Seatle Sculpture Park Shoreline Research

Embed Size (px)

Citation preview

SAFSUW1002 SEPTEMBER2010

OLYMPICSCULPTUREPARK:YEAR3MONITORINGOFSHORELINE ENHANCEMENTSJasonToft,AndreaOgston,SarahHeerhartz,JefferyCordell,ElizabethArmbrust,and ClaireLevy School of Aquatic and Fishery Sciences, and School of Oceanography, University of Washington

PreparedforSeattlePublicUtilities,CityofSeattle

FundedbySeattlePublicUtilitiesCityofSeattle,WRIA9,KingConservationDistrict, EstuaryandSalmonRestorationProgram,WashingtonDepartmentofFishandWildlife

ManagementSummaryAuthors:JasonToft,AndreaOgston,SarahHeerhartz,JefferyCordell,Elizabeth Armbrust,andClaireLevy.UniversityofWashington. Funding:SeattlePublicUtilitiesCityofSeattle,WRIA9,KingConservationDistrict, EstuaryandSalmonRestorationProgram,WashingtonDepartmentofFishandWildlife. InJanuary2007theSeattleArtMuseumsOlympicSculpturePark(OSP)openedatasite alongSeattlesurbanizedElliottBayshoreline.Theparkincludesenhancedshoreline featuresdesignedtobenefitjuvenilesalmonandotherorganisms.Apocketbeachand habitatbenchwerecreatedinshallownearshorewaters,vegetationwasplantedinthe uplands,andcoarsegrainedsedimentsanddriftwoodwereplacedonthebeach.These featuresreplacedtherelativelyunproductivearmoredseawallandriprapshoreline, withagoalofincreasingthenumberanddiversityoffishandinvertebrates. Although thisshorelineisinanurban,commercialsettingandwillnotbecompletelyrestoredto prehistoricconditions,theparkhasenhancedapublicallyaccessiblesegmentof shorelinethathasmorenaturalfunctionsthanitdidbefore.

WorkalongOSPsseawallsegmentwasspurredbyconcernsaboutthelongterm seismicstabilityoftheexistingstructure.TheseawallalongSeattleswaterfrontneeds replacementandtheCityofSeattledidnothaveplanstoreplacethenorthernsection forsomeyears.TheSeattleArtMuseumchosetoaddresstheseawallduringtheparks constructionratherthanexperiencedisruptionaftertheparkwascreated.Construction alongOSPsportionoftheseawallcost$5.5milliontoreinforcetheexistingseawall, whichwascosteffectivecomparedtotheinitialestimateof$5080millionto completelyreplacethatportionofseawall.OSPsapproachmadeitpossibletoinclude thehabitatbenchwhichrecreatedshallowwaterhabitatinfrontofthereinforced seawall,aswellasexcavatethenewpocketbeachfromadjacentriprap.

PhotographsoftheOlympicSculptureParkPreandPostEnhancementa b c

(a)Riprapandseawallarmoringatthesitebeforeenhancement,(b)postenhancement pocketbeachathightide(habitatbenchisunderwater)and(c)habitatbenchatlowtide showingkelpontheoutermargin.Thepocketbeachreplacedripraparmoring,andthe habitatbenchenhancedtheexistingseawall.Dunegrassandriparianvegetationwereplanted aroundthepocketbeach,andavegetationswathwasplantedintheuplandsabovethe habitatbench.Riprapseenintheforegroundofthepocketbeachin(b)andtheseawallinthe backgroundofthehabitatbenchin(b)weresampledasreferencearmoredsites.

ii

Monitoringofthesitehasbeenconductedtomeasurethestatusanddevelopmentof theshorelineenhancements,andalsotogeneratedatathatwillinformfuture restorationeffortsalongthisandotherregionalurbanizedshorelines.Themaingoalof monitoringistotestifnearshoreenhancementattheOlympicSculptureParkhas improvedhabitatforbiotaascomparedtoadjacentarmoredshorelines.Sampling focusedonprovidinginformationspecifictojuvenileChinooksalmon,whicharelisted undertheEndangeredSpeciesActasthreatenedinPugetSound.Wecollecteddataon assemblagesoffish,invertebrates,algae,andvegetation,andconductedsediment surveysandbeachprofiling.Monitoringresultswillhelpusdetermineifshoreline enhancementsalongtheurbanwaterfrontprovidebeneficialhabitatfornearshore biota,andifthephysicalstructures(e.g.,pocketbeach)willremainintactwithout frequentbeachsedimentnourishmentorstabilizationefforts. Resultsfromthreeyearsofmonitoringindicatethatthebeachstructureisrelatively stableandtherehasbeenarapiddevelopmentofaquaticandterrestrialbiota.Manyof ourindicatorsofinvertebrateandfishusemeasuredinyears1and3postenhancement havehighervalues(abundance,diversity,assemblages)whencomparedtothebaseline conditionsmeasuredbeforeenhancement,ortheadjacentsectionsofseawalland riprap.Monitoringiscurrentlyplannedforyears5and10postenhancementto continuetoassessbiologicalandphysicalfunctionsatthedevelopingsite.

OverallTimelineofMonitoringActivitiesattheOlympicSculptureParkFish, fish diets, epibenthic and benthic invertebrates, insects, algae, vegetation, beach profile and sediments Pre-enhancement monitoring0 Fish, epibenthic invertebrates, insects

Year-1 monitoring1

Year-3 monitoring3

2005

2006

2007

2008

2009

2010

Construction Creation of pocket beach and habitat bench. Plantings of vegetation. Reports

Year-2 subset monitoring2 Less metrics at more sites: fish, epibenthic invertebrates, beach profile and sediments

0 Toft, J.D., and J. Cordell. 2006. Olympic Sculpture Park: results from pre-construction biological monitoring of shoreline habitats. Technical Report SAFS-UW-0601, School of Aquatic and Fishery Sciences, University of Washington. Prepared for Seattle Public Utilities, City of Seattle. 36 pp. 1 Toft, J., J. Cordell, S. Heerhartz, E. Armbrust, A. Ogston, and E. Flemer. 2008. Olympic Sculpture Park: Results from Year 1 Post-construction Monitoring of Shoreline Habitats. Technical Report SAFS-UW-0801, School of Aquatic and Fishery Sciences, University of Washington. Prepared for Seattle Public Utilities, City of Seattle. 113 pp. 2 Toft, J., S. Heerhartz, J. Cordell, E. Armbrust, A. Ogston, and E. Flemer. 2009. Olympic Sculpture Park: Year 2 Fish, Epibenthos, and Physical Monitoring Including Additional Beaches. Technical report SAFS-UW-0902, School of Aquatic and Fishery Sciences, University of Washington. Prepared for Seattle Public Utilities, City of Seattle. 51 pp. 3 Current Report: Toft, J., A. Ogston, S. Heerhartz, J. Cordell, E. Armbrust, and C. Levy. 2010. Olympic Sculpture Park: Year 3 Monitoring of Shoreline Enhancements. Technical report SAFS-UW-1002, School of Aquatic and Fishery Sciences, University of Washington. Prepared for Seattle Public Utilities, City of Seattle. 110 pp. Reports available at University of Washington digital libraries: https://digital.lib.washington.edu/researchworks

iii

Thisreportsummarizes200910data,andbuildsonpastpreenhancementandpost enhancementmonitoringconductedin2005and2007.Specificmonitoringresultsare highlightedintheconceptualmodelbelow,followedbyadditionaldetailsforeach category,andatablesummarizingtheresults.

ConceptualModelofOlympicSculptureParkMonitoringResults

OSPHabitatBenchRiparianvegetation/ pedestrianpaths insecttaxarichness anddensities

Supra tidal

{pavement}

Previousarmoring {}=Armoredconditions italics=Bioticresponses postenhancement white=Physicalconditions Arrowshighlightpositive andnegative results

MHHWTidal Elevation{seawall}

juvenilesalmon(2007) Riprapslope Someriprapfalling ontohabitatbench Chinookfeedingrates invertebratetaxarichness anddensities harpacticoids Habitatbench Subtidalriprap Kelp

MLLW{subtidalriprap}

HorizontalDistancefromShore

OSPPocketBeachSupra tidal MHHWRiparianvegetation insecttaxarichness, hemiptera(e.g.aphids) {grass/pavement} Driftwood Sandybackshore Wrackdepositionwith invertebratecolonization

juvenilesalmon(2007) {riprap} Upperforeshore:somesediment larvalfish(2009) movementduetoanthropogenicand naturalcauses Chinookfeedingrates invertebrate taxarichness, Lowerforeshore:coarser, harpacticoids stablesediment amphipods Invertebratesunique Kelp tobeachsediments Subtidalriprap

MLLW

MeanHigherHighWater(MHHW):approximatehightideline MeanLowerLowWater(MLLW):approximatelowtideelevation

iv

Fish Snorkelsurveys:Juvenilesalmonidsweremostabundantinshallow waters,wherefeedingbehavioroccurredinahighproportionof observations(range3682%acrosssites/species).Densitieswere equalatallsitesin2009,asopposedto2007whenthehabitatbenchandpocketbeach hadsignificantlyhigherdensitiesthanriprap.Larvalfishin2009weremuchmore abundantatthepocketbeachandhabitatbench,andweresignificantlymoreabundant inshallowwatersatthepocketbeachascomparedtopastyearsandothersites.The larvalfishcategorycontainedbothlarvalandpostlarvalforagefish(e.g.,smelt)and demersalfish(e.g.,sculpin)types.Likejuvenilesalmon,larvalfishmaybenefitfrom refugeareasinthenearshorethatarecreatedbyhabitatenhancement.Potentialfish predatorsofjuvenilesalmonwererareatallsites. Enclosurenets:Juvenilesalmonidsaccountedfor91%ofthefishcapturedatthepocket beach.Chinookconsumedmainlyamphipodcrustaceans,crablarva,andinsects.Chum fedsimilarly,butalsofedonepibenthicharpacticoidcopepods. AquaticInvertebrates Epibenthicinvertebrates:Taxarichnessinpumpsamplesontopofthe substratefromthelowintertidalzoneincreasedafterenhancementand washighestatthepocketbeachandhabitatbench.Thehabitatbench hadhighdensitiesofharpacticoidcopepods,amphipods,andoverallepibenthic invertebrates,andthepocketbeachalsohadhighdensitiesofharpacticoids. Harpacticoidsandamphipodsarecrustaceansthataregenerallyimportantpreyfor juvenilesalmon.Theriprapsitehadmoreamphipodsthantheseawallandpocket beach,although95%oftheamphipodsatriprapwereofonespeciesthatwasnotvery abundantinjuvenilesalmondiets. BenthicInvertebrates:Pocketbeachsedimentshavebeencolonizedbydiversebenthic invertebrates,includingseveraltaxaofamphipodsandpolychaetewormsthatwerenot presentbeforecreationofthepocketbeach.Taxarichnessfromcoresampleswas higherin2009than2007.Thereweremorechironomidflylarvabutfeweramphipods inthelowintertidal,bothofwhichareimportantpreyforjuvenilesalmon. TerrestrialInsects Fallouttraps:Alloftheenhancedvegetationareas(pocketbeach,riparian, andvegetationswath)hadgreatertaxarichnessandhemipteradensities (mostlyaphids)thantheadjacentarmoredshorelines(seawallandriprap). Thesemetricshavealsoincreasedatthepocketbeachandvegetationswathsincepre enhancementarmoredconditions.Thissuggeststhatproductionofcertainjuvenile salmonidpreythatareassociatedwithvegetationhaveincreased,whereasotherprey itemssuchasdipterans(flies,e.g.,chironomidmidges)havenotincreasedsince enhancement. Neustontows:Insectsavailabletojuvenilesalmonaspotentialneustonicpreyitemson thesurfaceofthewaterwereevenlydistributedamongthecreatedbeachtypes,and weresimilartothatoftheadjacentriprapandseawall.Manyofthetaxacapturedin v

insectfallouttrapsampleswerealsointheneuston,andconsistedmainlyoftheorders diptera,psocoptera,andhemiptera,allofwhichareknowntooccurinthedietsof juvenileChinookandchumsalmon.Severalspeciesofaquaticamphipodsand harpacticoidcopepodswerepresentinlowabundancesintheneuston,illustratingthat theyarenotjustassociatedwithbottomsubstratesbutarealsoavailableasjuvenile salmonpreyatthewaterssurface. AlgaeColonizationandPlantedVegetation Aquaticalgae:Kelpstipesweregreaterin2009thanin2007atSCUBA surveyedsubtidalelevationsof3.1to7.6mMLLW.Overallalgaepercent coverwasaboutequalbetweenyearsandvariedwithtidalelevation. However,theoverallrangein2009was61to76%,whichwashigherthantherangeof 46to74%in2007.Twentytwospeciesofalgaewereobservedonthecreatedhabitat bench,aboutequaltothatobservedin2007. TerrestrialVegetation:Allmeasurementsofvegetativecoverin2009increased20% overasbuiltconditionsorhadacovervalueof50%,exceptthedunegrasspatches, wheretherewasanincreaseincoverof12.1%andatotalcoverof32.5%.However, threeofthefourdunegrasspatchesincreasedinoverallareaandallincreasedinshoot density.Tramplingcontinuestobeproblematic,withdunegrassflourishingonlywhere itisprotected. PhysicalStructure Inyear1someminorsedimentlossoccurredatthepocketbeach.Inyear3 thebeachwasrelativelystable,withsurfacesedimentshiftingonaseasonal basis,movingfromlower(foreshore)tohigherelevations(berm)onthe beachduringenergeticwinterconditions.Thedriftwoodonthebermstabilizesthearea andtrapssediment.Thissedimentappearstomovedownthebeachinthesummer, largelyduetopublicfoottrafficandrockthrowing.Althoughtherehasbeennomajor lossofsedimentatthepocketbeach,thesurfaceandsubsurfacesedimenthaveshifted andmixedtogether,resultinginpatcheswherethesmallersubsurfacesedimenthas becomeexposed.Theseexposedsmallergrainsizescouldbemorevulnerableto movementinfuturestorms. Coarsersedimentsloweronthebencharemorestable,withlittleornosedimentloss duetonaturalorhumanforcing.Thelowertidalelevationofthebenchmeansitis exposedonlyatspringlowtides,andswashdisturbancehaslesstimetoimpactthe sediment.Changesatthehabitatbenchhavebeenlimitedtoearlysettlementstagesof initialnourishmentmounds,riprapplacementoverthebenchinyear1,andasmall deepeningfeaturetowardsthesouthend.Apartfromannuallandscapingactivities includingcleanupoftrashandcreosotelogsplacedbystormsandwaves,repositioning ofdriftwood,andmaintenanceofsedimentsassociatedwithpathsforfoottraffic,the pocketbeachandhabitatbenchhaveremainedrelativelystableandareprovidingthe designedfunctionsofacombinationofpublicuseandhabitatforbiota.Althoughnot necessarynow,thesmallamountofannualsedimentlossfromthepocketbeachwith nonaturalmechanismforreplacementwilleventuallyrequirerenourishment.

vi

OlympicSculpturePark:SummaryofResultsSummary comparing year 3 post-enhancement data at the habitat bench and pocket beach with armored shorelines. The comparison is made in two ways: to armored shorelines existing at OSP pre-enhancement (Pre), and to armored shorelines nearby OSP post-enhancement (Arm). When pre-enhancement datasets are not available, data is compared to year 1 data (Yr1). Data summarized by (+) positive change, (-) negative change, and (nd) no difference. See full report for specific explanations.

FishSummary: Positive changes for juvenile salmonid densities in 2007 and larval fish densities in 2009. Positive for juvenile salmonid feeding, except for lower chum feeding compared to riprap in 2009.Additional note: 91% of fish netted at the pocket beach were juvenile salmonids. Main juvenile salmonid prey items were amphipods, crab larva, insects, and harpacticoid copepods. Habitat Bench Pre Arm nd + nd nd nd + +Pocket Beach Pre Arm nd + nd + + + +-

Juvenile Salmonid density* Larval Fish density Feeding in shallow water** * (+ nd) signifies increase in 2007 and no difference in 2009 ** (+) signifies increase in Chinook and chum; (+ -) signifies greater in Chinook and less in chum

Aquatic Epibenthic InvertebratesSummary: Mostly positive, especially for overall densities, harpacticoid densities, and taxa richness. Negative changes for epibenthic amphipod densities at the pocket beach.Additional note: Benthic invertebrates in pocket beach substrates contain taxa unique from other habitats. Habitat Bench Pre Arm + + + + + + Pocket Beach Pre Arm + nd + + ++-

Density (overall) Taxa richness Assemblage structure* * (+) signifies increase in harpacticoid copepods; (-) signifies decrease in amphipods

Terrestrial InsectsSummary: Mostly positive, especially for taxa richness and hemiptera densities (e.g., aphids). Some negative changes for diptera densities (flies, e.g., chironomid midges).Additional note: Neuston tows document presence of terrestrial insects on the surface of nearshore waters. Vegetation Swath Pre Arm + + + + ++ Pocket Beach Pre Arm nd nd + + ++ Riparian Pre Arm nd + + +

Density (overall) Taxa richness Assemblage structure* * (+) signifies increase in hemiptera; (-) signifies decrease in diptera

Algae Colonization and Planted VegetationAlgae Summary: Bull kelp stipes increased, algae percent cover and taxa richness stayed similar to Year 1. Vegetation Summary: Understory and overstory vegetation increased in cover, some trampling of dunegrassAlgae Yr1 + nd nd Vegetation Yr1 + +

Kelp density Taxa richness Algae percent cover

Percent cover Dunegrass density

Physical StructureSummary: In year 1 there was minor sediment loss at the pocket beach, and settlement of nourishment mounds and riprap at the habitat bench. In year 3 sediment loss is apparent, but limited, and profile changes are seen on the upper foreshore in response to natural wave and tide forcing and anthropogenic use.

vii

TableofContentsIntroduction...................................................................................................................... 13 Methods............................................................................................................................ 18 PhysicalCharacteristics..................................................................................................... 18 Timeline............................................................................................................................. 18 BeachProfileSurveys........................................................................................................ 18 BenchSurveys ................................................................................................................... 21 SedimentSampling ........................................................................................................... 21 WaterSurfaceElevation ................................................................................................... 21 BiologicalCharacteristics .................................................................................................. 22 Site .................................................................................................................................... 22 FishSnorkelSurveys ....................................................................................................... 24 FishEnclosureNetsandDiets......................................................................................... 24 EpibenthicInvertebrates .................................................................................................. 25 BenthicInvertebrates ....................................................................................................... 26 TerrestrialInsects.............................................................................................................. 26 Neuston............................................................................................................................. 26 TerrestrialVegetation ....................................................................................................... 26 Algae ................................................................................................................................. 27 Statistics ............................................................................................................................ 27 Results............................................................................................................................... 27 PhysicalCharacteristics..................................................................................................... 27 BeachProfileswithinYear3 ............................................................................................. 27 BeachProfileChanges(Year0Year3) ........................................................................... 28 BenchSurvey(Year3) ....................................................................................................... 29 BenchProfileChanges(Year0Year3)........................................................................... 30 SedimentGrainSize .......................................................................................................... 32 GrainSizeChanges(Year0Year3) ................................................................................ 35 BiologicalCharacteristics .................................................................................................. 38 FishSnorkelSurveys ....................................................................................................... 38 FishEnclosureNetsandDiets......................................................................................... 47 EpibenthicInvertebrates .................................................................................................. 50 BenthicInvertebrates ....................................................................................................... 55 TerrestrialInsects.............................................................................................................. 58 Neuston............................................................................................................................. 61 TerrestrialVegetation ....................................................................................................... 63 Algae ................................................................................................................................. 70 DiscussionandConclusions ............................................................................................. 73 PhysicalCharacteristics..................................................................................................... 75 AnalysisofBeachandBenchProfileChange.................................................................... 75 ProfileVulnerability .......................................................................................................... 79 SedimentGrainSizeChanges ........................................................................................... 79 NaturalForcing.................................................................................................................. 81

viii

AnthropogenicForcingofSedimentTransport ................................................................ 83 RegionalandGlobalComparativeDatasets ..................................................................... 84 BiologicalCharacteristics .................................................................................................. 85 FishSnorkelSurveys....................................................................................................... 85 FishEnclosureNetsandDiets......................................................................................... 87 EpibenthicInvertebrates .................................................................................................. 89 BenthicInvertebrates ....................................................................................................... 91 TerrestrialInsects.............................................................................................................. 94 Neuston............................................................................................................................. 96 TerrestrialVegetation ....................................................................................................... 97 Algae ................................................................................................................................. 98 OverallConclusions........................................................................................................... 99 Acknowledgements........................................................................................................ 103 References ...................................................................................................................... 103

ListofFiguresFigure1.OveralltimelineofmonitoringactivitiesattheOlympicSculpturePark. ......... 14 Figure 2.PhotographsoftheOlympicSculpturePark(a)preenhancementriprapand seawallarmoring,(b)postenhancementpocketbeachathightide(habitatbench isunderwater)and(c)habitatbenchatlowtideshowingkelpontheouter margin. ..................................................................................................................... 15 Figure3.AerialviewoftheOlympicSculptureParksiteafterconstruction,showing generalsamplinglocations. ..................................................................................... 16 Figure4.(a)PlanviewdrawingwithapproximatelocationsoftheBNandBStransect lines(red)withinthebeach,andseawardandlandwardtransectlines(blue)within thehabitatbench.Thetwotransectlinesonthebencharespaced~1/3ofthe benchswidthfromeachother.Wherethebenchistoonarrowonlyonetransect line(seaward)wasused.Terminologyfortheacrossshorebeachtransectsis shownin(b). ............................................................................................................ 21 Figure5.AerialviewoftheOlympicSculptureParksiteafterconstruction,showingmain fishandinvertebratesamplinglocations. ............................................................... 22 Figure6.AerialviewoftheOlympicSculptureParksiteafterconstruction,showing vegetationsamplinglocations. ................................................................................ 23 Figure7.OSPPocketbeachandbenchsurveydatafromyear3. ................................... 28 Figure8.OSPPocketbeachandbenchsurveydatacomparisonforselectedsurveys fromyear0toyear3. .............................................................................................. 29 Figure9.Widthofhabitatbenchfromyear0toyear3.................................................. 30 Figure10.Detailedbenchsurveysatbaseofpocketbeachfromyear0toyear3. ....... 31 Figure11.SchematicofsedimentgrainsizeontheOSPpocketbeach.......................... 33 Figure12.SurfacesedimentgrainsizedistributionacrosstheOSPpocketbeach,year3 summer(June2009). ............................................................................................... 34

ix

Figure13.SurfacesedimentgrainsizedistributionacrosstheOSPpocketbeach,year3 winter(Feb2010)..................................................................................................... 35 Figure14.Changesinsurfacesedimentgrainsizeatelevationsof+2.12.4mMLLW betweenyear1andyear3. ..................................................................................... 37 Figure15.Imageofsurfaceandsubsurfacesedimenttakenduringyear1sampling(a) andyear3sampling(b). .......................................................................................... 38 Figure16.Averagedistanceofunderwatervisibilityoneachsnorkel2009surveyweek, atbothhighandlowtide,basedonhorizontalsecchidiskmeasurements. .......... 39 Figure17.Totalfishdensitiesfromsnorkelingtransectsbysamplingweek(nosampling occurredon5/4). ..................................................................................................... 42 Figure18.Juvenilesalmondensitiesfromsnorkelingtransectsbysamplingweek. ....... 42 Figure19.Averagetotalfishdensitiesatshallowanddeeptransectsbyhabitattypeand year. ......................................................................................................................... 43 Figure20.Averagejuvenilesalmondensitiesatshallowanddeeptransectsbyhabitat typeandyear. .......................................................................................................... 44 Figure21.Numericalpercentcompositionoffishcapturedbyenclosurenetatthe PocketBeach(n=5;average62juvenilesalmon)................................................... 48 Figure22.Averagepercentweightcompositionofjuvenilesalmonpreyin2009,bydate andaverageforklength(mm)ofChinook,chumandcoho. .................................... 49 Figure23.Overalltaxarichness(#oftaxa)ofepibenthicinvertebratesbyyearandsite. Enhancedhabitatsarecoloredingreen. ................................................................. 51 Figure24.Averagedensitiesandgeneraltaxacompositionofepibenthicinvertebratesby habitatandyear. ...................................................................................................... 52 Figure25.Averagenumericalpercentcompositionofamphipodsbyhabitatandyear.. 52 Figure26.Averagedensitiesandgeneraltaxacompositionofharpacticoidsbyhabitat andyear.................................................................................................................... 53 Figure27.Overalltaxarichness(#oftaxa)ofbenthicinvertebratesbyyearandtidal elevation................................................................................................................... 56 Figure28.Averagedensitiesandtaxacompositionofbenthicinvertebratesatthepocket beachbyyearandtidalelevation. ........................................................................... 56 Figure29.Overalltaxarichness(#oftaxa)ofinsectsbyyearandsite.Enhanced vegetationareasarecoloredingreen. .................................................................... 59 Figure30.Averagedensitiesandgeneraltaxacompositionofinsectsbyhabitatandyear. .................................................................................................................................. 59 Figure31.Averageoveralldensitiesandtaxacompositionofneustonbyhabitattypein 2007and2009. ........................................................................................................ 62 Figure32.Numericalpercentcompositionofinvertebratesfromneustontowsin2007 and2009,andfallouttrapsin2009......................................................................... 62 Figure33.Numericalpercentcompositionofamphipodsfromneustontowsin2007and 2009. ........................................................................................................................ 63 Figure34.Averagepercentcoverofunderstoryvegetationatshorelinehabitats. ......... 66 Figure35.Averagepercentcoverofoverstoryvegetationatshorelinehabitats............. 66 Figure36.AsectionofNorthernUplands,lookingsouthinJuly2007 ............................ 67

x

Figure37.Thesamesectionasabove,lookingsouthinJuly2009.Notedensegrowthof softrush(Juncuseffusus)......................................................................................... 68 Figure38.Spreadofdunegrassintobeachbackshorearea............................................ 69 Figure39.NumberofNereocystisluetkeanakelpstipesobservedwithin3m,bytidal elevation(mbelowMLLW)in2007and2009. ........................................................ 71 Figure40.Averagepercentalgaecoverbytidalelevation(mbelowMLLW)in2007and 2009,showingspecieswithpercentage>10%. ...................................................... 73 Figure41.CrosssectionalareawithinthebeachprofilesforBS(green)andBN(red) transectsrelativeto2mMLLWelevation.............................................................. 76 Figure42.Schematicofbeachcrosssectionalareachange.Beachesthatarecoarse grainedrespondtoseasonalvariationinwaveenergydifferentlythanbeachesthat aremorecomposedofsandsizes............................................................................ 77 Figure43.OverwashdepositphotographedJanuary24,2010resultingfromextreme springtidesandstormsurgeinPugetSound. ......................................................... 77 Figure44.Beachprofiles,slopesandpercentsandat+3.0MLLWfromcomparative studysitesaroundPugetSound(datacollectedsummer2008,Toftetal.2009). . 78 Figure45.Mediangrainsizeofbeachsediment(D50)atanelevationof~3.0mMLLWas afunctionofactivebeachprofileslopeforregionallycomparablerestoredbeaches aswellasnaturalbeachesinPugetSound.............................................................. 81 Figure46.AveragewindspeedandpeakwindgustdatafromSEATACAirportforthe threeyearsofmonitoring........................................................................................ 83 Figure47.Mediangrainsizeofbeachsedimentatanelevationof~3.0mMLLWasa functionofactivebeachprofileslopeforrestoredandnaturalbeachesfrom studiesinPugetSoundandcoastlinesaroundtheworld. ...................................... 85 Figure48.ConceptualmodeloftheOlympicSculptureParkmonitoringresults.......... 100

ListofTablesTable1.OSPpocketbeachandhabitatbenchphysicalmonitoringtimelineforyear0 throughyear3.......................................................................................................... 20 Table2.Timelineofbiologicalmonitoringthroughout2005preenhancementand2007 and2009postenhancementsamplings.................................................................. 23 Table3.VerticalchangeinthemagnitudeofthenourishmentmoundsontheCentral BenchSeawardtransects....................................................................................... 31 Table4.Selectedsedimentgrainsizeresults,D50inmm,foryears0,1and3overtheBN andBStransects....................................................................................................... 32 Table5.Averagewaterdepths(m)fromsnorkelsurveys,forhigh(avg+2.4mMLLW) andlow(avg+1.1m)tides,andshallow(3mfromshore)anddeep(10mfrom shore)transects. ...................................................................................................... 39 Table6.Averagelengthestimatesoffishandcrabsfromsnorkelsurveys,withtotal counts(notstandardizedbytransectlengthorvisibility). ...................................... 41 Table7.ResultsofANOVAtestingonsnorkelsurveyfishdensities,significantresults(p pocket beach > riprap, seawall 1.0E-15 Amphipoda habitat bench, riprap > seawall > pocket beach 5.4E-13 Comparison of years within each habitat Riprap Pocket Beach Habitat Bench Seawall

Overall densities 3.8E-8 (09,07>05) 1.0E-12 (07>09>05) 1.0E-12 (07>09>05) 0.00069 (09,07>05)

Harpacticoida 0.033 (07>05) 1.0E-12 (07>09>05) 1.0E-12 (09,07>05) 4.8E-11 (09,07>05)

Amphipoda 9.4E-6 (07>05,09) 5.9E-10 (07>05>09) 1.0E-12 (09,07>05) 3.2E-6 (09>07,05)

BenthicInvertebratesTotaltaxarichnesswashigherin2009thanin2007atbothofthesampledelevations (Fig.27).The0mMLLWtidalelevationbenthicsamplesin2009weredominatedby nematodeworms,Chironomidaelarva(nonbitingmidges)andtheamphipod Desdimelitacalifornica(Fig.28).The+3.7melevationwasdominatedbyjuvenilesof semiterrestrialtalitridamphipods,alongwithcollembola(springtailsinthefamilies OnychiuridaeandIsotomidae),andgastropoda(snails/slugs).Thereweresomenotable differencesintaxabetweenyears:in2009theaquaticamphipodParamoeramohridid notoccur,whilethetalitridamphipodPaciforchestiaklaweidid,andgastropods, nematodes,andcollembolaweremuchmoreabundantin2009.Completetaxalistings for2009areinTable13. Overallbenthicinvertebratedensitiesatthe0melevationwerenotsignificantly differentbasedonANOVA(Table14).Twoimportantgroupsthatcontainjuvenile salmonidpreytaxa,amphipodsandChironomidaelarva,werealsotestedand amphipodshadsignificantlyhigherabundancesin2007whileChironomidaelarvaehad significantlyhigherabundancesin2009.Therewasnosignificantdifferenceatthe+3.7 melevationinoveralldensities,orindensitiesoftalitridamphipods,whichare importantinhabitantsofbeachwrack.

55

60

50

Total Taxa Richness

40

30

20

10

0

2007

2009

2007

2009

0 MLLW

+3.7 m MLLW

Figure27.Overalltaxarichness(#oftaxa)ofbenthicinvertebratesbyyearandtidal elevation. 70000

other Acari Spionidae

25000

other Detonella papillicornis20000

60000

50000 Average Density (#/m2)

Turbellaria NemerteaAverage Density (#/m2) 15000

Paramoera mohri Hydrophilidae Acari Gastropoda10000

40000

Chironomidae larvae Amphipod, juv.

30000

Paramoera mohri Desdimelita californica

Isotomidae Onychiuridae5000

20000

Nematoda

10000

Traskorchestia traskiana Talitridae Juvenile

0

0

2007 0 MLLW

2009

2007

2009

+3.7 m MLLW

Figure28.Averagedensitiesandtaxacompositionofbenthicinvertebratesatthe pocketbeachbyyearandtidalelevation(scalesdifferbetweengraphs).

56

Table 13. List of sampled benthic invertebrates and taxa groups, taxa are listed in descending numerical abundance within each grouping. + 3.7 m MLLW Taxa Grouping Amphipoda (beachhoppers) Collembola (springtails) Isopoda (woodlice) Coleoptera (beetles) Diptera (true flies) General Taxa Groupings Taxa Talitridae juvenile, Paciforchestia klawei, Traskorchestia traskiana Onychiuridae, Isotomidae Detonella papillicornis, Oniscidea Hydrophilidae, Staphylinidae Chironomidae adult, Sphaeroceridae, Chironomidae larvae, Diptera pupae, Ephydridae Gastropoda, Acari, Nemertea, Nematoda, Oligochaeta, Bivalvia (Mytilus sp.), Tanaidacea (Leptochelia dubia), Ostracoda, Hymenoptera (Formicidae)

0 m MLLW Taxa Grouping Diptera (true flies) Amphipoda (scuds)

Taxa Chironomidae larvae, Chironomidae adult, Chironomidae pupae, Diptera pupae Desdimelita californica, Protohyale sp., Ampithoe lacertosa, Paracalliopiella pratti, Corophiidae, Aoroides sp., Americorophium sp., Calliopius sp. Spionidae, Syllidae, Phyllodocidae, Sabellidae, Polychaete, Armandia brevis, Nereidae Juvenile, Paleonotus bellis, Syllinae, Prionospio lighti, Polynoidae, Terebellidae, Pholoidae, Micropodarke dubia, Serpulidae, Nereis procera, Chrysopetalidae, Mediomastus californiensis Lottia sp., Gastropoda, Opistobranch, Nudibranch Mytilus sp., Bivalve Juvenile, Pododesmus sp. Idotea sp., Uromunna ubiquita, Epicaridea Paguridae Megalopa, Hemigrapsus oregonensis, Paguridae Adult Holothuroidea, Echindoderm Juvenile, Echinoidea Juvenile Nematoda, Nemertea, Turbellaria, Acari, Oligochaeta, Ostracoda, Araneae, Fish (gunnel), Tanaidacea

Polychaeta (worms)

Gastropoda (snails/sea slugs/limpets) Bivalvia (mussels/clams/oysters) Isopoda (pill bugs) Decapoda (crabs) Echinodermata (sea cucumbers/sea urchins) General Taxa Groupings

Table 14. Results of ANOVA on benthic invertebrate densities between 2007 and 2009 at the pocket beach, significant results are in bold. Overall densities Amphipoda Chironomidae larva Tidal Elevation 0 m MLLW 0.097 Overall densities 0.23 0.00003 (07>09) Talitridae 0.66 0.027 (09>07)

+ 3.7 m MLLW

57

TerrestrialInsectsTaxarichnessinfallouttrapsfromallenhancedvegetationareasincreasedin2007and 2009dataascomparedtothe2005preenhancementlevels(Fig.29).Atthearmored habitattypes,taxarichnesswassimilaracrossthesamplingyearsandlowerthaninthe enhancedareas.Thevegetationswathhadthehighesttaxarichnessin2009,andthe vegetationswathandthepocketbeachincreasedthemostcomparedto2007. In2009,thevegetationswathhadmuchhigherdensitiesthaninpreviousyearsand habitats,althoughmostofthepercentcompositionconsistedofcollembolans (springtails)andacari(mites),whichwererareinjuvenilesalmondiets(Fig.30).Ofthe insects,compositionsweresimilartopreviousyears,withdipterans(trueflies)being mostabundantfollowedbylowernumbersofotherorderssuchashemiptera(true bugs),psocoptera(booklice/barklice),andhymenoptera(wasps/bees/ants).Diptera consistedmostlyofChironomidae(71%;nonbitingmidges),andhemipteranswere dominatedbyAphididae(61%;aphids).Overalllistingsof2009fallouttrap invertebratesandtaxagroupsareinTable15. ANOVAon2009dataindicatedthattotalinvertebratedensitiesweresignificantlyhigher atthevegetationswathascomparedtootherhabitats(Table16).Fortwoimportant ordersofjuvenilesalmonpreytaxa,dipteraandhemiptera,ANOVAshowedno differenceindipteranlogtransformeddensitiesin2009.Hemipteradensitieswere significantlyhigheratallenhancedareas(riparian,pocketbeachsites,vegetationswath) thanatthearmoredriprapandseawallsites. SimilarANOVAtestswereusedon2005,2007,and2009dataseparatedforeachhabitat type(Table16).Overalldensitiesincreasedonlyatthevegetationswathcomparedtoits preenhancedseawallcondition,whereasoveralldensitiesweregreaterin2005atthe riparianandseawallhabitats.Hemipteradensitiesincreasedatthepocketbeachand vegetationswath,comparedtothepreenhancedriprapandseawallhabitats, respectively.Thereweresomeclearinterannualdifferences,asdipteradensitieswere veryhighin2005andhavenotreachedthoselevelssincethen.

58

80

70

60 Total Taxa Richness

50

40

30

20

10

0

Seawall VS

Seawall

Seawall

Vegetation Swath

RipRap PB

Pocket Beach

2005

2007

Pocket Beach

2009

Vegetation Swath

Riparian

Riparian

Riparian

Seawall

RipRap

RipRap

RipRap

Figure29.Overalltaxarichness(#oftaxa)ofinsectsbyyearandsite.Enhanced vegetationareasarecoloredingreen.2200 2000 1800 1600 Average Density (#/m ) 1400 1200 1000 800 600 400 200 02

other Coleoptera Arachnida Thysanoptera Hymenoptera Psocoptera Hemiptera Acari Collembola Diptera

Vegetation Swath

2005

2007

2009

Vegetation Swath

Seawall VS

Seawall

Seawall

Pocket Beach

Pocket Beach

Riparian

RipRap PB

Riparian

Riparian

Seawall

RipRap

RipRap

RipRap

Figure30.Averagedensitiesandgeneraltaxacompositionofinsectsbyhabitatand year.

59

Table 15. List of sampled fall-out trap invertebrates and taxa groups, taxa are listed in descending numerical abundance within each grouping. Taxa Grouping Diptera (true flies) Taxa Chironomidae, Cecidomyiidae, Sciaridae, Dryomyzidae, Muscidae, Dolichopodidae, Phoridae, Sphaeroceridae, Chloropidae, Tipulidae, Psychodidae, Calliphoridae, Cecidomyiidae larva, Anthomyiidae, Empididae, Ceratopogonidae, Ephydridae, Mycetophilidae, Syrphidae, Aulacigasteridae, Heleomyzidae, Diptera larva, Culicidae, Sarcophagidae, Agromyzidae, Rhinophoridae, Clusiidae, Lauxaniidae, Tachinidae, Carnidae, Canacidae, Scatopsidae, Syrphidae larva, Scathophagidae, Anisopodidae Aphididae, Sternorrhyncha immature, Cicadellidae immature, Psyllidae immature, Cicadellidae, Coccoidea, Psyllidae, Heteroptera immature, Cercopidae, Auchenorrhyncha immature, Miridae, Aleyrodidae, Pyrrhocoridae, Homoptera immature, Miridae immature, Aphidoidea, Reduviidae Ceraphronidae, Mymaridae, Ichneumonidae, Diapriidae, Encyrtidae, Sphecidae, Braconidae, Formicidae, Megaspilidae, Perilampidae, Pteromalidae, Scelionidae, Torymidae, Eulophidae, Andrenidae, Aphelinidae, Cynipidae, Symphyta larva, Proctotrupoidea, Megachilidae, Tenthredinidae, Proctotrupidae, Hymenoptera, Chalcidoidea, Vespidae, Platygasteridae, Hymenoptera larva Coccinellidae, Coleoptera larva, Coccinellidae larva, Staphylinidae, Throscidae, Carabidae, Latridiidae, Elateridae, Melyridae, Nitidulidae, Curculionidae Hemerobiidae larva, Coniopterygidae, Hemerobiidae, Neuroptera immature Thripidae, Thysanoptera immature, Phlaeothripidae Entomobryidae, Sminthuridae, Hypogastruridae, Isotomidae Talitridae, Traskorchestia sp. Acari, Psocoptera (adults and immature), Araneae, Lepidoptera (adults and larva), Opiliones, Trichoptera, Gastropoda (slug), Dermaptera (Forficulidae), Isopoda (Ligia pallasii)

Hemiptera (true bugs)

Hymenoptera

(wasps/bees/ants)

Coleoptera (beetles)

Neuroptera (lacewings) Thysanoptera (thrips) Collembola (springtails) Amphipoda (beachhoppers) General Taxa Groupings

60

Table 16. Results of ANOVA testing on fall-out trap insect densities, significant results are in bold. Comparison of 2009 habitats p-value tukey-test for habitat/year differences Overall densities vegetation swath > all other sites 4.9E-11 Diptera 0.08 Hemiptera riparian, pocket beach, vegetation swath > riprap & seawall 0.0000002 Comparison of years within each habitat Riprap Pocket Beach Riparian Vegetation Swath Seawall

Overall densities 0.53 0.89 0.0006 (05>07,09) 3.1E-5 (09>05,07) 1.2E-11 (05>09 >07)

Diptera 0.08 4.5E-12 (05>09>07) 0.002 (05>07,09) 2.7E-14 (05>07>09) 1.2E-12 (05>09>07)

Hemiptera 0.67 0.002 (09,07>05) 0.50 0.001 (09,07>05) 0.35

NeustonNeustontowswerereplicatedlessthantheothersamplingmethods(three10mtows perhabitat/date),andwerecharacterizedbyhighvariability.Althoughterrestrial invertebratedensitiesintheneustonwerehighestattheriprapin2009,theresults werenotsignificantfortotaldensities(onewayANOVAonhabitattype,p>0.05;Fig. 31).ThelargenumberofDipteraattheriprapin2009wasduetoonelargecatchof 313fliesinthefamilySciaridae(darkwingedfungusgnats),whicharearareoccurrence injuvenilesalmoniddiets,unlikethemorecommonChironomidae.Intermsofpercent composition,neustontowsin2009hadhighercontributionsofdipteracomparedto 2007neustontowsand2009fallouttrapsamples(Fig.32).Fallouttrapsalsohadmuch highercontributionsbycollembolaandacari,whichareusuallyassociatedwith vegetation. Theneustontowsalsocontainednonterrestrialinvertebrates,suchasaquatic amphipodsandharpacticoidsthataremoretypicallysampledinepibenthichabitats. Thesewerepatchilydistributedinlowabundances(averageharpacticoids