32
1 MAE 5420 - Compressible Fluid Flow Section 3: Lecture 1 Introduction to One-Dimensional Compressible Flow Anderson: Chapter 3 pp. 71-86

Section 3: Lecture 1 Introduction to One-Dimensional ...mae-nas.eng.usu.edu/MAE_5420_Web/section3/section3.1.pdfIntroduction to One-Dimensional Compressible Flow Anderson: Chapter

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

  • 1MAE 5420 - Compressible Fluid Flow

    Section 3: Lecture 1

    Introduction to One-Dimensional

    Compressible Flow

    Anderson: Chapter 3 pp. 71-86

  • 2MAE 5420 - Compressible Fluid Flow

    Review, General Integral Form of

    Equations of Compressible Flow

    • Continuity (conservation of mass)

    • Newton’s Second law-- Time rate of change of momentumEquals integral of external forces

    ! "V!>

    • ds

    !>#$

    %&

    C .V

    ''' =((t

    "dvc.v.

    '''#

    $)%

    &*

    ! fb">

    dvC .V .

    ### " p( )C .S .

    ## dS">

    + | f">

    $ dS">%

    &'(

    C .S .

    ## |dS

    SC .S .

    ">

    =

    !V">

    • ds">%

    &'(

    C .S .

    ## V">

    +))t

    !V">%

    &'( dv

    C .V .

    ###

  • 3MAE 5420 - Compressible Fluid Flow

    Review (concluded)

    • Conservation of Energy--

    !!t

    " e +V2

    2

    #

    $%

    &

    '( dv

    #

    $%%

    &

    '((

    C .V .

    ))) + "V*>

    • d S*>

    e +V2

    2

    #

    $%

    &

    '(

    C .S .

    )) =

    (" f*>

    dv) •V*>

    C .V .

    ))) * (pd S*>

    ) •V*>

    C .S .

    )) + " q•#

    $&' dv

    #$%

    &'(

    C .V .

    )))

  • 4MAE 5420 - Compressible Fluid Flow

    One Dimensional Flow Approximations

    • Many Useful and practical Flow Situations can be

    Approximated by one-dimensional flow analyses

    • “Air-goes-in, Air-goes-out, or both”

  • 5MAE 5420 - Compressible Fluid Flow

    Control Volume for 1-D Flow

    • Between C.V. entry (1) and exit (2), there could be

    1) Normal Shock wave (supersonic engine duct),

    2) Heat could be added or subtracted, (heat exchanger), or

    3) There could we work performed (turbine element)

    Flow Characterized by motion only along longitudinal axis

  • 6MAE 5420 - Compressible Fluid Flow

    Continuity for Steady 1-D Flow

    • The general equation for Continuity greatly simplifies for

    steady 1-D flow

    ! "V!>

    • ds

    !>#$

    %&

    C .S .

    '' =((t

    "dvc.v.

    '''#

    $)%

    &*

    !V">

    • ds

    ">#$

    %&

    C .S .

    '' = 0

  • 7MAE 5420 - Compressible Fluid Flow

    Continuity for Steady 1-D Flow (cont’d)

    • Evaluating surface integral across the C.S.

    !V">

    • ds

    ">#$

    %&

    C .S .

    '' = 0

    V

    dS

    dS

    dS

    dS

    C.S.

    !!

    !V">

    • ds

    ">#$

    %&'' = 0

    !V">

    • ds

    ">#$

    %&'' = 0

    !V">

    • ds

    ">#$

    %&'' = !VAe

    !V">

    • ds

    ">#$

    %&'' = "!VAi

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

  • 8MAE 5420 - Compressible Fluid Flow

    Continuity for Steady 1-D Flow (concluded)

    • For true 1-D flow Ae=Ai

    V

    dS

    dS

    dS

    dS

    C.S.

    !!

    !V">

    • ds

    ">#$

    %&'' = 0

    !V">

    • ds

    ">#$

    %&'' = 0

    !V">

    • ds

    ">#$

    %&'' = !VAe

    !V">

    • ds

    ">#$

    %&'' = "!VAi

    ! "iVi= "

    eVe

  • 9MAE 5420 - Compressible Fluid Flow

    Momentum for Steady 1-D Flow

    • General equation for Momentum greatly simplifies if we assume inviscid

    Flow with no body forces

    ! fb">

    dvC .V .

    ### " p( )C .S .

    ## dS">

    + | f">

    $ dS">%

    &'(

    C .S .

    ## |dS

    SC .S .

    ">

    =

    !V">

    • ds">%

    &'(

    C .S .

    ## V">

    +))t

    !V">%

    &'( dv

    C .V .

    ###

    !V">

    • ds">#

    $%&

    C .S .

    '' V">

    = " p( )C .S .

    '' dS">

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

  • 10MAE 5420 - Compressible Fluid Flow

    Momentum for Steady 1-D Flow (cont’d)

    • General equation for Momentum greatly simplifies if we assume inviscid

    Flow with no body forces

    • Evaluating momentum surface integral across the C.S.

    V

    dS

    dS

    dS

    dS

    C.S.

    !!

    !V">

    • ds

    ">#$

    %&'' V

    ">

    = 0

    !V">

    • ds

    ">#$

    %&'' V

    ">

    = 0

    !V">

    • ds

    ">#$

    %&'' V

    ">

    = "!iVi

    2Ai

    !V">

    • ds

    ">#$

    %&'' V

    ">

    = !eVe

    2Ae

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

  • 11MAE 5420 - Compressible Fluid Flow

    Momentum for Steady 1-D Flow (concluded)

    • Evaluating pressure surface integral across the C.S.Because of flow “symmetry” upper and lower flow surfaces

    pressure forces “cancel out”

    V

    dS

    dS

    dS

    dS

    C.S.

    !!

    ! p( )"" dS!>

    = ! peAe

    ! p( )"" dS!>

    = piAi

    • Summing up terms and once again enforcing, Ai = Ae

    pi+ !

    iVi

    2= p

    e+ !

    eVe

    2

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

  • 12MAE 5420 - Compressible Fluid Flow

    Energy Equation for Steady 1-D Flow

    • Assume no body forces, and steady flow

    !!t

    " e +V2

    2

    #

    $%

    &

    '( dv

    #

    $%%

    &

    '((

    C .V .

    ))) + "V*>

    • d S*>

    e +V2

    2

    #

    $%

    &

    '(

    C .S .

    )) =

    (" f*>

    dv) •V*>

    C .V .

    ))) * (pd S*>

    ) •V*>

    C .S .

    )) + " q•#

    $&' dv

    #$%

    &'(

    C .V .

    )))

    • Let ! q•"

    #$% dv

    "#&

    $%'

    C .V .

    ((( ) Q•

    Stephen Whitmore

  • 13MAE 5420 - Compressible Fluid Flow

    Energy Equation for Steady 1-D Flow (cont’d)

    • Energy equation reduces to

    Q•

    ! (pd S!>

    ) •V!>

    C .S .

    "" = # e +V2

    2

    $

    %&

    '

    () V

    !>

    • d S!>

    C .S .

    ""

    V

    dS

    dS

    dS

    dS

    C.S.

    !!

    • Evaluating

    Surface Integrals

    (pd S!>

    ) •V!>

    C .S .

    "" = 0

    (pd S!>

    ) •V!>

    C .S .

    "" = 0

    ! (pd S!>

    ) •V!>

    C .S .

    "" = piViAi

    ! (pd S!>

    ) •V!>

    C .S .

    "" = ! peVeAe

    Stephen Whitmore

  • 14MAE 5420 - Compressible Fluid Flow

    Energy Equation for Steady 1-D Flow (cont’d)

    • Continuing with Surface Integrals

    V

    dS

    dS

    dS

    dS

    C.S.

    !!

    ! e +V2

    2

    "

    #$

    %

    &' V

    (>

    • d S

    (>

    C .S .

    )) * 0

    ! e +V2

    2

    "

    #$

    %

    &' V

    (>

    • d S

    (>

    C .S .

    )) * 0

    ! e +V2

    2

    "

    #$

    %

    &' V

    (>

    • d S

    (>

    C .S .

    )) * !i ei +Vi

    2

    2

    "

    #$

    %

    &'Vi • Ai

    ! e +V2

    2

    "

    #$

    %

    &' V

    (>

    • d S

    (>

    C .S .

    )) * !e ee +Ve

    2

    2

    "

    #$

    %

    &'Ve • Ae

  • 15MAE 5420 - Compressible Fluid Flow

    Energy Equation for Steady 1-D Flow (cont’d)

    • Collecting Terms and enforcing Ai=Ae=Ac

    • Dividing thru by

    Q•

    Ac+ piVi + !i ei +

    Vi2

    2

    "

    #$

    %

    &'Vi = peVe + !e ee +

    Ve2

    2

    "

    #$

    %

    &'Ve

    Q•

    !iViAc+pi

    !i+ ei +

    Vi2

    2=pe

    !e+ ee +

    Ve2

    2=

    Q•

    m•+pi

    !i+ ei +

    Vi2

    2=pe

    !e+ ee +

    Ve2

    2

    !iVi

  • 16MAE 5420 - Compressible Fluid Flow

    Energy Equation for Steady 1-D Flow (concluded)

    • Recalling from the basic thermodynamics lecture(definition of Enthalpy)

    • The energy equation for 1-D steady, inviscid flow becomes

    h = e + pv = e +p

    !

    q•

    + hi +Vi2

    2= he +

    Ve2

    2

    Q•

    m•! q

  • 17MAE 5420 - Compressible Fluid Flow

    1-D, Steady, Flow: Collected Equations

    • Continuity

    • Momentum

    • Energy

    ! "iVi= "

    eVe

    ! pi+ "

    iVi

    2= p

    e+ "

    eVe

    2

    ! q•

    + hi +Vi2

    2= he +

    Ve2

    2

    Stephen Whitmore

    Stephen Whitmore

  • 18MAE 5420 - Compressible Fluid Flow

    Mach Number: Revisited

    • From the definition of cv

    cv= c

    p! R

    g"

    cv= R

    g

    cp

    Rg

    !1#

    $%

    &

    '( = Rg

    cp

    cp! c

    v

    !1#

    $%

    &

    '( =

    Rg

    cp! c

    p+ c

    v

    cp! c

    v

    #

    $%

    &

    '( = Rg

    cv

    cp! c

    v

    #

    $%

    &

    '( =

    Rg

    ) !1#$%

    &'(

  • 19MAE 5420 - Compressible Fluid Flow

    Mach Number: Revisited (cont’d)

    • Recall from the fundamental definition

    • But if we take the ratio or kinetic to internal energy

    Of a fluid element

    M =V

    c=

    V

    ! RgT

    V2

    2

    e=

    V2

    2

    cvT

    • calorically perfect gas

  • 20MAE 5420 - Compressible Fluid Flow

    Mach Number: Revisited (cont’d)

    • Then

    i.e. Mach number is a measure of the ratio of the fluid

    Kinetic energy to the fluid internal energy (direct motion

    To random thermal motion of gas molecules)

    V2

    2

    e=

    V2

    2

    cvT

    =

    V2

    2

    Rg

    ! "1#$%

    &'(T

    =

    !!

    V2

    2

    Rg

    ! "1#$%

    &'(T

    =! ! "1( )2

    V2

    ! RgT

    =! ! "1( )2

    M2

  • 21MAE 5420 - Compressible Fluid Flow

    Mach Number: Revisited (cont’d)

    • Look at the Steady Flow Energy equation With no heat addition

    d h +V2

    2

    !"#

    $%&= 0' dh +VdV = 0

    hi+Vi

    2

    2= h

    e+Ve

    2

    2! h +

    V2

    2= const

    • Look at Differential form

    Stephen Whitmore

  • 22MAE 5420 - Compressible Fluid Flow

    Mach Number: Revisited (cont’d)

    • For a reversible process

    • With no heat addition, ds=0

    • Subbing into previous

    Tds = dh ! vdp

    dh = vdp =dp

    !

    dp = !"VdV (“euler’s equation”)

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

  • 23MAE 5420 - Compressible Fluid Flow

    Mach Number: Revisited (cont’d)

    • Now look at Continuity equation

    !iVi= !

    eVe" !AV = const

    d !AV( )!AV

    = 0 =d!

    !+dA

    A+dV

    V

    • Substituting in Euler’s Equation dp = !"VdV

    d!

    !+dA

    A+

    "dp

    !V

    V= 0

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

  • 24MAE 5420 - Compressible Fluid Flow

    Mach Number: Revisited (cont’d)

    • Solving for dA/A

    • But since we are considering a process with ds=0

    and …

    • Substituting in Euler’s Equation

    dA

    A=dp

    !1

    V2"d!!

    =dp

    !1

    V2"d!dp

    #$%

    &'(

    d!

    dp=1

    c2

    dA

    A=dp

    !1

    V2"1

    c2

    #$%

    &'(=1" M 2( )!V 2

    dp

    dA

    A==

    1! M 2( )"V 2

    !"VdV( ) = M 2 !1( )dV

    V

    #$%

    &'(

    dp = !"VdV

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

  • 25MAE 5420 - Compressible Fluid Flow

    Mach Number: Revisited (cont’d)

    • Rearranging gives the TWO relationships

    Whose ramifications are fundamental to this class

    dV

    dA

    !"#

    $%&=

    1

    M2 '1( )

    V

    A

    dp

    dA=

    '1M

    2 '1( )(V 2

    A

    Stephen Whitmore

  • 26MAE 5420 - Compressible Fluid Flow

    Mach Number: Revisited (cont’d)

    dV

    dA

    !"#

    $%&=

    1

    M2 '1( )

    V

    A

    dp

    dA=

    '1M

    2 '1( )(V 2

    A

    M < 1!dV

    dA

    "#$

    %&'< 0!

    dp

    dA

    "#$

    %&'> 0

    M > 1!dV

    dA

    "#$

    %&'> 0!

    dp

    dA

    "#$

    %&'< 0

  • 27MAE 5420 - Compressible Fluid Flow

    Fundamental Properties of Supersonic

    and Supersonic Flow

    Stephen Whitmore

    Stephen WhitmoreSub

  • 3MAE 5540 - Propulsion Systems

    … Hence the shape of the rocket Nozzle

    Stephen Whitmore

    Stephen Whitmore

  • MAE 6350 - Propulsion Systems II!

    Why does a rocket !nozzle look like this?"

    Stephen WhitmoredA/A > 0

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmore

    Stephen Whitmoreexpanding/accelerating flow

    Stephen Whitmore

  • 4MAE 5540 - Propulsion Systems

    What is a NOZZLE

    • FUNCTION of rocket nozzle is to convert thermal energy

    in propellants into kinetic energy as efficiently as possible

    • Nozzle is substantial part of the total engine mass.

    • Many of the historical data suggest that 50% of solid rocket failures

    stemmed from nozzle problems.

    The design of the nozzle must trade off:

    1. Nozzle size (needed to get better performance) against nozzle weight

    penalty.

    2. Complexity of the shape for shock-free performance vs. cost of

    fabrication

    Stephen Whitmore

  • 5MAE 5540 - Propulsion Systems

    Temperature/Entropy

    Diagram for a Typical Nozzle

    Tds = !q + dsirrev

    cp =dh

    dT

    !"#

    $%&p

    q•

    + h1+V1

    2

    2= h

    2+V2

    2

    2

    Isentropic

    Nozzle

    q•

    cp

  • 28MAE 5420 - Compressible Fluid Flow

    De Laval Nozzle (revisited)

    AeAI At

    pIVIAIr

    peVeAer

    ptVtAtr

    • But De Laval Discovered that when the Nozzle throat

    Area was adjusted downward until so that the pressure ratio

    pt / pI < 0.5484 -> then the exit Pressure dropped dramatically

    And the exit velocity rose significantly … Which is counter to

    What Bernoulli’s law predicts … he had inadvertently

    Generated supersonic flow! …

    High Pressure Inlet

    Stephen Whitmore