19
1 MAE 5420 - Compressible Fluid Flow 1 • Calculate Freestream Mach Number Shock wave kPa • Assume =1.40 Section 7, Homework … Due Friday November 20, 2020 Part1 Solution Hints: Assume supersonic flow at probe and Wedge has a 10 deg. half angle, work backwards from probe... Static pressure Measurement is ahead of shock γ = 1.4 “Rayleigh Pitot Equation”

Section 7, Homework … Due Friday November 20, 2020 Section

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Section 7, Homework … Due Friday November 20, 2020 Section

1MAE 5420 - Compressible Fluid Flow1

Section 7: Home Work Solution

• Calculate FreestreamMach Number

Shock wave

kPa

• Assume�=1.40

Section 7, Homework … Due Friday November 20, 2020Part1

Solution Hints: Assume supersonic flow at probe and Wedge has a 10 deg. half angle, work backwards from probe...Static pressure Measurement is ahead of shock

γ =1.4

“RayleighPitotEquation”

Stephen Whitmore
Page 2: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 2

Section 7: Homework (cont’d)

• Step 1: Compute Mach Number on Lower aft ramp (4)

• From Normal Shock relationships, trial and error,iterative solver for

“Rayleigh Pitot”, (or table A.2 in Anderson)

• M4 = 1.8060

Stephen Whitmore
Page 3: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 3

Section 7: Homework (cont’d)

• Step 2: Compute Prandtl-Meyer Function for flow on Lower aft ramp (4)

= 20.898°

Page 4: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 4

Section 7: Homework (cont’d)

• Step 3: Compute Turning Angle for Expansion fan onLower Surface, subtract from n(M4)

( )
Stephen Whitmore
Page 5: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 5

Section 7: Homework (cont’d)• Step 4: Compute Mach Number ahead of expansion fan

• Use iterative solver or table A-5 in Anderson

=0.8984

M2 =1.0760

Stephen Whitmore
Page 6: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 6

Section 7: Homework (cont’d)

• Step 5: Compute “wedge angle” for Lower leading ramp

• Iterate to get correct Shock Angle

Stephen Whitmore
Page 7: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 7

Section 7: Homework (cont’d)

• Assume freestream Mach Number~ 2.5

Use exact solverFor b

b~45.602°M=2..5

M=2..0

M=3.0

Stephen Whitmore
Page 8: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 8

Section 7: Homework (cont’d)

b~45.602°

= 1.7862

• Use Normal Shock Equations

= 1.54754

Already too High(M2=1.0760)

Page 9: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 9

Section 7: Homework (cont’d)

= 1.7045

• Pick new M1 = 2.0, b=58.46°

• Use Normal Shock Equations

= =0.6394

Page 10: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 10

Section 7: Homework (cont’d)

= 1.7045

• Pick new M1 = 2.0, b=58.46°

• Use Normal Shock Equations

=1.46156

Page 11: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 11

Section 7: Homework (cont’d)

• Calculate total mach number behind Shock

=

= 1.0760

Check!

Page 12: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow 12

Section 7: Homework (cont’d)

• M¥ = 2.0

Page 13: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow

Alternate Solution

13

q

M2 =1.0760

M4 = 1.8060

Stagnation PressureConstant acrossshock wave à

p2p4=1+ γ−1

2M4

2

1+ γ−12M2

2

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

γγ−1

=

p2 = 85.1907 kPa

Page 14: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow

Alternate Solution

14

M2 =1.0760

M4 = 1.8060

p2 = 85.1907 kPa

q

p2p∞=85.1907kPa26.436kPa

= 3.2225=1+ 2 ⋅γγ+1

⋅ M1 ⋅sinβ( )2−1⎡⎣⎢

⎤⎦⎥

→ M1 ⋅sinβ=γ+12 ⋅γ

p2p∞−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟+1=

=

Page 15: Section 7, Homework … Due Friday November 20, 2020 Section

MAE 5420 - Compressible Fluid Flow

Alternate Solution

15

M2 =1.07600

q M2n =0.63941M1n =1.70441

M2 =Mn2

sin β−θ( )→ sin β−θ( )=

Mn2

M2

=0.639411.0760

= 0.59245

o

→ β= sin−1Mn2

M2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟+θ=

M1=M1 ⋅sinβsinβ

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟=

1.70441

58.4589 π180⎝ ⎠

⎛ ⎞sin= 2.0

M¥ = 2.0Check!

Page 16: Section 7, Homework … Due Friday November 20, 2020 Section

1MAE 5420 - Compressible Fluid Flow

-2.0

-1.5

-1.0

1.0

-0.5

0.5

0.0

NACA 0012 M∞ = 0.6

0.2 0.4 0.6 0.8 1.0

x/c

CpSection 7, Homework, Part 2

• Consider NACA 0012 Airfoil at 1.5oa.

• Calculate the critical drag rise (subsonic) Mach number for zero wing sweep

• Re-Calculate the Mcr assuming 30o

wing sweep, L• Compare the effective fineness ratios

(t/c), for the unswept and swept wing sections

• What do you conclude?

Uppersurface

Lowersurface

NACA0006at0oa

Page 17: Section 7, Homework … Due Friday November 20, 2020 Section

2MAE 5420 - Compressible Fluid Flow

-2.0

-1.5

-1.0

1.0

-0.5

0.5

0.0

NACA 0012 M∞ = 0.6

0.2 0.4 0.6 0.8 1.0

x/c

Cp

NACA 0012 at 1.5oa

2

Cpmin ~ -94

@zerowingweep

Mcrit = 0.612

Page 18: Section 7, Homework … Due Friday November 20, 2020 Section

3MAE 5420 - Compressible Fluid Flow

NACA 0012 at 1.5oa with 30 deg. Wing sweep

3

à Mcrit = 0.707

Page 19: Section 7, Homework … Due Friday November 20, 2020 Section

4MAE 5420 - Compressible Fluid Flow

Compare Fineness ratios of Swept and Unswept Wings

4

tcequiv

= tc cosΛ

Unsweptà t/c=12%

Sweptà

t/c=10.39%

=

equivWingiseffectively13.4%thinner