21
Segment Trees Basic data structure in computational geometry. Computational geometry. Computations with geometric objects. Points in 1-, 2-, 3-, d-space. Closest pair of points. Nearest neighbor of given point. Lines in 1-, 2-, 3-, d-space. Machine busy intervals. IP router-table filters (10*, [20, 60]).

Segment Trees

  • Upload
    aggie

  • View
    82

  • Download
    0

Embed Size (px)

DESCRIPTION

Segment Trees. Basic data structure in computational geometry. Computational geometry. Computations with geometric objects. Points in 1 -, 2 -, 3 -, d -space. Closest pair of points. Nearest neighbor of given point. Lines in 1 -, 2 -, 3 -, d -space. Machine busy intervals. - PowerPoint PPT Presentation

Citation preview

Page 1: Segment Trees

Segment Trees• Basic data structure in computational geometry.• Computational geometry.

Computations with geometric objects. Points in 1-, 2-, 3-, d-space.

• Closest pair of points.• Nearest neighbor of given point.

Lines in 1-, 2-, 3-, d-space.• Machine busy intervals.• IP router-table filters (10*, [20, 60]).

Page 2: Segment Trees

Segment Trees Rectangles or more general polygons in 2-space.

• VLSI mask verification.• Sentry location.• 2-D firewall filter.

– (source address, destination address)– (10*, 011*)– When addresses are 4 bits long this filter matches addresses in

the rectangle ([8,11], [6,7])

8 11

6

7

Source address

Page 3: Segment Trees

Segment Tree Application

• Store intervals of the form [i,j], i < j, i and j are integers. [i,j] may, for example represent the fact that a

machine is busy from time i to time j.• Answer queries of the form: which intervals

intersect/overlap with a given unit interval [a,a+1]. List all machines that are busy from 2 to 3.

Page 4: Segment Trees

Segment Tree – Definition• Binary tree.• Each node, v, represents a closed interval.

s(v) = start of v’s range. e(v) = end of v’s range. s(v) < e(v). s(v) and e(v) are integers. Root range = [1,n].

• e(v) = s(v) + 1 => v is a leaf node (unit interval).• e(v) > s(v) + 1 =>

Left child range is [s(v), (s(v) + e(v))/2]. Right child range is [(s(v) + e(v))/2, e(v)].

Page 5: Segment Trees

Example – Root range = [1,13] 1,13

1,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

Cream colored boxes are leaves/unit intervals.

Page 6: Segment Trees

Store Interval [3,11] 1,13

1,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

Unit intervals of [3,11] highlighted.

Each interval [i,j], i < j, is stored in one or more nodes of the segment tree.

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

Page 7: Segment Trees

Store Interval [3,11] 1,13

1,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

[3,11] is stored in node p iff all leaves in the subtree rooted at p are highlighted and no ancestor of p satisfies this property.

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

4,7 7,10

10,11

Page 8: Segment Trees

Store Interval [4,10] 1,13

1,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

Each node of a segment tree contains 0 or more intervals.

1,2 2,4

2,3

4,5 5,7

5,6 6,7

7,8 8,10 11,13

11,12 12,138,9 9,10

4,7 7,10

Page 9: Segment Trees

Which Nodes Are Stored?

Need to store only those nodes that contain intervals plus the ancestors of these nodes.

1,131,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

4,7 7,10

10,11

Page 10: Segment Trees

Segment Tree Height

Range = [1,n] => Height <= ceil(log2 (n-1)) + 1.

1,131,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

4,7 7,10

10,11

Page 11: Segment Trees

Properties

[i,j] in node v => [i,j] not in any ancestor of v .

1,131,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

4,7 7,10

10,11

Page 12: Segment Trees

Properties

[i,j] in node v => [i,j] not in sibling of v .

1,131,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

4,7 7,10

10,11

Page 13: Segment Trees

Properties

[i,j] may be in at most 2 nodes at any level.

1,131,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

4,7 7,10

10,11

Each interval is in O(log n) nodes.

Page 14: Segment Trees

Top-Down Insert — [3,11] 1,13

1,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

4,7 7,10

10,11

Page 15: Segment Trees

Top-Down Insertinsert(s, e, v){// insert [s,e] into subtree rooted at v if (s <= s(v) && e(v) <= e) add [s,e] to v; // interval spans node range else { if (s < (s(v) + e(v))/2) insert(s,e,v.leftChild); if (e > (s(v) + e(v))/2) insert(s,e,v.rightChild); }}

Page 16: Segment Trees

Complexity Of Insert 1,13

1,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

Let L and R, respectively, be the leaves for [s,s+1] and [e – 1,e].

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

10,11

Page 17: Segment Trees

Complexity Of Insert

In the worst-case, L, R, all ancestors of L and R, and possibly the other child of each of these ancestors are visited.

1,131,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

10,11

Page 18: Segment Trees

Complexity Of Insert

Complexity is O(log n).

1,131,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,103,4

10,11

Page 19: Segment Trees

Top-Down Deletedelete(s, e, v){// delete [s,e] from subtree rooted at v if (s <= s(v) && e(v) <= e) delete [s,e] from v; // interval spans node range else { if (s < (s(v) + e(v))/2) delete(s,e,v.leftChild); if (e > (s(v) + e(v))/2) delete(s,e,v.rightChild); }}

Page 20: Segment Trees

Search – [a,a+1]

• Follow the unique path from the root to the leaf node for the interval [a,a+1].

• Report all segments stored in the nodes on this unique path.

• No segment is reported twice, because no segment is stored in both a node and the ancestor of this node.

Page 21: Segment Trees

Search – [5,6]

1,131,7 7,13

1,4 4,7 7,10 10,13

1,2 2,4

2,3 3,4

4,5 5,7

5,6 6,7

7,8 8,10 10,11 11,13

11,12 12,138,9 9,10

5,6

O(log n + s), where s is the # of segments in the answer.