22
Section 5: The Hydrogen Atom In these slides we will cover: The 3D Schrödinger equation Particle in a box and degenerate quantum states Radial and angular solutions for central potentials Identification of the angular piece with the angular momentum eigenfunctions (spherical harmonics) Infinite spherical well Solution of the radial equation for the Coulomb potential Eigenfunctions of the hydrogen atom Quantum numbers of the hydrogen atom

Section 5: The Hydrogen Atom - astronomy.swin.edu.au

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Section5:TheHydrogenAtom

Intheseslideswewillcover:

• The3DSchrödingerequation

• Particleinaboxanddegeneratequantumstates

• Radialandangularsolutionsforcentralpotentials

• Identificationoftheangularpiecewiththeangularmomentumeigenfunctions (sphericalharmonics)

• Infinitesphericalwell

• SolutionoftheradialequationfortheCoulombpotential

• Eigenfunctions ofthehydrogenatom

• Quantumnumbersofthehydrogenatom

Page 2: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Particleinabox

The3DSchrödingerEquation

• Wenowmovefromparticlesin1Dspace,to3Dspace

• Thederivativein1dimension, !"

!#",isreplacedbyits3D

equivalent,the“Laplacian”operator𝛻% = '"

'#"+ '"

')"+ '"

'*"

• The3Dtime-independentSchrödingerequationfortheenergyeigenfunctions 𝜓(𝑥, 𝑦, 𝑧) andeigenvalues𝐸 ishence:

• Thenormalisation conditionforthe3Dwavefunction is∫ 𝑑𝑥565 ∫ 𝑑𝑦5

65 ∫ 𝑑𝑧565 𝜓(𝑥, 𝑦, 𝑧) % = 1

−ℏ%

2𝑚𝜕%𝜓𝜕𝑥% +

𝜕%𝜓𝜕𝑦% +

𝜕%𝜓𝜕𝑧% + 𝑉 𝑥, 𝑦, 𝑧 𝜓 𝑥, 𝑦, 𝑧 = 𝐸𝜓 𝑥, 𝑦, 𝑧

Page 3: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Particleinabox

Particleinabox

• Agoodexampleisa“particleinabox”withpotential

• Welookforaseparablesolution

• Wefind,bysubstitutingthistrialsolutioninthe3DSchrödingerequationandre-arranging,

𝑉 𝑥 = ?0, 𝑥 < 𝐿, 𝑦 < 𝐿, 𝑧 < 𝐿∞, outsidethebox

𝜓 𝑥, 𝑦, 𝑧 = 𝑓 𝑥 𝑔 𝑦 ℎ(𝑧)

−ℏ%

2𝑚1

𝑓 𝑥𝑑%𝑓𝑑𝑥% +

1𝑔 𝑦

𝑑%𝑔𝑑𝑦% +

1ℎ 𝑧

𝑑%ℎ𝑑𝑧% = 𝐸

Page 4: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Particleinabox

Particleinabox

• Thatlastequationagain:

• Wecansolvethisequationusinganicepieceoflogic:§ eachterminthesquaredbracketonlydependson1variable(𝑥,𝑦 or𝑧)

§ eachofthosevariablesisfreetovaryindependentlyfromtheothers

§ inthiscase,theonlywaytomakethetermsalwayssumtoaconstantisifeachindividualterminthesquaredbracketisseparatelyaconstant

• Wefindthateachseparatefunction𝑓, 𝑔, ℎ satisfiesthe1DSchrödingerequationfortheinfinitepotentialwell.Wemultiplythemtogetherforthetotalsolution,𝜓 = 𝑓 Q 𝑔 Q ℎ

−ℏ%

2𝑚1

𝑓 𝑥𝑑%𝑓𝑑𝑥% +

1𝑔 𝑦

𝑑%𝑔𝑑𝑦% +

1ℎ 𝑧

𝑑%ℎ𝑑𝑧% = 𝐸

Page 5: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Particleinabox

Particleinabox

• Summarising,theparticleinaboxhasenergyeigenfunctionslabelledbythreequantumnumbers(𝑛#, 𝑛), 𝑛*)

• 𝜓STU(𝑥) arethedifferentstates𝑛 whicharesolutionsofthe1Dinfinitepotentialwell

• Theenergyeigenvaluesarethenthesumofthecorrespondingeigenvaluesforthe1Dinfinitepotentialwell,

• Wenoticeherethatdistincteigenfunctions canhavethesameenergy(degeneratestates),e.g.(2,1,1),(1,2,1) and(1,1,2)

𝜓VU 𝑥, 𝑦, 𝑧 = 𝜓SWTU 𝑥 𝜓SX

TU 𝑦 𝜓SYTU(𝑧)

𝐸(𝑛#, 𝑛), 𝑛*) =𝜋%ℏ%

8𝑚𝐿% 𝑛#% + 𝑛)% + 𝑛*%

Page 6: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Centralpotentials

Radialandangularsolutionsforcentralpotentials

• Acentralpotentialdependsonlyonthedistancefromtheorigin,𝑉 𝑥, 𝑦, 𝑧 = 𝑉(𝑟).Animportantexampleis,thepotentialaroundahydrogennucleus(proton)attheorigin

𝑟

+𝑒

−𝑒(Sorryfortheillustration

withclassicalpointparticles.Theyareofcourse

probabilitycloudsinQM!)

𝑥 𝑦

𝑧

Page 7: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Centralpotentials

Radialandangularsolutionsforcentralpotentials

• Acentralpotentialdependsonlyonthedistancefromtheorigin,𝑉 𝑥, 𝑦, 𝑧 = 𝑉(𝑟).Animportantexampleis,thepotentialaroundahydrogennucleus(proton)attheorigin

• Theseproblemsarebesttreatedusingsphericalpolarco-ordinates,(𝑟, 𝜃, 𝜙)

• Non-examinable:weneedtheexpressionfortheLaplacianinsphericalpolarco-ordinates(ouch!):

𝛻% =1𝑟%

𝜕𝜕𝑟 𝑟%

𝜕𝜕𝑟 +

1𝑟% sin 𝜃

𝜕𝜕𝜃 sin 𝜃

𝜕𝜕𝜃 +

1𝑟%sin%𝜃

𝜕%

𝜕𝜙%

Page 8: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Centralpotentials

Radialandangularsolutionsforcentralpotentials

• Non-examinable:Weagainlookforaseparablesolutionfortheenergyeigenfunctions,

• Substitutingthisinthe3DSchrödingerequationandre-arranging,wefind:

• Byasimilarlogictothecubicalboxsolution… theleft-handsideofthisequationisafunctionof(𝜃, 𝜙) onlyandtheright-handsideisafunctionof𝑟 only.Buttheymustremainequalas(𝑟, 𝜃, 𝜙) varyindependently.Sotheymustbothbeequaltothesameconstant,let’scallit𝜆

𝜓 𝑟, 𝜃, 𝜙 = 𝑅 𝑟 𝑌(𝜃, 𝜙)

−ℏ%

𝑌1

sin 𝜃𝜕𝜕𝜃 sin 𝜃

𝜕𝑌𝜕𝜃 +

1sin%𝜃

𝜕%𝑌𝜕𝜙% =

ℏ%

𝑅𝜕𝜕𝑟 𝑟%

𝜕𝑅𝜕𝑟 + 2𝜇 𝐸 − 𝑉 𝑟 𝑟%

Switchingtousing𝜇 formass,since𝑚 isabouttomeansomethingelse

Page 9: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Centralpotentials

Radialandangularsolutionsforcentralpotentials

• Theleft-handsideofthisequationbecomes,

• Aha!Theleft-handsideisjusttheoperatorforthetotalangularmomentum,𝐿e%,fromthepreviousSection:

• Hence,theangularpieceoftheenergyeigenfunctions foracentralpotentialisjustthesphericalharmonicfunctions𝑌fg(𝜃, 𝜙) where𝜆 = 𝑙 𝑙 + 1 ℏ% – that’sconvenient

−ℏ%1

sin 𝜃𝜕𝜕𝜃 sin 𝜃

𝜕𝜕𝜃 +

1sin%𝜃

𝜕%

𝜕𝜙% 𝑌 𝜃, 𝜙 = 𝜆𝑌 𝜃, 𝜙

𝐿e%𝑌 = 𝑙 𝑙 + 1 ℏ%𝑌

Page 10: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Centralpotentials

Radialandangularsolutionsforcentralpotentials

• Substituting𝜆 = 𝑙 𝑙 + 1 ℏ% intheradialpiece,wefind

• Ausefulchangeofvariablesistosubstitute𝑢 𝑟 = 𝑟 Q 𝑅(𝑟)[i.e.𝑅 = 𝑢/𝑟].Inthiscase,

• Wenotethatthislooksjustlikea1DSchrödingerequation,excepttheusualpotentialhasbeenreplacedbyan“effective

potential” 𝑉 𝑟 + f fkT ℏ"

%lm"

−ℏ%

2𝜇1𝑟%

𝑑𝑑𝑟 𝑟%

𝑑𝑅𝑑𝑟 + 𝑉 𝑟 +

𝑙 𝑙 + 1 ℏ%

2𝜇𝑟% 𝑅 = 𝐸𝑅

−ℏ%

2𝜇𝑑%𝑢𝑑𝑟% + 𝑉 𝑟 +

𝑙 𝑙 + 1 ℏ%

2𝜇𝑟% 𝑢 = 𝐸𝑢

[Again,𝜇 =mass]

Note:thisequationdependsontheangularmomentumstate,through𝑙

Page 11: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Centralpotentials

Infinitesphericalwell

• Agoodexampleofthisisa“particleinasphere”,where

• Inthiscase,theenergyeigenfunctions 𝑢S(𝑟) at𝑟 < 𝑎 satisfy

• Boundaryconditionis𝑢 = 0 at𝑟 = 𝑎.Thefirsteigenfunctionsare𝑢 ∝ sin 𝑘𝑟 for𝑙 = 0 and𝑢 ∝ qrs tm

tm− cos 𝑘𝑟 for𝑙 = 1

• Notethatthefullenergyeigenfunction alsoincludestheangularpiece,𝜓 𝑟, 𝜃, 𝜙 = [𝑢S 𝑟 /𝑟]𝑌fg(𝜃, 𝜙) – thestateoftheparticleischaracterisedby3quantumnumbers𝑛, 𝑙,𝑚

𝑉 𝑟 = ?0, 𝑟 < 𝑎∞, 𝑟 > 𝑎

−ℏ%

2𝜇𝑑%𝑢S𝑑𝑟% +

𝑙 𝑙 + 1 ℏ%

2𝜇𝑟% 𝑢S = 𝐸𝑢S

Page 12: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Centralpotentials

Infinitesphericalwell

• Herearethefirstfewradialeigenfunctions fortwovaluesof𝑙:

• Theprobabilityoffindingtheparticlebetween𝑟 and𝑟 + 𝑑𝑟 isgivenby𝑟% 𝜓 % ∝ 𝑟% 𝑅 % ∝ 𝑢 % – theextrafactorof𝑟% isappearingbecauseofthevolumeelementinsphericalpolars

𝑙 = 0 𝑙 = 1𝑢(𝑟) (unnormalised) 𝑢(𝑟) (unnormalised)

𝑟/𝑎 𝑟/𝑎

edgeedge

Page 13: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Eigenfunctions ofthehydrogenatom

SolutionofradialequationforCoulombpotential

• However,themostimportantexampleofacentralpotentialisanelectroninahydrogenatomorbitingaroundanucleus,whichfollowstheCoulomb

potentialenergy,𝑉 𝑟 = − y"

z{|}m

• Inthiscasetheradialequationbecomes(where𝑎 = 4𝜋𝜀�ℏ%/𝜇𝑒%),

−𝑑%𝑢S𝑑𝑟% + −

2𝑎𝑟 +

𝑙 𝑙 + 1𝑟% 𝑢S =

2𝜇𝐸ℏ% 𝑢S

𝑟

+𝑒

−𝑒

(Sorryfortheillustrationwithclassicalpointparticles.

TheyareofcourseprobabilitycloudsinQM!)

Page 14: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Eigenfunctions ofthehydrogenatom

SolutionofradialequationforCoulombpotential

• Wecansolvethisequationbyconsideringtwolimits…

• If𝑟 → ∞,wehave−!"�!m"

= %l�ℏ"𝑢.Werecognisethisequation

ashavingsolution𝑢(𝑟) ∝ 𝑒6m/�,where𝐸 = − ℏ"

%l�"

• If𝑟 → 0,wehave−!"�!m"

+ f(fkT)m"

𝑢 = 0.Thisequationhasasolution𝑢(𝑟) ∝ 𝑟fkT

• Thislogicmotivatesthatthecompletesolutionisapolynomialmultipliedbyanexponential,dependingonthevalueof𝑙

Page 15: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Eigenfunctions ofthehydrogenatom

• Thetextbookexplains[wewon’tgivethederivationheresinceit’sabitinvolved…] thattheenergyeigenvalues𝐸S canbecharacterisedbyasinglequantumnumber𝑛,andagivenenergyhas𝑛degenerateeigenfunctions 𝑢Sf(𝑟) givenby𝑙 = 0,1, … , 𝑛 − 1

• Herearesomesolutionsfor𝑅Sf 𝑟 = 𝑢Sf(𝑟)/𝑟 correspondingtothefirsttwovaluesof𝑛 = 1,2 andtheallowedvaluesof𝑙:

𝑅T� =2𝑎V/%

𝑒6m/�

𝑛 = 1 𝑛 = 2

𝑙 = 0

𝑙 = 1

𝑅%� =1

2� 𝑎V/%1 −

𝑟2𝑎 𝑒6m/%�

𝑅%T =1

2 6� 𝑎V/%𝑟𝑎 𝑒6m/%�(notallowed)

Eigenfunctions forhydrogenatom

Page 16: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Eigenfunctions ofthehydrogenatom

• Theradialextentoftheeigenfunctions arecharacterisedbythe

parameter𝑎 = z{|}ℏ"

ly"=

5.3×106TT𝑚 knownastheBohrradius

• Herearethefirstfewradialeigenfunctions,plottedasaprobabilitydensity 𝑢Sf % =𝑟% 𝑅Sf %

Eigenfunctions forhydrogenatom

Page 17: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Eigenfunctions ofthehydrogenatom

Energylevelsandquantumnumbersofhydrogenatom

• Thetextbookshowsthattheenergyeigenvaluesonlydepend

on𝑛,andaregivenby𝐸S = −𝐸T/𝑛%,where𝐸T =l%ℏ"

y"

z{|}

%.

ThisisthefamousBohrformulaforthehydrogenenergylevels

Imagecredit:Hyperphysics

Page 18: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Eigenfunctions ofthehydrogenatom

Energylevelsandquantumnumbersofhydrogenatom

• Let’srecapthefullargument:

1. TheSchrödingerequationforacentralpotentialalwayshasseparablesolutions𝜓(𝑟, 𝜃, 𝜙) = 𝑅Sf 𝑟 𝑌fg(𝜃, 𝜙),where𝑌fg arethesphericalharmonicsand𝑅Sf satisfiesaradialequation

2. Hence,theseareautomaticallyeigenfunctions ofangularmomentum,with𝐿% = 𝑙(𝑙 + 1)ℏ% and𝐿* = 𝑚ℏ (−𝑙 ≤ 𝑚 ≤ +𝑙)

3. ForaCoulombpotentialinparticular,theenergyeigenvaluesdonotdependon𝑙,butonlyonasinglequantumnumber𝑛,𝐸S =− 𝐸T/𝑛%,withtherestriction0 ≤ 𝑙 ≤ 𝑛 − 1

4. Therearehence3quantumnumberswhichcharacterise thehydrogenatom:totalenergy(𝑛),totalangularmomentum(𝑙)andthe𝑧-componentofangularmomentum(𝑚)

Page 19: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Eigenfunctions ofthehydrogenatom

Energylevelsandquantumnumbersofhydrogenatom

• Thefulleigenfunctions 𝜓(𝑟, 𝜃, 𝜙) areacombinationoftheradialeigenfunction andsphericalharmonics:

Page 20: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Eigenfunctions ofthehydrogenatom

Energylevelsandquantumnumbersofhydrogenatom

• Countingthenumberofdistincteigenstatesassociatedwithaspecificenergy𝑛 …

• Thereare𝑛 possiblevaluesof𝑙

• Foreach𝑙,thereare(2𝑙 + 1) allowedvaluesof𝑚

• Combiningallthose,wefind𝑛% distinctstates

Page 21: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Eigenfunctions ofthehydrogenatom

Summary

• Thehydrogenatomhasdiscreteenergylevels𝐸S = −𝐸T/𝑛%,

where𝐸T =l%ℏ"

y"

z{|}

%and𝒏 istheenergyquantumnumber

• Foreachstate𝑛,thereare𝑛 differentvaluesof𝑙 =(0,1, … , 𝑛 − 1),where𝒍 isthequantumnumberfortotalangularmomentum and𝐿% = 𝑙(𝑙 + 1)ℏ%

• Foreachstate𝑙,thereare(2𝑙 + 1) differentvaluesof𝑚 =(−𝑙, −𝑙 + 1,… , 𝑙 − 1, 𝑙),where𝒎 isthequantumnumberforthe𝒛-componentofangularmomentum and𝐿* = 𝑚ℏ

• Theenergyeigenfunctions arethen𝜓Sfg 𝑟, 𝜃, 𝜙 =𝑅Sf 𝑟 𝑌fg 𝜃, 𝜙 = ���(m)

m𝑌fg 𝜃, 𝜙

Page 22: Section 5: The Hydrogen Atom - astronomy.swin.edu.au

Summary

Eigenfunctions ofthehydrogen

atom

Centralpotentials

• ForaCoulombpotential,theradialpiecetakestheformofapolynomialmultipliedbyanexponential

• Thehydrogenatomischaracterisedbyquantumnumbers(𝑛, 𝑙, 𝑚) for(𝐸, 𝐿%, 𝐿*) where0 ≤ 𝑙 ≤ 𝑛 − 1and−𝑙 ≤ 𝑚 ≤ 𝑙

• Ifthepotentialdependsonlyontheradius𝑟,thentheangularpieceof𝜓 istheangularmomentumeigenfunctions,thesphericalharmonics𝑌fg(𝜃, 𝜙)

• Theradialpieceof𝜓 satisfiesthe1DSchrödingerequationforaneffectivepotential,dependingon𝑙

• The3Dtime-independentSchrödingerequationis

− ℏ"

%g𝛻%𝜓 + 𝑉𝜓 = 𝐸𝜓,where𝛻% = '"

'#"+ '"

')"+ '"

'*"

• Aconvenientmethodofsolvingistosearchforawavefunction separableinthesystemco-ordinates

• Differenteigenfunctions whichhavethesameenergyarecalleddegeneratestates

Particleinabox