51
1 BIOTECHNOLOGIE BESONDERE LEISTUNGEN VON PILZEN Second Life – Verwertungswege für biogene Stoffströme, November 15 th 2017, Bingen

Second Life Verwertungswege für biogene Stoffströme… · 2017-12-20 · Second Life –Verwertungswege für biogene Stoffströme, November 15th 2017, ... Carotinoid-producing microorganisms:

Embed Size (px)

Citation preview

1

BIOTECHNOLOGIE

BESONDERE LEISTUNGEN VON PILZEN

Second Life – Verwertungswege für biogene Stoffströme, November 15th 2017, Bingen

Fungi are the loosers of the

evolution:

- no photosynthesis

- they can‘t run off

Prof. Dr. Meike Piepenbring, April 2017

Fungi are not the loosers of the evolution:

- apparently they are extremly versatile chemists

PENICILLIUM CHRYSOGENUM

(PENICILLIUM NOTATUM)

The discovery of penicillin by

Sir Alexander Fleming (1928)

"Synthetic Production of Penicillin TR1468" by Official photographer -

http://media.iwm.org.uk/iwm/mediaLib//32/media-32192/large.jpgThis is photograph TR 1468 from the

collections of the Imperial War Museums.. Licensed under Public Domain via Commons -

https://commons.wikimedia.org/wiki/File:Synthetic_Production_of_Penicillin_TR1468.jpg#/media/File:S

ynthetic_Production_of_Penicillin_TR1468.jpg

Von This image was created by user Tatiana Bulyonkova (ressaure) at Mushroom Observer, a source for mycological images.You can contact this user here. - This image is Image Number 214245 at Mushroom Observer, a source for mycological images.This tag does not indicate the copyright status of the attached work. A normal copyright tag is still required. See Commons:Licensing for more information., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20985352

Strobilurus tenacellus

Bitterer Kiefern-Zapfenrübling

Pinecone cap

7

From submerged cultures of S. tenacellus (3 mg/l); strong antifungal activity, non-toxic for mice; MoA: inhibition of electron transport in the respiratory chain (bc1).

G. Schramm, Dissertation 1980

O

O

O

OO

O

NOO

O

Strobilurin AO

O

O

OO

O

O

Kresoxim-Methyl (BASF)

Sauter, H.; W. Steglich & T. Anke: Strobilurine: Evolution einer neuen Wirkstoffklasse. Angew. Chem. 111, 1416-1438 (1999); Int. Ed. 39, 1328-1349 (1999).

B. Schwalge, Dissertation 1986

O

NO

O

O

FUNGAL SECONDARY METABOLITES AS LEAD

STRUCTURES FOR AGROCHEMICALS

8

Qo inhibitor fungicides (QoI): the Qo

inhibitor fungicides all act at the Quinone

‘outer’ (Qo) binding site of the cytochrome

bc1 complex.

FUNGAL SECONDARY METABOLITES AS LEAD

STRUCTURES FOR AGROCHEMICALS

By C31004 at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=24133439

Crystal structure of mitochondrial cytochrome bc1 complex bound with ubiquinone

Fungicide „mode of action“

9 FUNGAL SECONDARY METABOLITES AS LEAD

STRUCTURES FOR AGROCHEMICALS

10

Fungal biotechnology at the IBWF: based on

secondary metabolite research in

fungi/microorganisms.

The IBWF gGmbH is a non-profit Research

Institution bridging the gap between basic

university research and applied/industrial

research.

The IBWF is a non-profit limited liability

company (gGmbH).

NATURAL PRODUCT RESEARCH AT THE IBWF

GGMBH

11

Fungi

Strain Collection: Asco-, Basidio- and

Zygomycetes

Taxonomy

Fermentation

FungalGenetics Screening

BioactiveNatural

Products

MoA-Studies

Development of Assay-Systems

OO

O

COOH

Natural products

BioactiveCompounds

Enzymes

Productionand

PurificationAnalytics

NATURAL PRODUCT RESEARCH AT THE IBWF

GGMBH

12

OO

O

OO

O O

H

O

O

O

OH

OO

O

O

O

OH

OH

O

OH

OH

OO

OH

O

OH

OH

OH

H

H

H

Cl

OCl

Cl

Cl

OH

O

O OO

H

H

OH

OH

OH

OH

OH

O

O

O

O

Cl

ClOH

Cl

HH

ClOH

OO

HO

H

O

H OH

HH

O

O

O

O

OO

O

OH

OH

OH

OH

OH

OH

OH

OOH

OH

OH

O

O

O

O

O

O

O

OH

O

O

OHH

O

O

O

OOH

OH O

O

HH

O

OHOHOH

O

OH

Cl

Cl

Cl

OH

OH

OH

H

O

N

N

N

N

O

OH

OH

OH

OH

O

H

H

O

OH

O

O

O

OH

O

OH

O

OH

OH

OH

OH

H

H

O

O

OH

O

O

O

O

OOH

H

H

O O

O

OH

O

O

O O

O

OOH

OOH

H

H

H

O

O

O

OH OH

H

O

O

O

O

O

OH

OO

OOH

OH

O

O

O

O

O

OH

H

H

O

OO

OH

H

O

O

OH

OH

OH

N+

N+

C

C

O

O

O

OO

O

O

O

OO

O

OH

OH

OH

HHH

O

OO

O

OH

O

Cl

O

OH

O

Br

O

O

OO

O

N

N

N

N

NNH

N

N

N

N

NH

NH

NH

O

O

O

O

O

O

OO

O

O

O

O

OOH

OHOH

OH

O

H

NH

OH

OH

OO

OOHO

O

H

H

O O

OO

OO

O

OH

OH

N

OO

O

O

H

H

H

H

O

NH

O

O

O

OH

O

OH

O

O

O HH

OO

OO

OO

O

O

O

O

O

OHOH

OH

OH

OH OHOH

OH

OH

OH

H

OO

O

O

O

O

OH

OH OHOH OHOH

OH

OH

OH

OH

OH

OHN

OH

OH

O

O

O

N

O

O

O

OH

O OO

OO

OO

OH

O

O

OH

H

H

HH

H

H

H

NH

NH

O

NH

O

NH2

O

OOH

Cl

OH

OH

O

OH

OHOH

OH

OHO

OH

O

NATURAL PRODUCT RESEARCH AT THE IBWF GGMBH:

LEAD STRUCTURE IDENTIFICATION

13

106 fungal species [Hawksworth (2001), Mycological Research]

The enormous diversity of fungal organisms is reflected by the diversity of the secondary

metabolites

NATURAL PRODUCT RESEARCH AT THE IBWF

GGMBH

14

Number of fungal strains: > 19.000

Basidiomycetes: 3.200

Ascomycetes (of fruiting bodies): 1.300

Deuteromycetes: 7.500

Zygomycetes (from soil samples): 150

Endophytes: 4.900

Coprophilic fungi: 180

Fungi from marine habitats: 80

Carotinoid-producing microorganisms: 150

Marine bacteria: 400

Strains from commercial collections: 1.200

The culture collection of the IBWF is one of the largest non-commercial collections

NATURAL PRODUCT RESEARCH AT THE IBWF

GGMBH: THE CULTURE COLLECTION

15

• One of the largest “non-profit” culture collections.

• The strains were collected according to the “Convention on Biological

Diversity” (CBD).

• The collection is of high quality, since most Basidio- and Ascomycetes are

identified.

• The collection was started in 1977.

NATURAL PRODUCT RESEARCH AT THE IBWF

GGMBH: THE CULTURE COLLECTION

17

Zellulose Lignin Chitin

Monomer: Cellobiose

Pflanzliche Zellwände

Monomere: Cumarylalkohol, Coniferylalkohol,Sinapylalkohol

Holz

Monomer: Acetylglucosamin

Glieder- und Weichtiere, Pilze

HÄUFIG VORKOMMENDE BIOPOLYMERE

18

Aus: Webster & Weber: Introduction to Fungi, 2007

BIOPOLYMERE IN HOLZ

19

Coriolus versicolor,

A common white rot fungus on wood

White rot fungi initially destroy the lignin

part of the wood and later the celluloses

component.

In contrast brown rot fungi mainly degrade

the celluloses.

WHITE- AND BROWN ROT

20

The tinder fungus penetrates its

host plants via wounds in branches

and/or the trunk. In the heartwood

it causes intensive white rot

resulting in a decreased stability of

the wood/of the entire tree.

Eventually the tree breaks off.

The tinder fungus can survive for a

long time as saprophytic fungus on

the dead substrate. Bild: Wikipedia.de

TINDER – HOW TO START FIRES WITH FUNGI?

21

TINDER – HOW TO START FIRES WITH FUNGI?

Tinder is easily combustible

material used to start a fire.

Tinder is a finely divided, open

material which will begin to

glow under a shower of sparks.

Tinder is one of the greatest

inventions of mankind. Fungi

were used as tinder by

prehistoric man to produce fire.

Bild: Wikipedia.de

22

Etymology: Tinder (Zunder) –„Thunder“ (Donner)

Tinder: In general species of the genera Fomes

The tinder fungus: Fomes fomentarius (Fungus of the year 1995)

Highly ignitable tinder can be produced by soaking slices of the flesh of the

fruiting body in nitric acid.

Bilder: Wikipedia.de

TINDER – HOW TO PRODUCE FIRES WITH FUNGI?

23

Dashtban et al., 2010

MICROBIAL DEGRADATION OF LIGNIN

24

Vanilin p-Cumarinsäure Ferulasäure

Phenoloxidase:

•Laccase

Peroxidasen:

•Ligninperoxidase

•Manganperoxidase

•Versatile Peroxidase

MIKROBIELLER ABBAU VON LIGNIN

25 ANWENDUNGEN VON LACCASEN/PEROXIDASEN

• Bleichen von Pulpe in der Papierindustrie

• Bleichen von Textilfarben

• Entfernung von Polyphenolen in Lebensmitteln

• Bleichmittel in Zahnpasta

• Herstellung von Weinkorken

• Behandlung von industriellen Abwässern (Entfernung von

phenolischen Komponenten)

• TNT-Abbau

• …

26 LACCASEN/PEROXIDASEN AUS PILZEN: SCREENING

STRATEGIE

Incubation on basal medium plus:

Cultivation in submerged culture

(120 rpm)

83 Basidimycetes+ 53 Ascomycetes

> 2 tests positive

Interesting enzyme activities

Mn2+3-nitroaniline

Poly R-478 Azure B

Incubation on WA-agar plus guaiacol

347 strains518 strains

Cultivation in 20 l fermentor (120 rpm, soybean or YMG medium + 1mg/l CuSO4)

14 strains

soybean mediumbasal medium

All positive

27

Extract Strain LAC

[nkat/ml]

pH-opt.

DMP

Heat st.

[%]

Biob. 14C-Pulp

[% cpm]

HBT ox.

[nmol

O2/s]

Kap. red.

[%]

F2 87135 200 6 40 + 99

F3 95164 1500 5 60 - 31 0

F4 89010 1300 4 85 + 24 48

F5 95338 26000 5 75 + 34 11 21

F6 89009 4300 5 95 - 27 77 13

F7 95318 17000 5 100 + 34 68

F8 78029 3250 5 95 ++ 20 46

F9 89141 200 6 90 ng 6 13 9

F10 95290 2000 5 70 ++ 39 101 37

F14 82066 960 7 0 + 0 7 *

F15 85042 1800 8 0 + 6 2 *

F16 82020 9300 5 95 - 7

K6 86012 4500 5 80 + 28

K7 JB597 11500 5 80 - 10

T.h. 2000 33 49 38

CHARACTERIZATION OF ENZYME CRUDE EXTRACTS

(LACCASES)

T.h. = Trametes hirsuta laccase (VTT-D-443); pH-opt. = pH optimum with DMP as substrate;

LAC = laccase activity, ABTS pH 4.5; Heat st. = heat stabililty, activity after 30 min at 60°C;

Biob. = biobleaching (+ = bleaching effect, - = no bleaching effect); ng = not grown;

HBT (hydroxybenzotriazole ox. = oxidation of HBT pH 5, * = pH 7.2;

Kap. red. = TCF-delignification pH 5, kappa reduction;

28

Temperaturabhängigkeit der Laccase

Temperaturstabilität der Laccase

20 30 40 50 60 70

Temperatur [°C]

0

5000

10000

15000

20000

LA

C-A

kti

vit

ät

[nka

t/m

g]

95°C75°C56°C

0 10 20 30 40 50 60

Inkubationzeit [min]

0

25

50

75

100

125

LA

C-A

kti

vit

ät

[%]

2 3 4 5 6 7 8 9

pH-Wert

0

1000

2000

3000

4000

5000

6000

7000

LA

C-A

kti

vit

ät

[nka

t/m

g]

2 3 4 5 6 7 8 9

0

1000

2000

3000

4000

5000

6000

LA

C-A

kti

vit

ät

[nka

t/m

g]

pH-Wert

LAC-Aktivität mit ABTS in Abhängigkeit vom pH-Wert

LAC-Aktivität mit 2,6-DMP in Abhängigkeit vom pH-Wert

CHARACTERIZATION OF LACCASE F10 - STRAIN 95290

29

Lignin-degrading basidiomycete

Modell organismus for investigations

concerning fungal development

Natural source for laccases

Expression of isoenzymes

COPRINUS CINEREUS AS SOURCE FOR LACCASES

• Copper-containing enzyme

• Complex structur

• Far distributed amongst plants and

microorganisms

• Degradation of phenolic

compounds (e.g. lignin)

Heterologous expression in Magnaporthe oryzae

30

a: Appressorium

c: Conidium

a

c

Magnaporthe oryzae

as ‚model-organism‘:

- Genome is sequenced

- Hemibiotrophic

- Established transformation

systems

- Genetically well

characterized

- Many mutants have been

generated and are available

THE RICE BLAST FUNGUS

MAGNAPORTHE ORYZAE (ANAMORPH: PYRICULARIA ORYZAE)

31

Cloning strategy

P TSP L

P = promoter

SP = signalpeptide

O = original protein

L = laccase (host foreign)

ST = Strep-tag

T = terminator

P TSP LO

ST

ST

Identified candidate from the secretome analysis: 13proS1

HETEROLOGOUS EXPRESSION SYSTEM IN MAGNAPORTHE

ORYZAE

32

Generation of transformants with up to 10-fold increased laccases-activity

within the culture filtrate

Isolation of a laccase via ion-exchange-chromatography (IEX) and gel filtration

(GF) (approx. 700 µg/l)

Identification of the laccase Lcc1 from Coprinus cinereus by mass

spectroscopy

HETEROLOGOUS EXPRESSION OF THE LACCASES LCC1 FROM

COPRINUS CINEREUS IN MAGNAPORTHE ORYZAE

Stamm

WT T1 T2 T3 T4 T5 T6

Lacc

ase

-Aktivität

[µkat/

ml]

0

100

200

300

400

500

600

700

800

33

Fermentationsdauer [d]0 2 4 6 8 10

Glu

cose

konze

ntr

ation [

g/l]

0

2

4

6

8

10

Standard

Fed-Batch

Beginn derZufütterung

Ende derZufütterung

APPLICATION OF „FED-BATCH“ CONDITIONS

Fermentationsdauer [d]

0 2 4 6 8 10

Lacc

ase

-Aktivität

[%]

bezo

gen a

uf

die

Sta

ndard

ferm

enta

tionsb

edin

gungen

0

100

200

300

400Standard

Fed-Batch

• Reduction of laccases-acivity after the free

glucoses within the medium is depleted

• Constant feeding of glucoses increases the

laccases-yield

• Up to day 10 the laccases activity was not

dependent on the availbility of the nitrogen

source

34

Overexpression of the transcription factor HAC1 involved in the

transcriptional regulation of helper-proteins appears more efficient

than manipulations of individual helper-proteins

OVEREXPRESSION OF HELPER-PROTEINS

Mo53Pro:Lcc1

MoEF1:BiP

MoEF1:CLX

MoEF1:PDI

MoEF1:H

AC1

Lacc

ase

-Aktivität

[µkat/

ml]

0

1000

2000

3000

4000

5000EF1

+53Pro:Lcc1

35

Promotor inducible by addition of

maltoses

Secretion of laccases after addition of

maltoses is delayed

Expression of laccases within 10

hours after addition of maltoses

USE OF INDUCIBLE PROMOTERS

MGG8-

number

Size of

the

protein

[AS]

Conserved protein domains

[PFAM 22.0]

Putativ

function

MGG_01096

.8655

Glycosyl hydrolases family 15

(PF00723)

Starch binding domain (PF00686)

Glucoamyl

ase

precursor

Fermentationsdauer [d]

0 2 4 6 8 10

Lacc

ase

-Aktivität

[µkat/

ml]

0

200

400

600

800

1000WT 70-15

Mo96iPro:Lcc1

Mo96iPro:Lcc1 nicht induziert

Induktion mit 2% Maltose

36

Zellulose Lignin Chitin

Monomer: Cellobiose

Pflanzliche Zellwände

Monomere: Cumarylalkohol, Coniferylalkohol,Sinapylalkohol

Holz

Monomer: Acetylglucosamin

Glieder- und Weichtiere, Pilze

HÄUFIG VORKOMMENDE BIOPOLYMERE

37

Schematic structure of cellulose with cellulolytic enzymes. BGL β-

glucosidase, CBH cellobiohydrolase, EGL β-1,4-endoglucanase

MIKROBIELLER ABBAU VON ZELLULOSE

Van den Brink & de Vries: Appl Microbiol Biotechnol (2011) 91:1477–1492

38 SCREENING STRATEGIE:

ENZYME ZUM ABBAU VON ZELLULOSE

Mikroorganismen/Pilze werden

kultiviert auf Medien, die

Carboxymethylcellulose (CMC)

enthalten.

Nachdem die Kulturen

gewachsen sind, werden sie mit

Gram’s Jodlösung überschichtet.

Kasana, R.C., Sarwan, R., Khar, H. Dutt, S. and Gulati, A. (2008) Curr Microbiol 57:503-507

39 COPROPHILE PILZE ALS QUELLE FÜR ZELLULOSE-

ABBAUENDE ENZYME

In Dung ist die weitgehend unverdaute Zellulose Kohlenstoffquelle für Pilze.

Coprophile Pilze müssen das Substrat erschließen können.

40

Pinen und Caren sind toxische Naturstoffe Abbau durch Pilze (?)

TERPENABBAU MIT PILZEN

41 TERPENABBAU - KONZEPT

α-Pinen Pinandiol Pinonsäure Pinsäure Pinsäureanhydrid

JGU Mainz (Waldvogel)

Elektrochemisch

IBWF (Thines/Jacob)

Biotechnologisch

Pinsäureanhydrid

+ Epoxidharz + Naturfaserverstärkung = Verbundwerkstoff

Transferstelle Bingen Entwicklung des Harzsystems und Verbundwerkstoffe

TH Bingen Analysen und Messtechnik

42

IBWF fungal culture collection: >18.000 strains

Preselection of candidates based on literature and IBWF-knowledge

Screening and identification of turpentine-tolerant strains

Identification and isolation of turpentine derivatives

Identification of enzymes involved

Heterologous /homologous expression of (modified) enzymes

Upscaling and Optimization of the biotransformation-process

43

(-)-α-pinene

(+)-α-pinene

(-)-β-pinene

3-carene

R-(+)-limonene

INITIAL RESULTS:

BIOTRANSFORMATION OF TURPENTINE COMPONENTS

44

(-)-α-pinene

45

(+)-α-pinene

46

(-)-β-pinene

47

3-carene

48

R(+)-limonene

49

Protein identification

and molecular genetics

Example 1:

The inactivation (knock-

out) of specific enzymes

will result in the

accumulation of

limonene-1,2diol

50

Protein identification

and molecular genetics

Example 2:

Heterologous expression of

limonene 1,2-

monooxygenase

[EC:1.14.13.107] and

limonene-1,2-epoxide

hydrolase [EC:3.3.2.8] from

Rhodococcus erythropolis in

E. coli or yeast we could

increase yields and

efficency.