34
Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS Time prope rty Periodic (t,n) Nonperiodic (t,n) C.T. (t) • Fourier Series (FS) • Four Transform (FT) D.T. [n] • Discrete-Time Fourier Series (DTFS) • Discrete-Time Fourier Transform (DTFT) T e k X t x k t jk 2 , ] [ ) ( 0 0 , ) ( 1 ] [ 0 0 dt e t x T k X T t jk (T: period) N e k X n x n jk N k 2 , ] [ ] [ 0 1 0 0 1 0 0 ] [ 1 ] [ N n n jk e n x N k X (N: period) d e j X t x t j ) ( 2 1 ) ( dt e t x j X t j ) ( ) ( d e e X n x n j j ) ( 2 1 ] [ n j n j e n x e X ] [ ) ( (3.19) (3.2 0) (3.10) (3.11) (3.35) (3.36) (3.31) (3.32) Non- perio dic (k,) Perio dic (k,) Freq. property Discr ete[k ] Continuo us (

Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

  • Upload
    ciro

  • View
    20

  • Download
    1

Embed Size (px)

DESCRIPTION

Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS. Non-periodic (k, w ). (3.19). (3.35). (T: period). (3.20). (3.36). Periodic (k, W ). (3.10). (3.31). (3.32). (N: period). (3.11). Continuous ( w, W). Discrete [k]. Freq. property. Linearity and symmetry. E. - PowerPoint PPT Presentation

Citation preview

Page 1: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

Section 3.8

PROPERTIES OF FOURIER REPRESENTATIONSTime

propertyPeriodic

(t,n)

Nonperiodic

(t,n)

C.T.

(t)

• Fourier Series (FS) • Four Transform (FT)

D.T.

[n]

• Discrete-Time Fourier Series (DTFS)

• Discrete-Time Fourier Transform (DTFT)

TekXtx

k

tjk 2 ,][)( 0

0

,)(1

][0

0 dtetxT

kXT tjk

(T: period)

NekXnx

njkN

k

2 ,][][ 0

1

0

0

1

0

0][1

][N

n

njkenxN

kX(N: period)

dejXtx tj

)(

2

1)(

dtetxjX tj

)()(

deeXnx njj

)(

2

1][

nj

n

j enxeX

][)(

(3.19)

(3.20)

(3.10)

(3.11)

(3.35)

(3.36)

(3.31)

(3.32)

Non-periodic

(k,)

Periodic

(k,)

Freq.property

Discrete[k]

Continuous (

Page 2: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

• Linearity and symmetry

][][][][][][

][][][

][][][)()()(

)()()(

0

0

;

;

kbYkaXkZnbynaxnz

ebYeaXeZnbynaxnz

kbYkaXkZtbytaxtz

jbYjaXjZtbytaxtz

DTFS

jjjDTFT

FS

FT

E Example 3.30, p255:

)(2

1)(

2

3)( tytxtz

Find the frequency-domain representation of z(t).

Which type of freq.-domain representation?

• FT, FS, DTFT, DTFS ?

Page 3: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

kk

kY

kk

kjjk

ejk

dte

dtetxT

dtetxT

kX

kYkXkZ

tjktjk

T

T

tjk

x

T tjk

x

x

x

x

xx

2

4

4

28/1

8/1

2

2/

2/

0

sin1

][

sin1

sin22

1

2

1

)(1

)(1

][

][2

1][

2

3][

81

81

0

0

Periodic signals, continuous time. Thus, FS.

kk

kk

kZ FS24

2; sin2

1sin

2

3][

Page 4: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

Symmetry:

We will develop using continuous, non-periodic signals. Results for other 2 cases may be obtained in a similar way.

a) Assume )()( real )( * txtxtx

jX

dtetx

dtetx

dtetxjX

tj

tj

tj

)(

*

**

)(

)(

)(

symmetric conjugate is )( real is )( If jXtx

Further assume

)(

real) (andeven

tx(t) xx(t)(t)xx(t),x(-t)

x(t)**

Page 5: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

jX

dext

dtetxjX

j

tj

(why?) )( with replace

)( )(*

real. is )(even and real is )( If jXtx

dtdt

dttxdttxa

b

b

a

)()(

Further assume

)(

real) (and odd

tx(t) xx(t)(t)xx(t),x(-t)

x(t)**

jX

dtetxjX tj

)(* )(

imaginary.purely is )( odd and real is )( If jXtx

Page 6: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

b) Assume )()(imaginary )( * txtxtx

jX

dtetxjX tj

)(* )(

symmetryeven has )( ofpart Imaginary

symmetry odd has )( ofpart Real

imaginary purely is )( If

jX

jX

tx

• Convolution: Applied to non-periodic signals.

dtxh

txthty

)()(

)()()(Let

dejXtx

jXtx

tj

FT

)()(2

1)(

)()( If

Page 7: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

dejXjH

dejXdeh

ddeejXhty

tj

tj

jH

j

jtj

)()(

)()(

)()()(

21

)(

21

21

)()()()()()( jHjXjYthtxty FT

Conclusion: Convolution in time domain Multiplication in freq. domain.

E Example 3.31:

)(output system theFind ).2sin()(

response impulse with system a input to be )sin()(Let 1

1

tytth

ttx

t

t

Page 8: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

)()()(

)()()(

jHjXjY

thtxty

From results of example 3.26, p264.

)sin()(||,0

||,1)(

2||,0

2||,1)()(

||,0

||,1)()(

1 ttyjY

jHth

jXtx

tFT

FT

FT

E Example 3.32: ).( Find ).(sin)()( 242 txjXtx FT

Recall that (Example 3.25, p244)

)sin(1||,0

1||,1)( 2

FT

t

ttz

Page 9: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

).(j)(j)(j Then, ).sin()Let 2 ZZXZ(jω

).()()( Thus, tztztx

The same convolution properties hold for discrete-time, non-periodic signals.

)()()(][][][ jjjDTFT eHeXeYnhnxny

Convolution properties for periodic (DT or CT) and periodic with non-periodic signals will be discussed in Chapter 4.

Page 10: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

• Differentiation and integration: (Section 3.11)

– Applicable to continuous functions: time (t) or frequency ( or )– FT (t, ) and DFTF ()

Differentiation in time:

followsit )(2

1)(

)(2

1)(

dejXjtxdt

d

dejXtx

tj

tj

)()( jXjtxdt

d FT

E Find FT of 0,)( atuedt

d at

Page 11: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

ja

jtue

dt

dja

tue

FTat

FTat

)(

p243) 3.24, example class-(in 1

)(

E Find x(t) if

1||,0

1||,)(

j

jX

)sin(1

)cos(1

)()( Thus,

p246) 3.26, (example )sin(1

)()(

)()(

then,1||,0

1||,1)(Let

2t

tt

t

tzdt

dtx

tt

tzjZ

jZjjX

jZ

FT

Page 12: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

Differentiation in frequency:

thus,)()()(

)()(

dtetxjtjXd

d

dtetxjX

tj

tj

)()(

jXd

dtjtx FT

If x(t) is periodic, frequency-domain representation is Fourier Series (FS):

][)( 0; 0 kXjktx

dt

d FS

tjk

k

ekXtx 0][)(

Page 13: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

E Example 3.40, p275

FT. its Find .2

1)( :asgiven is pulseGaussian A 2

2t

etg

)(1

)(

Thus )(1

)(

)( )( )(

jGd

d

jjGj

jGd

d

jjGj

ttgtgdt

d

)()(

jGjGd

d

This differential equation (it has the same mathematical form as (*), and thus the functional form of G(j) is the same as that of g(t) ) has a solution given as:

2/2

)( cejG

Page 14: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

Constant c can be determined as:

1|)()0(1)( 0 cdtetgjGdttg tj

2/22

2

2

1 Thus,

ee FTt

Integration:

– In time: applicable to FT and FS– In frequency: applicable to FT and DTFT

0 if )(1

)()()(

)()(

)()(Let

jXj

jYjXjYj

txtydt

d

dxtyt

Page 15: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

For=0, this relationship is indeterminate. In general,

)()0()(1

)(

jXjXj

dx FTt

E Determine the Fourier transform of u(t).

1)(

)()(

FT

t

t

dtu

)(1

)(

jj

jU FT

E Problem 3.29, p279: Fund x(t), given

)()1(

1)(

j

jjjX

Page 16: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

)()()(

1

1)(

1)(

1

11)(

tuetutx

jj

jj

jjjX

t

Review Table 3.6. Commonly used properties.

E Problem 3.22(b), p271.

22

22

2

2

2

2)(2

2

1)(

2

1)(

?)( .)(2)(

j

jtute

dt

dj

tute

jtue

jXtutedt

dtx

FTt

FTt

FTt

t

)()(

jXd

dtjtx FT

)()( jXjtxdt

d FT

Page 17: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

• Time and frequency shift

Time shift:

0)( with Replace

)(

)()(

)()(Let

0

0

0

tjj

tj

tj

edextt

dtettx

dtetzjZ

ttxtz

)()( 0 jXejZ tj

Note: Time shift phase shift in frequency domain. Phase shift is a linear function of Magnitude spectrum does not change.

Page 18: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

Table 3.7, p280:

][][)(][

][)()()(

00

0

00

0

;0

0

;0

0

kXennxeXennxkXettx

jXettx

njkDTFS

jnjDTFT

tjkFS

tjFT

E Example 3.41: Find Z(j)

)sin(2

)()(

p244) 3.25, (Example )sin(2

)()(

)()(

0

0

1

1 TejZtz

TjXtx

Ttxtz

TjFT

FT

Page 19: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

E Problem 3.23(a), p282:

2

4)4(2

22

2

2

2

4

)2()4()4(

)2(

1)(

)2()()(

)()(2

1)(

)( Find .)2(

)(

j

etuet

jtute

j

jjZ

d

dtjtz

tuetzj

jZ

txj

ejX

jFTt

FTt

FT

tFT

j

Page 20: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

Frequency shift:

??))(()()()(

FT

FT

jXjZjXtx

)(let )(2

1

))((2

1

)(2

1)(

tjtj

tj

tj

edejX

dejX

dejZtz

)()( txetz tj

Page 21: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

Note:– Frequency shift time signal multiplied by a complex sinusoid.– Carrier modulation.

Table 3.8, p284:

][][)(][][)(

))(()(

0;

)(0

;

000

000

kkXnxeeXnxe

kkXtxejXtxe

DTFSnjk

jDTFTnj

FStjk

FTtj

E Example 3.42, p284:

Find Z(j).

||,0

||,)(

10

t

tetz

tj

Page 22: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

))10sin((10

2))10(()()(

)sin( 2

||,0

||,1)(Let

10

jXetxtz

t

ttx

FTtj

FT

E Example 3.43, p285:

).( Find .)2()()( 3 jXtuetuedt

dtx tt

)1)(3()()( )( Thus,

1

1)()2(

)2()(3

1)()()(Let

22

222)2(

3

jj

ejejVjWjjX

jeejVetue

tuetvj

jWtuetw

j

jFTt

t

FTt

Page 23: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

• Multiplication

?)()()( of FT theis what periodic,-non are )(),( If tztxtytxtz

READ derivation on p291!

dvdejZjvXtztxty

dejZtz

dvejvXtx

tvj

tj

jvt

)(2

)()()2(

1)()()(

)(2

1)(

)(2

1 )(

Then .first fix ,Let ddvv

dedvvjZjvXty tj

jZjX

)()(2

1

))(()(2

1

2

1)(

Inverse FT of

Page 24: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

:][],[ signals time-discreteFor nznx

)()()()()()( 21 jZjXjYtztxty FT

)()()(][][][ 21 jjjDTFT eZeXeYnznxny *

Periodic convolution:

deZeXeZeX jjjj )()()(

*

- p296, CT, periodic signals:

m

TFS

mkZmXkZkX

kZkXkYtztxty

][][][][

][][][)()()( /2;

)()()()( Compare jZjXtztx FT

Page 25: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

- p297, DT, periodic signals:

1

0

/2;

][][][][

][][][][][][N

m

NDTFS

mkZmXkZkX

kZkXkYnznxny

*

*

• Scaling

))/((

)(

)(let 0)(

0)(

)(

)()(

)()(Let

||1

)/(||

1

)/(1

)/(1

ajX

dex

atadex

adex

dteatx

dtetzjZ

atxtz

a

aja

aja

aja

tj

tj

Page 26: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

E Example 3.48, p300:

2||0

2||1)(

1||0

1||1)(

t

tty

t

ttx

Find )( jY

)2sin(2

)2sin(2

22)2(2)(

)sin(2

)(

|)()(21

jXjY

jX

atxty a

E Example 3.49, p301:

)3/(1)( if )( Find

2

j

e

d

djjXtx

j

Page 27: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

jjStuets FTt

1

1)()()( know We

– Time scaling:

– Time shift:

– Differentiation:

)3/(1)(

)3/(1))2(3(3)2(3)(

)3/(1

1

3

1)()3()(

2

2

j

e

d

djttv

j

etstztv

jjZtstz

jFT

jFT

FT

))2(3(3

))2(3(3

)2(3

)()( Thus,

)2(3

tute

tts

ttz

ttvtx

t

)2(3)( Thus, ).2())2(3( :Note )2(3 tutetxtutu t

)()(

)()(

))/(()(

00

||1

jXtjtx

jXettx

ajXatx

ddFT

tjFT

aFT

Page 28: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

• Parseval’s relationship:

:)( signal periodic-non CT, ofEnergy tx

djXjX

ddtetxjX

dtdejXtxW

dejXtx

tj

tjx

tj

)()(2

1

)()(2

1

)(2

1)(

)(2

1)(

dttxtx

dttxWx

)()(

|)(|2

djXdttxWx

22 |)(|2

1|)(|

domain freq.in energy domain in timeEnergy b)

spectrumenergy :|)(| a) :Note 2

jX

Page 29: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

Table 3.10, p304:

k

T

N

k

N

n

j

n

kXdttxT

kXnxN

deXnx

2

0

2

1

0

21

0

2

22

|][||)(|1

:FS

|][||][|1

:DTFS

|)(|2

1|][| :DTFT

E Example 3.50, p304:

/12

12

1][

,0

,1)sin(][

)(

)(sin Determine .

)sin(][

22

2

2

Wd

deXnxE

W

WeX

n

Wnnx

n

WnE

n

Wnnx

W

W

j

nx

jDTFT

nx

Page 30: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

• Time-bandwidth product Compression in time domain expansion in frequency domain Bandwidth: The extent of the signal’s significant contents. It is in general a vague definition as “significant” is not mathematically defined. In practice, definitions of bandwidth include

– absolute bandwidth– x% bandwidth– first-null bandwidth. If we define

thenbandwidth, RMS :)(

)(

signalenergy an ofduration RMS :)(

)(

2/1

2

22

2/1

2

22

djX

djXB

dttx

dttxtT

w

d

2/1wd BT

Page 31: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

• Duality )(2

)(

fjtF

jFtfFT

FT

Page 32: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS
Page 33: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

Ejt

txjX

1

1)( if )( Find Example 3.52, p308:

)(2)(2)(

)(21

1)(Duality

)(1

1)()( know We

uefjX

fjt

jtF

jFj

tuetf

FT

FTt

jtde

dee

dejXx

jt

tj

tj

1

1

22

1

)(2

1(t)Check

0 )1(

0

E Problem 3.44, p309: )()( if )( Find ujXtx

Page 34: Section 3.8 PROPERTIES OF FOURIER REPRESENTATIONS

)(2

1

2

1

2

1))((

)(

1)(

)(2)(1

)()(

)()(

tjt

ttj

tx

xj

tujtX

ujX

FT

)()0()(1

)(

jXjXj

dx FTt

Table 3.11, p311:

class!own in their stay not do FS and TFT

][

][ :FS and DTFT

][][

][][ :DTFS

1;

1/2;

/2;

D

kxeX

eXnx

kxnX

kXnx

FSjt

jDTFT

NNDTFS

NDTFS