⊕∆εi

D+s e+e−

εiD+

s e+e−

⊕ ∆B(D+s → i)

B(D+s → i)

(73)

202

Page 203: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 87: Absolute branching fractions for D∗+s → D+

s e+e− inferred from the signal yields

and efficiencies of each and all modes.D+

s Decay B(D+s → i) Background Subtracted Selection Efficiency B(D∗+

s → D+s e

+e−)Mode Yield in Signal Region from Monte Carloi N i

e+e− εiD+

s e+e−

± stat ± syst ± stat ± stat ± systK+K−π+ 0.0550 ± 0.0028 12.95 ± 3.76 ± 0.79 0.0730 ± 0.0019 0.0058 ± 0.0017 ± 0.0005KSK

+ 0.0149 ± 0.0009 0.15 ± 1.09 ± 0.74 0.0597 ± 0.0017 0.0003 ± 0.0022 ± 0.0015ηπ+; η → γγ 0.00621 ± 0.00083 2.60 ± 2.12 ± 0.49 0.0855 ± 0.0021 0.0088 ± 0.0072 ± 0.0021

η′π+; η′ → π+π−η; η → γγ 0.00666 ± 0.00070 4.00 ± 2.10 ± 0.00 0.0530 ± 0.0016 0.0204 ± 0.0107 ± 0.0024K+K−π+π0 0.056 ± 0.005 4.30 ± 2.49 ± 0.56 0.0255 ± 0.0011 0.0054 ± 0.0031 ± 0.0009π+π−π+ 0.0111 ± 0.0008 5.43 ± 2.68 ± 0.59 0.0992 ± 0.0022 0.0089 ± 0.0044 ± 0.0012K∗+K∗0 0.0164 ± 0.0012 2.42 ± 2.07 ± 0.40 0.0356 ± 0.0013 0.0075 ± 0.0064 ± 0.0014

ηρ+; η → γγ; ρ+ → π+π0 0.0348 ± 0.0031 4.38 ± 2.71 ± 0.23 0.0316 ± 0.0013 0.0072 ± 0.0044 ± 0.0009η′π+; η′ → ρ0γ 0.0112 ± 0.0012 2.16 ± 2.06 ± 0.25 0.064 ± 0.0018 0.0055 ± 0.0052 ± 0.0009

Sum of all modes 38.39 ± 7.32 ± 1.53 0.0065 ± 0.0012 ± 0.0004

Statistical and systematic uncertainties in the absolute branching fraction for the sum ofall modes are calculated using Eq. 74 and Eq. 75.

∆B(D∗+s → D+

s e+e−)(stat)

B(D∗+s → D+

s e+e−)

=

√∑

i(∆Nie+e−

)2(stat)∑

iNie+e−

(74)

(

∆B(D∗+s → D+

s e+e−)(syst)

B(D∗+s → D+

s e+e−)

)2

=

(

∆L

L

)2

+

(

∆σ

σ

)2

+

i

(

∆N ie+e−

)2(syst)

(∑

iNie+e−

)2

+

i(εi

D+s e+e−

B(D+s → i))2((∆εi

D+s e+e−

/εiD+

s e+e−)2 + (∆B(D+

s → i)/B(D+s → i))2)

(∑

i εi

D+s e+e−

B(D+s → i))2

(75)

Now, using the numbers for D∗+s → D+

s e+e− tabulated in Table 87 in conjuction with

the numbers for D∗+s → D+

s γ tabulated in Table 57, we compute and tabulate the ratio ofbranching fractions

K =B(D∗+

s → D+s e

+e−)

B(D∗+s → D+

s γ)

in Table 88. This is done for each mode using Eq. 76 and with all modes using Eq. 77.

K =

(

N ie+e−

N iγ

)

(

εiD+

s γ

εiD+

s e+e−

)

(76)

K =

(∑

iNie+e−

iNiγ

)

( ∑

i εi

D+s γB(D+

s → i)∑

i εi

D+s e+e−

B(D+s → i)

)

(77)

where,

• K is the aforementioned ratio of branching fractions we’re trying to measure,

203

Page 204: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

• N iγ is the background subtracted yield of D∗+

s → D+s γ events we find in our signal

region for the ith mode of D+s decay, and

• εiD+

s γencodes the detection and selection efficiency for the D∗+

s → D+s γ selection crite-

ria, for the ith mode of D+s decay.

Uncertainties in the ratio of branching fractions, K, are calculated for each mode usingEq. 78 and Eq. 79.

(

∆K(stat)

K

)2

=

(

∆N ie+e−

(stat)

N ie+e−

)2

+

(

∆N iγ

)2

(78)

(

∆K(syst)

K

)2

=

(

∆N ie+e−

(syst)

N ie+e−

)2

+

(

∆εiD+

s e+e−

εiD+

s e+e−

)2

+

(

∆εiD+

s γ

εiD+

s γ

)2

(79)

Uncertainties in the ratio of branching fractions, K, are calculated using the sum of allmodes as follows. The statistical uncertainty depends solely on the statistical uncertaintiesassociated with the signal yields, N i

e+e−and N i

γ . These statistical uncertainties for eachmode are tabulated in Table 88. Therefore, the statistical uncertainty in K is calculatedusing Eq. 80.

(

∆K(stat)

K

)2

=

i(∆Nie+e−

(stat))2

(∑

iNie+e−

)2+

i(∆Niγ)

2

(∑

iNγ)2(80)

For an estimate of the systematic error, we decompose Eq. 77 as

K =

(∑

iNie+e−

iNiγ

)(

εγεe+e−

)

(∑

i εi

D+s

B(D+s → i)

i εi

D+s

B(D+s → i)

)

(81)

where εγ and εe+e− are the reconstruction efficiencies for the photon and the e+e− which arecommon to all modes of the D+

s decay, and the εiD+

s

is the reconstruction efficiency of the

D+s as it decays into the ith hadronic decay mode. This can be simplified to

K =

(∑

iNie+e−

iNiγ

)(

εγεe+e−

)

(82)

Therefore, we may estimate the systematic uncertainty in K as given in Eq. 83.

(

∆K(syst)

K

)2

=

i(∆Nie+e−(syst))2

(∑

iNie+e−

)2⊕∑

i(∆Niγ(syst))2

(∑

iNiγ)

2⊕(

∆(εγ/εe+e−)

εγ/εe+e−

)2

(83)

A plot of the unblinded data in the mBC and δm kinematic variables, summed over allmodes, are presented in Fig. 221 and Fig. 222. The data points are marked by magentapoints with error bars. The data-driven estimated backgrounds are marked by the blackand magenta curves. The cyan histograms mark the expected signal yield. The agreement

204

Page 205: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

Table 88: The ratio of branching fractions B(D∗+s → D+

s e+e−)/B(D∗+

s → D+s γ) inferred from the signal yields and

efficiencies of each and all modes.D+

s Decay B(D+s → i) D∗+

s → D+s e

+e− D∗+s → D+

s γK = B(D∗+

s →D+s e+e−)

B(D∗+s →D+

s γ)Mode Signal Events Selection Efficiency Signal Events Selection Efficiencyi N i

e+e−εiD+

s e+e−N i

γ εiD+

s γ

± stat ± syst ± stat ± syst ± stat ± systK+K−π+ 0.0550 ± 0.0028 12.95 ± 3.76 ± 0.79 0.0730 ± 0.0019 9114 ± 110 ± 201 0.339 ± 0.002 0.0066 ± 0.0019 ± 0.0005KSK

+ 0.0149 ± 0.0009 0.15 ± 1.09 ± 0.74 0.0597 ± 0.0017 1902 ± 57 ± 45 0.2573 ± 0.0004 0.0003 ± 0.0025 ± 0.0017ηπ+; η → γγ 0.0062 ± 0.0008 2.60 ± 2.12 ± 0.49 0.0855 ± 0.0021 1037 ± 46 ± 37 0.3310 ± 0.0015 0.0097 ± 0.0079 ± 0.0019

η′π+; η′ → π+π−η; η → γγ 0.0067 ± 0.0007 4.00 ± 2.10 ± 0.00 0.0530 ± 0.0016 691 ± 34 ± 40 0.2101 ± 0.0013 0.023 ± 0.0123 ± 0.0015K+K−π+π0 0.056 ± 0.005 4.30 ± 2.49 ± 0.56 0.0255 ± 0.0011 3592 ± 118 ± 72 0.1225 ± 0.0010 0.0058 ± 0.0033 ± 0.0008π+π−π+ 0.0111 ± 0.0008 5.43 ± 2.68 ± 0.59 0.0992 ± 0.0022 2745 ± 93 ± 52 0.4583 ± 0.0018 0.0091 ± 0.0045 ± 0.0010K∗+K∗0 0.0164 ± 0.0012 2.42 ± 2.07 ± 0.40 0.0356 ± 0.0013 1570 ± 74 ± 13 0.1913 ± 0.0012 0.0083 ± 0.0071 ± 0.0014

ηρ+; η → γγ; ρ+ → π+π0 0.0298 ± 0.0051 4.38 ± 2.71 ± 0.23 0.0316 ± 0.0013 3170 ± 161 ± 313 0.1839 ± 0.0013 0.0080 ± 0.0050 ± 0.0010η′π+; η′ → ρ0γ 0.0112 ± 0.0012 2.16 ± 2.06 ± 0.25 0.064 ± 0.0018 1531 ± 80 ± 122 0.3171 ± 0.0015 0.0070 ± 0.0067 ± 0.0010

Sum of all modes 38.39 ± 7.32 ± 1.53 25351.03 ± 280.93 0.0072 ± 0.0014 ± 0.0003

205

Page 206: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

with data is remarkable. Histograms of unblinded data in each of the individual modes arepresented in the following subsections.

Table 86 summarizes the signal yield observed in all modes and their significances. Thetotal signal yield of 51 events carries a significance of 6.39 σ. The signal yields and efficienciesfor D∗+

s → D+s e

+e− that we just unblinded and D∗+s → D+

s γ discussed in Section 14 are tab-ulated together in Table 86. The ratio of branching fractions B(D∗+

s → D+s e

+e−)/B(D∗+s →

D+s γ) are calculated from each mode and with all modes combined. The measurement of

this ratio using the combination of all modes is given in Eq. 84. However, the systematicuncertainty in K has been estimated only using the systematic uncertainties in the signalyields for D∗+

s → D+s e

+e− and D∗+s → D+

s γ. We must also include the systematic uncer-tainty arising from the reconstruction of soft e+e− pairs and the γ as indicated in Eq. 83 fora complete result.

K =B(D∗+

s → D+s e

+e−)

B(D∗+s → D+

s γ)= (0.72 ± 0.14(stat) ± 0.03(syst))% (84)

This last source of systematic uncertainty is estimated in Section 16. There we measure thisfractional uncertainty to be 6.51%. 6.51% of 0.72% is 0.047% and therefore, our final resultstands to be:

K =B(D∗+

s → D+s e

+e−)

B(D∗+s → D+

s γ)= (0.72 ± 0.14(stat) ± 0.06(syst))% (85)

where

• (stat) is the statistical uncertainty arising from the limited signal yields of D∗+s →

D+s e

+e− and D∗+s → D+

s γ. Larger datasets will decrease this error.

• (syst) is the systematic uncertainty arising from systematic uncertainties in the es-timated background for the D∗+

s → D+s e

+e− signal, systematic uncertainties in thesignal yield for D∗+

s → D+s γ, and the systematic uncertainty arising from the e+e−

and γ reconstruction efficiencies in the energy range relevant for this analysis.

206

Page 207: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

(GeV)BCM2.06 2.07 2.08 2.09 2.1 2.11 2.12 2.13 2.14 2.15

Num

ber o

f Eve

nts

/ 2 M

eV

0

5

10

15

20

25

(GeV)BCM2.06 2.07 2.08 2.09 2.1 2.11 2.12 2.13 2.14 2.15

Num

ber o

f Eve

nts

/ 2 M

eV

0

5

10

15

20

25Signal Simulation

Simulationcnon-c

w/o Conversions Simulationcc

Conversions Simulation

Data

Figure 221: Distribution of mBC in data after unblinding.

207

Page 208: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

M (GeV)δ0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

Num

ber o

f Eve

nts

/ 5 M

eV

0

5

10

15

20

25

30

M (GeV)δ0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

Num

ber o

f Eve

nts

/ 5 M

eV

0

5

10

15

20

25

30Signal Simulation

Simulationcnon-c

w/o Conversions Simulationcc

Conversions Simulation

Data

Figure 222: Distribution of δm in data after unblinding.

208

Page 209: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.1 D+s → K+K−π+

The distributions of mBC and δm in data after unblinding are presented overlaid with MonteCarlo in Fig. 223 and 224. A mean of 14.7 events were expected from Monte Carlo simula-tions and 14 events were observed. The significance for this observation is 5.13 σ.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

2

4

6

8

10

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

2

4

6

8

10

±π - K+ K→ ±s Distributions in Mode DBCm

Signal MC: 16 Entries

Continuum MC: 1 Entries

Generic MC: 4 Entries

Continuum MC: 1 Entries

Data: 25 Entries

Figure 223: Distribution of mBC in data after unblinding overlaid with prediction fromMonte Carlo.

209

Page 210: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

2

4

6

8

10

12

14

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

2

4

6

8

10

12

14

±π - K+ K→ ±sm Distributions in Mode Dδ

Signal MC: 16 Entries

Continuum MC: 2 Entries

Generic MC: 4 Entries

Conversion MC: 8 Entries

Data: 38 Entries

Figure 224: Distribution of δm in data after unblinding overlaid with prediction from MonteCarlo.

210

Page 211: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.2 D+s → KSK

+

The distributions of mBC and δm in data after unblinding are presented overlaid with MonteCarlo in Fig. 225 and 226. A mean of 3.87 events were expected from Monte Carlo simula-tions and 1 events was observed. The significance for this observation is 0.73 σ.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

± KS K→ ±s Distributions in Mode DBCm

Signal MC: 3 Entries

Continuum MC: 0 Entries

Generic MC: 0 Entries

Continuum MC: 0 Entries

Data: 6 Entries

Figure 225: Distribution of mBC in data after unblinding overlaid with prediction fromMonte Carlo.

211

Page 212: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

± KS K→ ±sm Distributions in Mode Dδ

Signal MC: 3 Entries

Continuum MC: 0 Entries

Generic MC: 1 Entries

Conversion MC: 2 Entries

Data: 2 Entries

Figure 226: Distribution of δm in data after unblinding overlaid with prediction from MonteCarlo.

212

Page 213: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.3 D+s → ηπ+; η → γγ

The distributions of mBC and δm in data after unblinding are presented overlaid with MonteCarlo in Fig. 227 and 228. A mean of 3.21 events were expected from Monte Carlo simula-tions and 4 events were observed. The significance for this observation is 1.66 σ.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

γ γ → η, η ±π → ±s Distributions in Mode DBCm

Signal MC: 2 Entries

Continuum MC: 4 Entries

Generic MC: 0 Entries

Continuum MC: 4 Entries

Data: 10 Entries

Figure 227: Distribution of mBC in data after unblinding overlaid with prediction fromMonte Carlo.

213

Page 214: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

γ γ → η, η ±π → ±sm Distributions in Mode Dδ

Signal MC: 2 Entries

Continuum MC: 4 Entries

Generic MC: 0 Entries

Conversion MC: 1 Entries

Data: 14 Entries

Figure 228: Distribution of δm in data after unblinding overlaid with prediction from MonteCarlo.

214

Page 215: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.4 D+s → η′π+; η′ → π+π−η; η → γγ

The distributions of mBC and δm in data after unblinding are presented overlaid with MonteCarlo in Fig. 229 and 230. 1.20 events were expected from Monte Carlo simulations and 4events were observed. The significance for this observation is 2.68 σ.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

γ γ → η, η -π +π →’ η’, η ±π → ±s Distributions in Mode DBCm

Signal MC: 1 Entries

Continuum MC: 0 Entries

Generic MC: 0 Entries

Continuum MC: 0 Entries

Data: 4 Entries

Figure 229: Distribution of mBC in data after unblinding overlaid with prediction fromMonte Carlo.

215

Page 216: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

γ γ → η, η -π +π →’ η’, η ±π → ±sm Distributions in Mode Dδ

Signal MC: 1 Entries

Continuum MC: 0 Entries

Generic MC: 0 Entries

Conversion MC: 1 Entries

Data: 5 Entries

Figure 230: Distribution of δm in data after unblinding overlaid with prediction from MonteCarlo.

216

Page 217: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.5 D+s → K+K−π+π0

The distributions of mBC and δm in data after unblinding are presented overlaid with MonteCarlo in Fig. 231 and 232. 6.55 events were expected from Monte Carlo simulations and 6events were observed. The significance for this observation is 2.34 σ.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0π ±π - K+ K→ ±s Distributions in Mode DBCm

Signal MC: 6 Entries

Continuum MC: 3 Entries

Generic MC: 19 Entries

Continuum MC: 3 Entries

Data: 27 Entries

Figure 231: Distribution of mBC in data after unblinding overlaid with prediction fromMonte Carlo.

217

Page 218: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

6

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

6

0π ±π - K+ K→ ±sm Distributions in Mode Dδ

Signal MC: 5 Entries

Continuum MC: 2 Entries

Generic MC: 18 Entries

Conversion MC: 4 Entries

Data: 37 Entries

Figure 232: Distribution of δm in data after unblinding overlaid with prediction from MonteCarlo.

218

Page 219: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.6 D+s → π+π−π+

The distributions of mBC and δm in data after unblinding are presented overlaid with MonteCarlo in Fig. 233 and 234. 5.32 events were expected from Monte Carlo simulations and 7events were observed. The significance for this observation is 2.79 σ.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

±π -π +π → ±s Distributions in Mode DBCm

Signal MC: 4 Entries

Continuum MC: 17 Entries

Generic MC: 3 Entries

Continuum MC: 17 Entries

Data: 24 Entries

Figure 233: Distribution of mBC in data after unblinding overlaid with prediction fromMonte Carlo.

219

Page 220: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

6

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

6

m Sidebands in pipipiδ

Signal MC: 4 Entries

Continuum MC: 11 Entries

Generic MC: 2 Entries

Conversion MC: 2 Entries

Data: 37 Entries

Figure 234: Distribution of δm in data after unblinding overlaid with prediction from MonteCarlo.

220

Page 221: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.7 D+s → K∗+K∗0

The distributions of mBC and δm in data after unblinding are presented overlaid with MonteCarlo in Fig. 235 and 236. 3.57 events were expected from Monte Carlo simulations and 4events were observed. The significance for this observation is 1.65 σ.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

*0K*+ K→ ±s Distributions in Mode DBCm

Signal MC: 2 Entries

Continuum MC: 1 Entries

Generic MC: 8 Entries

Continuum MC: 1 Entries

Data: 19 Entries

Figure 235: Distribution of mBC in data after unblinding overlaid with prediction fromMonte Carlo.

221

Page 222: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

*0K*+ K→ ±sm Distributions in Mode Dδ

Signal MC: 2 Entries

Continuum MC: 0 Entries

Generic MC: 5 Entries

Conversion MC: 1 Entries

Data: 24 Entries

Figure 236: Distribution of δm in data after unblinding overlaid with prediction from MonteCarlo.

222

Page 223: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.8 D+s → ηρ+; η → γγ; ρ+ → π+π0

The distributions of mBC and δm in data after unblinding are presented overlaid with MonteCarlo in Fig. 237 and 238. 8.11 events were expected from Monte Carlo simulations and 7events were observed. The significance for this observation is 2.23 σ.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

1

2

3

4

5

6

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

1

2

3

4

5

6

0π ±π → ±ρ, γ γ → η, ±ρ η → ±s Distributions in Mode DBCm

Signal MC: 8 Entries

Continuum MC: 24 Entries

Generic MC: 8 Entries

Continuum MC: 24 Entries

Data: 39 Entries

Figure 237: Distribution of mBC in data after unblinding overlaid with prediction fromMonte Carlo.

223

Page 224: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

6

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

1

2

3

4

5

6

0π ±π → ±ρ, γ γ → η, ±ρ η → ±sm Distributions in Mode Dδ

Signal MC: 7 Entries

Continuum MC: 22 Entries

Generic MC: 8 Entries

Conversion MC: 6 Entries

Data: 56 Entries

Figure 238: Distribution of δm in data after unblinding overlaid with prediction from MonteCarlo.

224

Page 225: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.9 D+s → η′π+; η′ → ρ0γ

The distributions of mBC and δm in data after unblinding are presented overlaid with MonteCarlo in Fig. 239 and 240. 4.26 events were expected from Monte Carlo simulations and 4events were observed. The significance for this observation is 1.52 σ.

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

(GeV)BCm2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Num

ber o

f Eve

nts

/ 2 M

eV

0

0.5

1

1.5

2

2.5

3

γ 0ρ →’ η’, η ±π → ±s Distributions in Mode DBCm

Signal MC: 3 Entries

Continuum MC: 16 Entries

Generic MC: 4 Entries

Continuum MC: 16 Entries

Data: 26 Entries

Figure 239: Distribution of mBC in data after unblinding overlaid with prediction fromMonte Carlo.

225

Page 226: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m (GeV)δ0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Num

ber o

f Eve

nts

/ 5 M

eV

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

γ 0ρ →’ η’, η ±π → ±sm Distributions in Mode Dδ

Signal MC: 2 Entries

Continuum MC: 15 Entries

Generic MC: 4 Entries

Conversion MC: 2 Entries

Data: 23 Entries

Figure 240: Distribution of δm in data after unblinding overlaid with prediction from MonteCarlo.

226

Page 227: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.10 Comparison of me+e− between Data and Monte Carlo Simu-lation

Fig. 241 shows the distribution of the invariant mass of the e+e− in the 51 data pointsuncovered when compared to the general shape predicted by our Monte Carlo simulations.It must be noted that we did not depend on the numbers from Monte Carlo for our estimationof the backgrounds. This plot is presented as a rough check. The Kolmogorov probabilityfor the data and Monte Carlo points to have come from the same distribution is found to be0.86.

/ 1 MeV)ee(m10

log0 0.5 1 1.5 2 2.5

# E

vent

s

0

2

4

6

8

10

12

14

16

/ 1 MeV)ee(m10

log0 0.5 1 1.5 2 2.5

# E

vent

s

0

2

4

6

8

10

12

14

16 Signal Simulation Simulationcnon-c

w/o Conversions SimulationccConversions SimulationData

Figure 241: Distribution of me+e− in data after unblinding overlaid with prediction fromMonte Carlo.

227

Page 228: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

15.11 A Re-evaluation of All D∗+s Branching Fractions

Now that we have a measurement of the ratio of the branching fractionsB(D∗+s → D+

s e+e−)/B(D∗+

s →D+

s γ), we may combine it with the measurement of B(D∗+s → D+

s π0)/B(D∗+

s → D+s γ) as

measured by the BABAR collaboration [3] to re-evaluate the absolute branching fractionsB(D∗+

s → D+s γ), B(D∗+

s → D+s π

0) and B(D∗+s → D+

s e+e−). For notational convenience,

we shall denote B(D∗+s → D+

s γ) by bγ , B(D∗+s → D+

s π0) by bπ0 and B(D∗+

s → D+s e

+e−) bybe+e−. If we call our measurements of the ratios m1 and m2 as indicated in Eq. 86 & 87,

m1 =bπ0

bγ= 0.062 ± 0.005 ± 0.006 (86)

m2 =be+e−

bγ= 0.0072 ± 0.0014 ± 0.0006 (87)

and have the absolute branching fractions add up to unity, we may write

bγ =1

1 +m1 +m2(88)

∆bγ =∂bγ∂m1

∆m1 ⊕∂bγ∂m2

∆m2 (89)

where∂bγ∂m1

=∂bγ∂m2

=−1

(1 +m1 +m2)2

In a similar vein, one may write the solutions for bπ0 and be+e− as follows.

bπ0 =m1

1 +m1 +m2(90)

∆bπ0 =∂bπ0

∂m1∆m1 ⊕

∂bπ0

∂m2∆m2 (91)

where∂bπ0

∂m1

=1 +m2

(1 +m1 +m2)2

∂bπ0

∂m2

=−m1

(1 +m1 +m2)2

and

be+e− =m2

1 +m1 +m2

(92)

∆be+e− =∂be+e−

∂m1∆m1 ⊕

∂be+e−

∂m2∆m2 (93)

where∂be+e−

∂m1=

−m2

(1 +m1 +m2)2

∂be+e−

∂m2=

1 +m1

(1 +m1 +m2)2

228

Page 229: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

We evaluate these derivatives using the central values of the measurements m1 andm2 andpropagate the statistical and systematic errors independently to give us absolute measuresfor the branching fractions of the D∗+

s thus far discovered.

B(D∗+s → D+

s γ) = (93.5 ± 0.5 ± 0.5)% (94)

B(D∗+s → D+

s π0) = (5.8 ± 0.4 ± 0.5)% (95)

B(D∗+s → D+

s e+e−) = (0.67 ± 0.13 ± 0.05)% (96)

229

Page 230: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

16 Systematic Uncertainties from the Tracking of Soft

Electrons and Photons

As reported in Section 15, systematic errors in the measurement of εe+e−/εγ will contribute tothe systematic uncertainty in our measurement of the ratio of branching fractions B(D∗+

s →D+

s e+e−) B(D∗+

s → D+s γ). In this section, we seek to estimate the fractional systematic error

associated with the measurement of εe+e−/εγ in the energy range relevant for our analysisby studying the decay of ψ(2S) mesons to J/ψπ0π0. We estimate this systematic error byrestricting the e+e− energy to that found in D∗+

s → D+s e

+e− and measuring the ratio of thenumbers of events where one of the π0 decays to γe+e− to the number of events where bothπ0 decay to γγ and comparing this to the ratio expected from currently accepted branchingfractions for π0 → γe+e− and π0 → γγ.

Dataset 42, which contains 53 pb−1 of data taken at the ψ(2S) resonance, was used forthis study. Since soft electrons from the Dalitz decay of the π0 would also suffer from thesystematic deviation in their energy and other track parameters if their tracks are pion-fitted,we reprocessed this dataset to include electron-fits. This has been described in Section 8.

We tried to estimate e+e− reconstruction efficiency using the method of missing mass.This effort failed as the invariant mass of an electron is indistinguishable from that of aphoton at our scale of energies and this makes it impossible for us to distinguish betweenefficient and inefficient events. In the following paragraphs, we describe a method thatcompletely reconstructs the ψ(2S) from its decay into J/ψπ0π0 in order to estimate oursystematic error in the measurement of εe+e−/εγ.

For our convenience, events where one of the π0 Dalitz decays to e+e−γ will be calledevents of Type I. Events where both π0 decay to γγ will be called events of Type II. The latestfit in the Review of Particle Physics 2010 establishes the ratio B(π0 → γe+e−)/B(π0 → γγ)to be (1.188 ± 0.034) × 10−2 [7].

In our method, we obtain a measurement of this ratio from data. The deviation of thismeasurement from the currently accepted value of the branching fraction translates to thesystematic uncertainty in our measurement of εe+e−/εγ :

∆εe+e−/εγεe+e−/εγ

=∆(B(π0 → γe+e−)/B(π0 → γγ))

B(π0 → γe+e−)/B(π0 → γγ)(97)

Our method reconstructs the ψ(2S) through events of Type I (ψ(2S) → J/ψπ0π0; π0 →γγ; π0 → e+e−γ) and events of Type II (ψ(2S) → J/ψπ0π0; π0 → γγ; π0 → γγ). Weestimate the reconstruction efficiencies for both types of events using Monte Carlo samples.First, we establish a set of criteria to reconstruct Type I events in our data. To illustrate ourmethod, we shall call the efficiency of selecting Type I events from an MC sample of Type Ievents εs. The efficiency of keeping Type II events in the signal region of these criteria froman MC sample of Type II events shall be called εc. For nI produced Type I and nII producedType II events, we can expect an yield of y events after applying this set of selection criteria

230

Page 231: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

to our data as expressed in Eq. 98.

nIεs + nIIεc = y (98)

Using the currently accepted ratio of nI/nII from Eq. ??, we may calculate nI , thenumber of Type I events in our data, from this.

Hereafter, we construct a set of selection criteria to reconstruct Type II events in ourdata. Using Type II MC, we find out the reconstruction efficiency εγ for this set of criteria.Then we may estimate the number of produced Type II events in our data with this methodas nII using

nIIεγ = yγ (99)

where yγ is the yield of our set of criteria on data to isolate Type II events.Having estimated the number of Type I and II events in our data, we may estimate the

branching fraction B(π0 → e+e−γ) using

B(π0 → e+e−γ) =B(π0 → γγ)

2

nI

nII

. (100)

.In order to establish a systematic uncertainty in our measurement of B(π0 → e+e−γ), we

implement a second method for measuring this branching fraction. In this method, we useType I and Type II events in our data that are most likely conversion events, events whereone of the photons from the π0 converts to a e+e− in material, in combination with Eq. 98to estimate the total number of Type I and Type II events in the data. In order to selectevents that are most likely to be conversion events, we select events that are rejected bythe ∆d0 and ∆φ0 criteria on the tracks of the e+e− pair. These selection criteria have beendescribed in Sections 5.5 and 5.6. The efficiency of selecting such conversion-type eventsfrom a MC sample of Type I events shall be called ε′s. The efficiency of selecting such eventsfrom a MC sample of Type II events shall be called ε′c. Thus, upon the application of ourselection criteria (that inverts the standard ∆d0 and δφ0 requirements), the yield in datamay be denoted by y′ as expressed in Eq. 101.

nIε′s + nIIε

′c = y′ (101)

Solving Equations 98 and 99 simultaneously gives us the number of Type I events in thedata. The number of Type II events is used as deduced earlier from the selection of Type IIevents. This ratio, nI/nII , is plugged into Equation 100 to give us a second estimate for theπ0 Dalitz decay branching fraction.

Now we shall discuss the details of implementation of the two methods.

16.1 Method 1

First, we shall describe the selection criteria used to select events from data in our firstmethod.

231

Page 232: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_jPsi_m_eEntries 10422Mean 3.093RMS 0.01752

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

100

200

300

400

500

h_jPsi_m_eEntries 10422Mean 3.093RMS 0.01752

-e+ Mass from eψJ/

h_jPsi_m_mEntries 11716Mean 3.094RMS 0.01653

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

100

200

300

400

500

600

700

800

h_jPsi_m_mEntries 11716Mean 3.094RMS 0.01653

-µ+µ Mass from ψJ/

h_jPsi_m_eEntries 1082Mean 3.093RMS 0.01829

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

10

20

30

40

50

60

70

80

90

h_jPsi_m_eEntries 1082Mean 3.093RMS 0.01829

-e+ Mass from eψJ/

h_jPsi_m_mEntries 1094Mean 3.096RMS 0.01808

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

10

20

30

40

50

60

70

80

90

h_jPsi_m_mEntries 1094Mean 3.096RMS 0.01808

-µ+µ Mass from ψJ/

h_jPsi_m_eEntries 5994Mean 3.091RMS 0.01728

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

50

100

150

200

250

300

350

h_jPsi_m_eEntries 5994Mean 3.091RMS 0.01728

-e+ Mass from eψJ/

h_jPsi_m_mEntries 10660Mean 3.095RMS 0.0162

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

100

200

300

400

500

600

h_jPsi_m_mEntries 10660Mean 3.095RMS 0.0162

-µ+µ Mass from ψJ/

Figure 242: Invariant mass of the J/ψ reconstructed from its decay to e+e− (top plots) andµ+µ− (bottom plots). The column on the left is from signal MC of Type I events. Thecolumn at the center is from signal MC of Type II events. The column on the right is fromdata.

The J/ψ is reconstructed from its decays to e+e− and µ−µ+. The tracks of these leptonsare fitted with the Kalman fitter using electron and muon mass hypotheses respectively. 50%of the expected number of hits on a track are required to be present. The momentum ofeach track is required to be between 500 MeV and 10 GeV. They may be reconstructed uptoa cos θ of 0.93. The track parameter d0 must be less than 5 mm and z0 must be less than 5cm. The dE/dx of electron and muon tracks are required to be within 3 σ of their expectedvalues. The J/ψ has a mass of 3096.92 ± 0.001 MeV and a full natural width of 93.2 ± 2.1keV. In our study, we require the invariant mass of the e+e− pair to be within 30 MeV of3.09200 GeV, and the invariant mass of the µ−µ+ pair to be within 30 MeV of 3.09692 GeVas depicted in Fig 242.

The first π0 in Type I events is reconstructed from its decay to two photons. The photonsmust not have showered in known noisy crystals and must not have tracks matched to them.Each of their shower energies are required to be between 10 Mev and 2 Gev. The E9E25unfolded [*] cut is required to be less than 1.0. The pull mass of the π0 is required to bewithin ± 2.5 σ. This is shown in Fig. 243.

The second π0 in Type II events is reconstructed from its decay to a photon and a softe+e− pair. Requirements on the photon are identical to those of the photons from the first

232

Page 233: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_pi0Mass_PullEntries 21302Mean -0.09217RMS 1.376

σ -3 -2 -1 0 1 2 3100

200

300

400

500

600

700

800

h_pi0Mass_PullEntries 21302Mean -0.09217RMS 1.376

Pull Mass0π h_pi0Mass_PullEntries 2070Mean 0.01718RMS 1.425

σ -3 -2 -1 0 1 2 3

10

20

30

40

50

60

70

80

h_pi0Mass_PullEntries 2070Mean 0.01718RMS 1.425

Pull Mass0π h_pi0Mass_PullEntries 16046Mean -0.08606RMS 1.468

σ -3 -2 -1 0 1 2 3

150

200

250

300

350

400

450

500

h_pi0Mass_PullEntries 16046Mean -0.08606RMS 1.468

Pull Mass0π

Figure 243: The invariant mass of the first π0. The column on the left is from signal MC ofType I events. The column at the center is from MC of Type II events. The column on theright is from data.

h_pi0_2_Reco_m

Entries 19560Mean 0.1596RMS 0.07295

m (GeV)0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

200

400

600

800

1000

1200

1400

1600

h_pi0_2_Reco_m

Entries 19560Mean 0.1596RMS 0.07295

0πInvariant Mass of Second h_pi0_2_Reco_m

Entries 1892Mean 0.158RMS 0.07016

m (GeV)0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

20

40

60

80

100

120

140

160

180

h_pi0_2_Reco_m

Entries 1892Mean 0.158RMS 0.07016

0πInvariant Mass of Second h_pi0_2_Reco_m

Entries 14362Mean 0.1597RMS 0.07091

m (GeV)0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

100

200

300

400

500

600

700

800

900

h_pi0_2_Reco_m

Entries 14362Mean 0.1597RMS 0.07091

0πInvariant Mass of Second

Figure 244: The invariant mass of the second π0. The column on the left is from signal MCof Type I events. The column at the center is from MC of Type II events. The column onthe right is from data.

π0. The electron is Kalman fitted using the electron mass hypothesis and is required tohave a momentum between 10 Mev and 2 GeV. It must be reconstructed within an angle ofcos(θ) = 0.93. The track parameter d0 must be less than 5 mm and z0 must be less than 5cm. The dE/dx of the track is required to be within 3 σ of the value expected of an electron.The invariant mass of the γe+e− is required to be within 18 MeV of the nominal mass of theπ0 which is 134.9766 MeV. The distribution of this invariant mass and the selection rangeis shown in Fig. 244.

The electron and the positron are each required to have an energy less than 144 MeV asindicated in Fig. 245. This is the range of energies of the positron and the electron from thedecay D∗+

s → D+s e

+e−.Next, we combine the four-momenta of the J/ψ and two π0 to get the four-momentum

of the ψ(2S) meson. This must be close to the four-momentum of the colliding e+e− pairat the center of the CLEO-c detector. Hence, we apply selection criteria constraining eachcomponent of the momentum of the ψ(2S) to be within 40 MeV of that of the collision

233

Page 234: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_e_Reco_eEntries 39120Mean 0.09512RMS 0.05038

E (GeV)0 0.05 0.1 0.15 0.2 0.25 0.30

200

400

600

800

1000

1200

1400

h_e_Reco_eEntries 39120Mean 0.09512RMS 0.05038

Energy of the Electron

Figure 245: The distribution of energy of the positron and the electron from the Dalitzdecay of the π0 in the MC. Events containing positron and electrons with energy less than144 MeV, as indicated, are accepted.

momentum. This is shown in Fig. 246.We select events where the difference between the invariant masses of the reconstructed

ψ(2S) candidate and the J/ψ candidate is within 30 MeV of the nominal difference in masses.This is depicted in Fig. 247.

A background to the selection of Type I events are Type II events where one of thephotons from a π0 converts in material to produce an e+e− pair. We reject this backgroundusing the ∆d0 > −5mm and ∆φ0 < 0.12 criteria used in our D∗+

s → D+s e

+e− analysis. Thisis shown in Fig. 248 and 249.

The aforementioned selection criteria are found to accept 1,069 Type I events out of aMonte Carlo sample of 299,794. Thus, we record the efficiency εs = 0.0357 ± 0.0011 asapplicable in Eq. 98. They are also found to accept 10 Type II events out of a Monte Carlosample of 149,888 and thus we may write εc = 2/149, 888 = (1.33 ± 0.94) × 10−5. Whenthese selection criteria are applied to our data, we get an yield of y = 306 events.

Assuming the established ratio of Type I to Type II events detailed in Eq. ?? to holdtrue, we may solve Eq. 98 for nI . The solution is given in Eq. 102 and 103. The ⊕ symbolis used to denote addition in quadrature. This gives us nI = 8447 ± 554.

nI =y

εs + εc/r(102)

∆nI

nI

=∆y

y⊕ ∆εs ⊕ (εc/r)(∆εc/εc ⊕ ∆r/r)

εs + εc/r(103)

Having calculated the number of Type I events in our data, we may now estimate thenumber of Type II events present in the data sample. The reconstruction of Type II events issimilar to the reconstruction of Type I events. The second π0 is reconstructed from photonswith the same selection criteria as the first π0. The ∆d0 and ∆φ0 cuts are not used as theyare clearly inapplicable. A signal MC for Type II events was generated to calculate thesignal efficiency of our criteria. Distributions of the J/ψ mass, the pull masses of the two

234

Page 235: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_diffPsi_pxEntries 4740Mean 0.001794RMS 0.0527

(GeV)xp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

50

100

150

200

250

300

350

400

450

h_diffPsi_pxEntries 4740Mean 0.001794RMS 0.0527

Beam-px

(2S)Ψpx

h_diffPsi_pyEntries 4740Mean 0.0008798

RMS 0.05109

(GeV)yp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

100

200

300

400

500

h_diffPsi_pyEntries 4740Mean 0.0008798

RMS 0.05109

Beam-py

(2S)Ψpy

h_diffPsi_pzEntries 4740Mean -0.001182RMS 0.0479

(GeV)zp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

50

100

150

200

250

300

350

400

450

h_diffPsi_pzEntries 4740Mean -0.001182RMS 0.0479

Beam-pz

(2S)Ψpz

h_diffPsi_pxEntries 414Mean 0.00217RMS 0.04692

(GeV)xp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

10

20

30

40

50

60

h_diffPsi_pxEntries 414Mean 0.00217RMS 0.04692

Beam-px

(2S)Ψpx

h_diffPsi_pyEntries 414Mean 0.006086RMS 0.05818

(GeV)yp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

5

10

15

20

25

30

35

40

h_diffPsi_pyEntries 414Mean 0.006086RMS 0.05818

Beam-py

(2S)Ψpy

h_diffPsi_pzEntries 414Mean 0.0084RMS 0.04552

(GeV)zp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

10

20

30

40

50

h_diffPsi_pzEntries 414Mean 0.0084RMS 0.04552

Beam-pz

(2S)Ψpz

h_diffPsi_pxEntries 3210Mean -0.003273RMS 0.05564

(GeV)xp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

50

100

150

200

250

h_diffPsi_pxEntries 3210Mean -0.003273RMS 0.05564

Beam-px

(2S)Ψpx

h_diffPsi_pyEntries 3210Mean 0.003707RMS 0.05737

(GeV)yp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

50

100

150

200

250

h_diffPsi_pyEntries 3210Mean 0.003707RMS 0.05737

Beam-py

(2S)Ψpy

h_diffPsi_pzEntries 3210Mean -0.0001413

RMS 0.05366

(GeV)zp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

50

100

150

200

250

h_diffPsi_pzEntries 3210Mean -0.0001413

RMS 0.05366

Beam-pz

(2S)Ψpz

Figure 246: Four momenta of ψ(2S) relative to the e+e− collision four momenta. The columnon the left is from signal MC of Type I events. The column at the center is from MC ofType II events. The column on the right is from data.

235

Page 236: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_diffPsiEntries 3212Mean 0.5888RMS 0.01359

(GeV)ψJ/-m(2S)ψ m0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

100

200

300

400

500

600

700

800

900

h_diffPsiEntries 3212Mean 0.5888RMS 0.01359

Massψ(2S)-J/ψ h_diffPsiEntries 284Mean 0.5911RMS 0.01107

(GeV)ψJ/-m(2S)ψ m0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

20

40

60

80

100

h_diffPsiEntries 284Mean 0.5911RMS 0.01107

Massψ(2S)-J/ψ h_diffPsiEntries 1798Mean 0.5849RMS 0.02303

(GeV)ψJ/-m(2S)ψ m0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

50

100

150

200

250

300

350

400

450

h_diffPsiEntries 1798Mean 0.5849RMS 0.02303

Massψ(2S)-J/ψ

Figure 247: Difference between the invariant masses of the ψ(2S) and the J/ψ. The columnon the left is from signal MC of Type I events. The column at the center is from MC ofType II events. The column on the right is from data.

h_diffD0Entries 3122Mean 5.593e-05RMS 0.002031

m0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.0080.010

50

100

150

200

250

300

h_diffD0Entries 3122Mean 5.593e-05RMS 0.002031

0d∆ h_diffD0Entries 278Mean -0.004284RMS 0.002687

m0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.0080.0102468

10121416182022

h_diffD0Entries 278Mean -0.004284RMS 0.002687

0d∆ h_diffD0Entries 1712Mean -0.001865RMS 0.00296

m0d∆ -0.01-0.008-0.006-0.004-0.002 0 0.0020.0040.0060.0080.010

20

40

60

80

100

120

140

h_diffD0Entries 1712Mean -0.001865RMS 0.00296

0d∆

Figure 248: The ∆d0 between the e+e− pair from the second π0. The column on the left isfrom signal MC of Type I events. The column at the center is from MC of Type II events.The column on the right is from data.

h_dPhiEntries 3080Mean -5.588e-05RMS 0.3647

0φ∆ -1.5 -1 -0.5 0 0.5 1 1.50

100

200

300

400

500

600

h_dPhiEntries 3080Mean -5.588e-05RMS 0.3647

0φ∆ h_dPhi

Entries 158Mean 0.2479RMS 0.08649

0φ∆ -1.5 -1 -0.5 0 0.5 1 1.50

10

20

30

40

50

60

h_dPhiEntries 158Mean 0.2479RMS 0.08649

0φ∆ h_dPhi

Entries 1394Mean 0.09293RMS 0.2724

0φ∆ -1.5 -1 -0.5 0 0.5 1 1.50

20

40

60

80

100

120

140

160

180

200

h_dPhiEntries 1394Mean 0.09293RMS 0.2724

0φ∆

Figure 249: The ∆φ0 between the e+e− pair from the second π0. The column on the left isfrom signal MC of Type I events. The column at the center is from MC of Type II events.The column on the right is from data.

236

Page 237: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

π0, the momentum of the ψ(2S) relative to the collision momentum and the mass differencebetween the ψ(2S) and the J/ψ are presented in Fig. 250, 251, 252, 253 and 254.

25,713 events out of 149,888 signal MC events were seen to be accepted by our criteria.This gives a signal efficiency εγ = 0.1716 ± 0.0011. We find the yield in data to be yII =58, 602 events. Using Eq. 99 we infer that the number of Type II events is our data isnII = 341, 607 ± 2, 555.

Now, we may calculate the ratio of branching fractions B(π0 → e+e−γ)/B(π0 → γγ)from the ratio of Type I to Type II events thus:

B(π0 → e+e−γ)

B(π0 → γγ)=

nI

2nII

= 0.5 × 8447 ± 554

341607± 2555= 0.01237 ± 0.00082. (104)

In order to establish a systematic uncertainty in this measurement, we use a secondmethod to estimate the ratio B(π0 → e+e−γ)/B(π0 → γγ).

237

Page 238: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_jPsi_m_eEntries 15125Mean 3.093RMS 0.01736

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

100

200

300

400

500

600

700

h_jPsi_m_eEntries 15125Mean 3.093RMS 0.01736

-e+ Mass from eψJ/

h_jPsi_m_mEntries 18965Mean 3.096RMS 0.01545

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

200

400

600

800

1000

1200

h_jPsi_m_mEntries 18965Mean 3.096RMS 0.01545

-µ+µ Mass from ψJ/

h_jPsi_m_eEntries 38814Mean 3.092RMS 0.01682

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

200

400

600

800

1000

1200

1400

1600

1800

2000

h_jPsi_m_eEntries 38814Mean 3.092RMS 0.01682

-e+ Mass from eψJ/

h_jPsi_m_mEntries 82069Mean 3.096RMS 0.01571

m (GeV)3.05 3.06 3.07 3.08 3.09 3.1 3.11 3.12 3.13 3.140

500

1000

1500

2000

2500

3000

3500

4000

4500

h_jPsi_m_mEntries 82069Mean 3.096RMS 0.01571

-µ+µ Mass from ψJ/

Figure 250: Invariant mass of the J/ψ reconstructed from its decay to e+e− (top plots) andµ+µ− (bottom plots). The column on the left is from signal MC of Type II events. Thecolumn on the right is from data.

238

Page 239: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_pi0_1_Mass_Pull

Entries 32975Mean -0.105RMS 1.163

σ -3 -2 -1 0 1 2 3

200

400

600

800

1000

1200

1400

h_pi0_1_Mass_Pull

Entries 32975Mean -0.105RMS 1.163

Pull Mass10π h_pi0_1_Mass_Pull

Entries 116738Mean -0.08567RMS 1.337

σ -3 -2 -1 0 1 2 3

1000

1500

2000

2500

3000

3500

4000

h_pi0_1_Mass_Pull

Entries 116738Mean -0.08567RMS 1.337

Pull Mass10π

Figure 251: The invariant mass of the first π0. The column on the left is from signal MC ofType II events. The column on the right is from data.

h_pi0_2_Mass_Pull

Entries 31776Mean -0.1688RMS 1.192

σ -3 -2 -1 0 1 2 30

200

400

600

800

1000

1200

h_pi0_2_Mass_Pull

Entries 31776Mean -0.1688RMS 1.192

Pull Mass20π h_pi0_2_Mass_Pull

Entries 109152Mean -0.224RMS 1.352

σ -3 -2 -1 0 1 2 3

500

1000

1500

2000

2500

3000

3500

h_pi0_2_Mass_Pull

Entries 109152Mean -0.224RMS 1.352

Pull Mass20π

Figure 252: The invariant mass of the second π0. The column on the left is from signal MCof Type II events. The column on the right is from data.

239

Page 240: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_diffPsi_pxEntries 30421Mean -0.000243RMS 0.02238

(GeV)xp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

500

1000

1500

2000

2500

3000

3500

4000

4500

h_diffPsi_pxEntries 30421Mean -0.000243RMS 0.02238

Beam-px

(2S)Ψpx

h_diffPsi_pyEntries 30421Mean -0.0001139

RMS 0.02214

(GeV)yp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

500

1000

1500

2000

2500

3000

3500

4000

4500

h_diffPsi_pyEntries 30421Mean -0.0001139

RMS 0.02214

Beam-py

(2S)Ψpy

h_diffPsi_pzEntries 30421Mean 3.68e-05RMS 0.02309

(GeV)zp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

500

1000

1500

2000

2500

3000

3500

4000

h_diffPsi_pzEntries 30421Mean 3.68e-05RMS 0.02309

Beam-pz

(2S)Ψpz

h_diffPsi_pxEntries 101439Mean -0.000171RMS 0.04734

(GeV)xp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

2000

4000

6000

8000

h_diffPsi_pxEntries 101439Mean -0.000171RMS 0.04734

Beam-px

(2S)Ψpx

h_diffPsi_pyEntries 101439Mean 0.0005182

RMS 0.04748

(GeV)yp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

2000

4000

6000

8000

h_diffPsi_pyEntries 101439Mean 0.0005182

RMS 0.04748

Beam-py

(2S)Ψpy

h_diffPsi_pzEntries 101439Mean -0.0002602

RMS 0.04899

(GeV)zp∆ -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.20

2000

4000

6000

8000

h_diffPsi_pzEntries 101439Mean -0.0002602

RMS 0.04899

Beam-pz

(2S)Ψpz

Figure 253: Four momenta of ψ(2S) relative to the e+e− collision four momenta. The columnon the left is from signal MC of Type II events. The column on the right is from data.

240

Page 241: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_diffPsiEntries 27992Mean 0.5892RMS 0.009239

(GeV)ψJ/-m(2S)ψ m0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

2000

4000

6000

8000

h_diffPsiEntries 27992Mean 0.5892RMS 0.009239

Massψ(2S)-J/ψ h_diffPsiEntries 66812Mean 0.5851RMS 0.02235

(GeV)ψJ/-m(2S)ψ m0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

2000

4000

60008000

h_diffPsiEntries 66812Mean 0.5851RMS 0.02235

Massψ(2S)-J/ψ

Figure 254: Difference between the invariant masses of the ψ(2S) and the J/ψ. The columnon the left is from signal MC of Type II events. The column on the right is from data.

241

Page 242: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

h_n_dPhiEntries 42Mean 0.1881RMS 0.6087

-1.5 -1 -0.5 0 0.5 1 1.50

1

2

3

4

5

6

h_n_dPhiEntries 42Mean 0.1881RMS 0.6087

0φ∆Conversion Type h_n_dPhi

Entries 120Mean 0.3565RMS 0.06916

-1.5 -1 -0.5 0 0.5 1 1.50

5

10

15

20

25

30

35

40

h_n_dPhiEntries 120Mean 0.3565RMS 0.06916

0φ∆Conversion Type h_n_dPhi

Entries 318Mean 0.3443RMS 0.1199

-1.5 -1 -0.5 0 0.5 1 1.50

20

40

60

80

100

120

h_n_dPhiEntries 318Mean 0.3443RMS 0.1199

0φ∆Conversion Type

Figure 255: The ∆φ0 between the e+e− pair. Now we accept events with ∆φ0 greater than0.12. These were previously rejected as likely to be conversion-type events. The column onthe left is from signal MC of Type I events. The column at the center is from MC of TypeII events. The column on the right is from data.

16.2 Method 2

Our second method for estimating B(π0 → e+e−γ) uses conversion-type events found indata. Conversion-type events are those where both π0 decay to γγ but at least one photonconverts in material to form a e+e− pair. We select for such events by requiring all thecriteria on J/ψ and the invariant masses of the π0 used to select Type I events, except nowwe look at the “wrong side” of the ∆d0 and ∆φ0 criteria. In other words, we keep eventswhich were previously being rejected by both the ∆d0 and the ∆φ0 criteria. The distributionof ∆d0 is the same as Fig. 248 since all preceding criteria are identical. The distributionof ∆φ0 after having accepted tracks on the ”wrong side” of ∆d0 is presented in Fig. 255respectively.

The efficiency of such a set of selection criteria for Type I events is found to be ε′s =10/29, 974 = (3.34 ± 1.1(stat)) × 10−4. The efficiency for Type II events is found to beε′c = 54/149, 888 = (3.60 ± 0.49(stat)) × 10−4. On applying these selection criteria to ourdata, we are left with an yield of y′ = 141 events. These values may be plugged into Eq. 101and solved simultaneously with Eq. 98 to get nI = 8437 ± 342. The solution for nI is givenin Eq. 105 and 106.

nI =yε′c − y′εcεsε′c − εcε′s

(105)

∆nI =δnI

δy∆y ⊕ δnI

δy′∆y′ ⊕ δnI

δεc∆εc ⊕

δnI

δεs∆εs ⊕

δnI

δε′c∆ε′c ⊕

δnI

δε′s∆ε′s (106)

where

δnI

δy= ε′c

242

Page 243: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

δnI

δy′= −εc

δnI

δεc=

−yεsε′c − εcε′s

+yε′c − y′εc

(εsε′c − εcε′s)2ε′s

δnI

δεs= − yε′c − y′εc

(εsε′c − εcε′s)2ε′c

δnI

δε′c=

y

εsε′c − εcε′s− yε′c − y′εc

(εsε′c − εcε′s)2εs

δnI

δε′s=

yε′c − y′εc(εsε′c − εcε′s)

2εc

Now, we may calculate the ratio of Type I to Type II events in our data as nI/nII andfrom that estimate the ratio of branching fraction B(π0 → γe+e−)/B(π0 → γγ) thus:

B(π0 → e+e−γ)

B(π0 → γγ)=

nI

2nII

= 0.5 × 8437 ± 342

341607± 2555= 0.01235 ± 0.00051. (107)

Now, we may combine our results from the two methods to establish a systematic error.Result from method 1: B(π0 → e+e−γ)/B(π0 → γγ) = 0.01237 ± 0.00082(stat). Resultfrom method 2: B(π0 → e+e−γ)/B(π0 → γγ) = 0.01235 ± 0.00051(stat). The result ofmethod 2 has the smaller uncertainty and will, therefore, be quoted as the central valueof our measurement. The systematic uncertainty, calculated as the difference between thetwo central values, is 0.00002. Hence, we report B(π0 → e+e−γ)/B(π0 → γγ) = 0.01235 ±0.00051(stat) ± 0.00002(syst).

The current world average for this quantity is 0.01188± 0.00034 [7]. So, our deviation is0.00047, which does not warrant a correction given the other errors. We add this deviationin quadrature with 0.00051 and 0.00034 to obtain 0.00077. Thus, the fractional uncertaintywe set out to estimate is found to be 0.00077/0.01188 = 6.50%.

∆εe+e−/εγεe+e−/εγ

=∆(B(π0 → γe+e−)/B(π0 → γγ))

B(π0 → γe+e−)/B(π0 → γγ)=

0.077%

1.188%= 6.50% (108)

243

Page 244: Search and Observation of the Decay e =B D ) at the CLEO-c ...and Measurement of the Ratio of Branching Fractions B(D + s! D+ se +e )=B(D + s! D+ s) at the CLEO-c Experiment Souvik

References

[1] J. P. Alexander et al. Absolute Measurement of Hadronic Branching Fractions of the D+s

Meson. Phys. Rev. Lett., 100:161804, 2008.

[2] C. Amsler et al. Review of particle physics. Physics Letters B, 667(1-5):1 – 6, 2008.Review of Particle Physics.

[3] Bernard Aubert et al. Measurement of the branching ratios Γ(D∗+s → D+

s π0)/Γ(D∗+

s →D+

s γ) and Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ). Phys. Rev., D72:091101, 2005.

[4] D. Cronin-Hennessy et al. Measurement of Charm Production Cross Sections in e+e−

Annihilation at Energies between 3.97 and 4.26 GeV. Phys. Rev. D, 80:072001, 2009.

[5] Brian K. Heltsley. FitEvt: A User-Friendly C++ Interface for Kinematic Fitting. CBX

06-28, 2006.

[6] Rob Kutschke. How and Why Wonder Book of CLEO Tracking Conventions. CSN

94-334, 1996.

[7] K. Nakamura et al. J. Phys. G, 37:075021, 2010.

[8] Peter Onyisi and Werner Sun. Developments in D(s)-Tagging. CBX 06-11, 2006.

244