104
1 Robert Tremblay École Polytechnique de Montréal Colegio de Ingenieros Santiago, Chile March 18, 2014 Seismic Design of Steel Structures: North American Practice & Challenges for Industrial Buildings R. Tremblay, Polytechnique Montreal, Canada 2

Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

Embed Size (px)

Citation preview

Page 1: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

1

Robert TremblayÉcole Polytechnique de Montréal

Colegio de IngenierosSantiago, ChileMarch 18, 2014

Seismic Design of Steel Structures: North American Practice &

Challenges for Industrial Buildings

R. Tremblay, Polytechnique Montreal, Canada 2

Page 2: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

2

R. Tremblay, Polytechnique Montreal, Canada 3

RASCE/SEI 7-10

3-1/468

3-1/24-1/2

87

R. Tremblay, Polytechnique Montreal, Canada 4

Page 3: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

3

R. Tremblay, Polytechnique Montreal, Canada 5

R. Tremblay, Polytechnique Montreal, Canada 6

Page 4: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

4

• Ductile seismic design

• Braced frame systems

– Concentrically braced frames

– Eccentrically braced frames 341-10

– Buckling restrained braced frames

• Moment frames and plate wall systems

• Heavy industrial buildings: challenges

Plan

R. Tremblay, Polytechnique Montreal, Canada 7

Ductile Seismic Design

h

h

W

T = 0.38 s5% damping

Elastic

0.0 10.0 20.0 30.0 40.0

Time (s)

-0.5

0.0

0.5

ag (g)

-1.0

0.0

1.0

/ h (%)

Horizontal 90 deg.

0.0126 h-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

V / W

1.28 W

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ h (%)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

V /

W

R. Tremblay, Polytechnique Montreal, Canada 8

Page 5: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

5

Take advantage of thehigh ductility of steel

F

F

Fracture,instability,etc.

Ductileresponse

y

u

R. Tremblay, Polytechnique Montreal, Canada 9

0.0 10.0 20.0 30.0 40.0

Time (s)

-0.5

0.0

0.5

ag (g)

-1.0

0.0

1.0

/ h (%)

Horizontal 90 deg.

0.0126 h-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

V / W

1.28 W

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ h (%)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

V /

W

-1.0

0.0

1.0

/ h (%)

-0.017 h

-1.0

-0.5

0.0

0.5

1.0

V / W

0.33 W

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ h (%)

-1.0

-0.5

0.0

0.5

1.0

V /

W

h

h

h

W

T = 0.38 s5% damping

Vy = 0.25 W

Elastic

R. Tremblay, Polytechnique Montreal, Canada 10

Page 6: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

6

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

Plastic Rotation (rad.)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

M /

Mp

r

M. Englehardt Ecole Polytechnique of Montreal, 1996

Ecole Polytechnique of Montreal, 1996

R. Tremblay, Polytechnique Montreal, Canada 11

-8 -4 0 4 8

/ y

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

P / Py

HSS 102x76x6.4 - KL/r = 112

Tensionyielding (typ.)

Inelastic bucklingwith plastic hinge (typ.)

P

PPlasticHinge

+

-

+

R. Tremblay, Polytechnique Montreal, Canada 12

Page 7: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

7

h

h

W

T = 0.38 s5% damping

Vy = 0.25 W

0.0 10.0 20.0 30.0 40.0

Time (s)

-0.5

0.0

0.5

ag (g)

-1.0

0.0

1.0

/ h (%)

Horizontal 90 deg.

0.018 h-0.4

-0.2

0.0

0.2

0.4

V / W

-0.36 W -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ h (%)

-0.4

-0.2

0.0

0.2

0.4

V /

W

-1.0

0.0

1.0

/ h (%)

-0.017 h

-0.4

-0.2

0.0

0.2

0.4

V / W

0.33 W

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ h (%)

-0.4

-0.2

0.0

0.2

0.4

V /

W

h

Vy = 0.25 W

R. Tremblay, Polytechnique Montreal, Canada 13

Effects of Magnitude and Distance

0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

0.0

0.5

1.0

1.5

2.0

2.5

Sa

(g) M 7.0-7.5

10-20 km

0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

0.0

0.5

1.0

1.5

Sa

(g)

M 7.0-7.530-50 km

0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

0.0

0.4

0.8

1.2

1.6

2.0

Sa

(g) M 6.5-7.0

10-20 km

0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

0.0

0.5

1.0

Sa (

g)

M 6.5-7.030-50 km

0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

0.0

0.5

1.0

Sa

(g)

M 6.5-7.070-100 km

0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

0.0

0.5

1.0

Sa

(g) M 6.0-6.5

30-50 km

Earthquakes in California Site Class B – 5% damping

R. Tremblay, Polytechnique Montreal, Canada 14

Page 8: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

0.0

0.4

0.8

1.2

1.6

2.0

Sa (

g)

Los Angeles AreaSite Class B

M6.0 - M7.5Dist. = 10-100 km

0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

0.0

0.4

0.8

1.2

1.6

Sa (

g),

Cs

Los Angeles AreaSite Class B

Sa (Elastic)

Cs (OCBF - R = 6.0)

x 1/R

Design Spectra

& Design for Inelastic Response

R. Tremblay, Polytechnique Montreal, Canada 15

R. Tremblay, Polytechnique Montreal, Canada 16

Page 9: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

9

R. Tremblay, Polytechnique Montreal, Canada 17

Ve

RV =

Perimetermembers

RoofDiaphragm

Braceconnections

Bracingmembers

Anchor rods

Foundations

V V

Capacity Design ProcedurePoutrelle(typ.) Poutre de toit

(typ.)

Poteau(typ.)

Feuille de tablier métall ique

typ.)

Contreventement (typ.)

R. Tremblay, Polytechnique Montreal, Canada 18

Page 10: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

10

Grav.

Grav.

C

C'T

u

uy

Grav.

E

> E

> E

Grav.

Grav.

Grav.

Column designed for gravity plus expected brace tensilestrength

Gusset plates designed incompression for the expectedbrace compressive strength

2. Design other elements :

1. Select Braces:

Design for gravity + ECheck KL/r, b/t, etc. for ductile response

Gusset plate designed in tensionfor the expected brace tensilestrength

Two-Step “Capacity Design” Procedure:

R. Tremblay, Polytechnique Montreal, Canada 19

Plastic Hinge (typ.)

Shearyielding

Plastic Hinge (typ.)

Tensionyielding

Plastic HingeTension

yielding

Tensionyielding

Compressionyielding e

Plastic Hinge (typ.)

Plastic Hinge

End-plateBending

Shearyielding

Ductile Seismic Force Resisting Systems

R. Tremblay, Polytechnique Montreal, Canada 20

Page 11: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

11

AISC 360-10

ASCE 7-10

AISC 341-10

R. Tremblay, Polytechnique Montreal, Canada 21

NBCC 2010

CSA S16-09

R. Tremblay, Polytechnique Montreal, Canada 22

Page 12: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

12

Building code main objective is to protect life and prevent structural collapse under ground motions

In view of high level of ground motion considered (2% in 50 years) and the difficulty in predicting ground motions and their effects on structures …

… ductile seismic design represents an effective strategy to achieve code objectives by controlling the system response and force demand.

R. Tremblay, Polytechnique Montreal, Canada 23

Control ofLocal Buckling

R. Tremblay, Polytechnique Montreal, Canada 24

Page 13: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

13

Expected (probable)material strength

Liu, J. et al. (2007). AISC Eng.

R. Tremblay, Polytechnique Montreal, Canada 25

Concentrically Braced Frames (SCBFs)

Energy dissipated in bracing members through tensile yielding and flexural hinging

Connections and other members expected to remain essentially elastic

Tensionyielding (typ.)

Inelastic bucklingwith plastic hinge (typ.)

R. Tremblay, Polytechnique Montreal, Canada 26

Page 14: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

14

R. Tremblay, Polytechnique Montreal, Canada 27

R. Tremblay, Polytechnique Montreal, Canada 28

Page 15: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

15

R. Tremblay, Polytechnique Montreal, Canada 29

R. Tremblay, Polytechnique Montreal, Canada 30

Page 16: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

16

Rehabilitation

R. Tremblay, Polytechnique Montreal, Canada 31

Kobe 1995

R. Tremblay, Polytechnique Montreal, Canada 32

Page 17: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

17

R. Tremblay, Polytechnique Montreal, Canada 33

Northridge 1994Photos from Peter Maranian, Brandow and Associates (P. Uriz Thesis, 2005)

R. Tremblay, Polytechnique Montreal, Canada 34

Page 18: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

18

Uriz and Mahin (2004) Univ. of California, Berkeley

Fracture in1st cycle at1 ≅ 2% hs

1

2

R. Tremblay, Polytechnique Montreal, Canada 35

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ LH (%)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

P /

AgF

y

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

HSS 254 x 254 x 12

b/t = 18, KL/r = 42

R. Tremblay, Polytechnique Montreal, Canada 36

Page 19: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

19

R. Tremblay, Polytechnique Montreal, Canada 37

R. Tremblay, Polytechnique Montreal, Canada 38

Page 20: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

20

R. Tremblay, Polytechnique Montreal, Canada 39

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ LH (%)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

P /

Py

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

RHS-4KL/r = 40b0/t = 17

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ LH (%)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ LH (%)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

RHS-2KL/r = 40b0/t = 13

RHS-19KL/r = 60b0/t = 13

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ LH (%)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

P /

Py

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

CHS-1KL/r = 42b0/t = 30

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

/ LH (%)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

/ LH (%)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 / hs (%)

CHS-2KL/r = 62b0/t = 31

W-6KL/r = 67b0/t = 5.9

R. Tremblay, Polytechnique Montreal, Canada 40

Page 21: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

21

0.0 0.5 1.0 1.5 2.0 2.5

Brace Slenderness, = (Fy / Fe)0.5

0

5

10

15

20

25

Du

cti

lity

at F

ract

ure

, f

f = 2.4 + 8.3

y

-6 -4 -2 0 2 4 6

-10 -8 -6 -4 -2 0 2 4 6 8 10

.

KL/r = 93HSS 127x76x4.8

KL/r = 142HSS 76x76x4.8

f f

yy

-6 -4 -2 0 2 4 6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

P /

AgF

y

KL/r = 42HSS 254x254x12

f

R. Tremblay, Polytechnique Montreal, Canada 41

R. Tremblay, Polytechnique Montreal, Canada 42

Page 22: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

22

R. Tremblay, Polytechnique Montreal, Canada 43

W4

W6

      W4      W6‐6000

‐4000

‐2000

0

2000

4000

6000

‐3 ‐2 ‐1 0 1 2 3

Interstorey Drift Angle (%)

P (kN)

R. Tremblay, Polytechnique Montreal, Canada 44

Page 23: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

23

Design – Bracing Configuration

• Along any braced line, between 30% & 70% of lateral load is resisted by tension braces

• Tension-only braced frames not permitted

• K-bracing not permitted

R. Tremblay, Polytechnique Montreal, Canada 45

R. Tremblay, École Polytechnique of Montreal & D. Mitchell, McGill University 46

Page 24: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

24

Design – Bracing Members

• Braces must resist gravity + lateral loads

• Pn in tension and compression as per AISC 360-10

• KL/r < 200

• Section must meet seismic hd limits

• For built-up sections, individual components must meet KL/r limits and stitch subjected to shear under buckling must meet minimum shear strength

R. Tremblay, Polytechnique Montreal, Canada 47

L

L

H

N

KLout ≈ 0.9 LH

KLin ≈ 0.5 LN

KLout ≈ 0.5 LH

KLin ≈ 0.5 LN

R. Tremblay, Polytechnique Montreal, Canada 48

Page 25: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

25

R. Tremblay, Polytechnique Montreal, Canada 49

Bracing Configuration

Tension-only braced frames permitted

Bracing Members

Section must meets b/t limits that vary with KL/r

C’exp

Cexp

R. Tremblay, Polytechnique Montreal, Canada 50

Design – Expected Brace Strengths

P/P

y

Texp

Page 26: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

26

R. Tremblay, Polytechnique Montreal, Canada 51

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cu

/ A

gF

y

Cu (S16-01, n = 1.34)

Cu (AISC 1999)

0 50 100 150 200

KL/r

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

C' u

/ A

gF

y (

Du

cti

lity

= 1

.0)

Cu (S16-01, n = 1.34)

0 50 100 150 200

KL/r

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

C' u

/ A

gF

y (

Du

cti

ly =

3.0

)

Cu (S16-01, n = 1.34)

C'u (mean)

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

C' u

/ A

gF

y (

Du

ctil

ity

= 5

.0)

Cu (S16-01, n = 1.34)

C'u (mean)

R. Tremblay, Polytechnique Montreal, Canada 52

Texp = A RyFy

Cexp = A (1.12 Fcr) where Fcre = Fcr with RyFy

< A RyFy

C’exp = 0.3 Cexp

C’exp

Cexp

Texp

Page 27: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

27

Texp = A RyFy

Cexp = A (1.12 Fcr) ,Fcre = Fcr with RyFy

< A RyFy

C’exp = 0.3 Cexp

R. Tremblay, Polytechnique Montreal, Canada 53

Schimdt and Bratlett (2002)

R. Tremblay, Polytechnique Montreal, Canada 54

Page 28: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

28

R. Tremblay, Polytechnique Montreal, Canada 55

Design – Brace Connection

Must resist brace Texp & 1.1 Cexp

Must allow for ductile rotational behavior or resist 1.1 x brace expected flexural strength

R. Tremblay, Polytechnique Montreal, Canada 56

Page 29: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

29

Kobe 1995

Archambault et al. (1995)Tremblay and Bolduc (2002)

École Polytechnique,Montreal

R. Tremblay, Polytechnique Montreal, Canada 57

Yang and Mahin (2004) Univ. of California, Berkeley

R. Tremblay, Polytechnique Montreal, Canada 58

Page 30: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

30

R. Tremblay, Polytechnique Montreal, Canada 59

R. Tremblay, Polytechnique Montreal, Canada 60

Page 31: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

31

R. Tremblay, Polytechnique Montreal, Canada 61

Kobe1995

R. Tremblay, Polytechnique Montreal, Canada 62

Page 32: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

32

Sabelli (2003) Sabelli (2005)

Sabelli (2003)

R. Tremblay, Polytechnique Montreal, Canada 63

Prototype Test Specimen

Attachment to

load frame:

LW

LW

LC-C

LTS

2 t2 t

g

g

Gussetplate

Gussetplate

35O

Coverplate

Coverplate

518

2 (

min

) @

79

37

(max

)

102

290

35O

Elevation

Specimen

End Restraint

Side View

End

Hinge

R. Tremblay, Polytechnique Montreal, Canada 64

Page 33: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

33

R. Tremblay, Polytechnique Montreal, Canada 65

R. Tremblay, Polytechnique Montreal, Canada 66

Design – Columns and Beams

Must resist gravity loads plus two brace force scenarios:

• Upon first buckling & yielding (Texp & Cexp)• In post-buckling range (Texp & C’exp)

Beams in V and inverted-V bracing must be continuous between columns

Column sections must meet hd

Beam sections must meet md

Page 34: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

34

R. Tremblay, Polytechnique Montreal, Canada 67

At Buckling Post-Buckling

T T

T T

T T C’C

C’C

C’Cexp,1 exp,1

exp,2 exp,2

exp,3 exp,3 exp,3exp,3

exp,2exp,2

exp,1exp,1

F3 F3F3

F2 F2F2

F1 F1F1

W W WW W WW W W

Brace force scenarios for columns:

Northridge 1994Photos from Finley 1999(P. Uriz Thesis, 2005)

R. Tremblay, Polytechnique Montreal, Canada 68

Page 35: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

35

Taiwan 1999

R. Tremblay, Polytechnique Montreal, Canada 69

R. Tremblay, Polytechnique Montreal, Canada 70

Page 36: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

36

R. Tremblay, Polytechnique Montreal, Canada 71

At Buckling Post-Buckling

F F

F F

F FL,x L,x

L,x L,x

R,x R,x

FR,x

FR,x

C C’

C C’

C C’

C C’

T T

T T

T T

T T

exp,x+1 exp,x+1

exp,x+1 exp,x+1

exp,x exp,x

exp,x exp,x

exp,x+1 exp,x+1

exp,x+1 exp,x+1

exp,x exp,x

exp,x exp,x

1.2 w + 1.0 w 1.2 w + 1.0 w

1.2 w + 1.0 w 1.2 w + 1.0 w

D D

D D

L L

L L

Brace force scenarios for beams:

Note: Redundancy factor, ,and seismic load effectswith overstrength factor, 0,as specified in ASCE 7-10are not considered.

R. Tremblay, Polytechnique Montreal, Canada 72

SCBF

5500

EBF BRBF

2 @ 4000= 8000

[mm]ELEVATIONS

MR

F (

typ

.)

BF (typ.)

5 @ 9000 = 45 000

[mm]PLAN

300(slab edge)

5 @

90

00

= 4

5 0

00

Gravity loads: Roof: Dead = 3.2 kPa Live = 1.0 kPa Floor: Dead = 3.5 kPa Partitions = 1.0 kPa Live = 3.8 kPa Exterior walls = 1.5 kPa

Seismic Load Data (NCh433): Zone 2 Soil Type C A= 0.30 g In-plane torsion omitted

Load Combinations: 1.2D + 1.6L 1.2D + 1.0L + 1.4E 0.9D + 1.4E

Seismic weight: P = 7720 kN (Level 9) 12635 kN (Levels 2-8) 12840 kN (Level 1)

Steel: BRB cores: Fyc = 260-290 MPa Other members: Fy = 345 MPa

Page 37: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

37

R. Tremblay, Polytechnique Montreal, Canada 73

R. Tremblay, Polytechnique Montreal, Canada 74

Static method of analysis

Page 38: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

38

R. Tremblay, Polytechnique Montreal, Canada 75

Brace Design

R. Tremblay, Polytechnique Montreal, Canada 76

At Buckling

Column Design

1103

4890

4092 47492492

7916 7916

25914437

+ 1.2 x 644 (D)+ 1.0 x 372 (L)= 5893

-0.9 x 644 (D)= 1913

1103

4092

2001 4890

29072907

70077007

599

169 169169

599599 599

1692001

Page 39: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

39

R. Tremblay, Polytechnique Montreal, Canada 77

Post-Buckling

Column Design

1103

4890

1227 5136662

6085 6086

7774437

+ 1.2 x 644 (D)+ 1.0 x 372 (L)= 6280

-0.9 x 644 (D)= 82

331

1227

600 4890

29072907

70077007

856

812 812812

856856 856

812600

R. Tremblay, Polytechnique Montreal, Canada 78

At Buckling Post-Buckling

Beam Design

1103 331

4092 1227

2001 600

2001 600

1103 331

1498 1210

939 556

1498 1210

939 556

1077 842

2907 2907

7007 7007

4890 4890

4890 4890

2907 2907

-1498 -1210

-939 -556

-2800 -2565

M = 243 M = 243

M = 759 M = 3896

M = 2785 M = 3939

1498 1210

939 556

1077 842

1.2 w + 1.0 w = 8.71

1.2 w + 1.0 w = 24.0

1.2 w + 1.0 w = 24.0

1.2 w + 1.0 w = 8.71

1.2 w + 1.0 w = 24.0

1.2 w + 1.0 w = 24.0

D

D

D

u u

u u

u u

D

D

D

L

L

L

L

L

L

[kN,m]

Page 40: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

40

Consider more realistic brace KL

9000

O41.6

W610 Beam

Bolted EndPlate Connection

750 +

/-

4500

+/-60

21

Hinge

4000

R. Tremblay, Polytechnique Montreal, Canada 79

Brace sizes are reduced, increasing T*, reducing seismic loads …

T* = 0.55 s -> 0.65 sC = 0.119 -> 0.093 (22% decrease in seismic loads)

R. Tremblay, Polytechnique Montreal, Canada 80

Page 41: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

41

R. Tremblay, Polytechnique Montreal, Canada 81

SCBF

5500

2 @ 4000= 8000

Eccentrically Braced Frames

R. Tremblay, Polytechnique Montreal, Canada 82

Energy is dissipated through shear or flexurein link beams

Connections and other members (including beams outside links) expected to remain essentially elastic

Plastic Hinge (typ.)

Shearyielding

e

Page 42: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

42

R. Tremblay, Polytechnique Montreal, Canada 83

Filiatrault et al.

Residential buildingsMontrealMartoni Cyr

R. Tremblay, Polytechnique Montreal, Canada 84

Page 43: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

43

Hockey Canadian, MontrealR. Tremblay, Polytechnique Montreal, Canada 85

Wellington, New-Zealand 2013

R. Tremblay, Polytechnique Montreal, Canada 86

Page 44: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

44

Built-up rectangular tubular link beams

Contreventement non requispour le segment ductile !

Berman, J.W, and Bruneau, M. 2008. Tubular Links for Eccentrically Braced Frames I: Finite Element Parametric Study. ASCE J. Struct. Eng., Vol. 134, No. 5, pp. 692-701.

R. Tremblay, Polytechnique Montreal, Canada 87

Takanashi &Roeder1976 Roeder

1977

Kasai1986

Malley1983

Engelhardt1989

Ricles1987

System originally developed by Prof. Povov with …

+ othersR. Tremblay, Polytechnique Montreal, Canada 88

Page 45: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

45

Design – Bracing Configuration

R. Tremblay, Polytechnique Montreal, Canada 89

• Symmetrical• Pf ≅ 0 in ductile links• Pinned beam-to-column joints

• Shorter beam spans• Good clearance

Rigidconnection(typ.)

Pinned connection(typ.)

e

e

= L/ep

= L/ep

p

p

L

L

L

e

L

M

MVV

V

V = 2 M / e

M

R. Tremblay, Polytechnique Montreal, Canada 90

Design – Link BeamsResistance can be governed by shear (short links) or flexure (long links). Resistances affected by axial load:

Section must meet hd (md for flanges if e < 1.6 Mp/Vp )

e > d; upper limit on e applies in presence of axial load

Must meet limits on plastic rotation (p): from 0.02 rad for e < 1.6 Mp/Vp to 0.08 rad for e > 2.6 Mp/Vp

Need for end and intermediate stiffeners; depend on yielding mechanism & p

Page 46: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

46

R. Tremblay, Polytechnique Montreal, Canada 91

For center links (M = 0 at e/2):

e/2 e/2

M

M

V

V

M

L

L

L

L

L

For shear yielding: Vn = Vp

For flexural yielding: Vn = 2 Mp/e

e

Shorter links generally preferred:

• Higher lateral frame stiffness• Higher energy dissipation capacity• Less stringent (md for flanges)• Easier to design beams outside links

hp

s

= L/ep p ph

p

s

= L/e

p

p p

R. Tremblay, Polytechnique Montreal, Canada 92

Page 47: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

47

R. Tremblay, Polytechnique Montreal, Canada 93

Design – Adjusted link shear strength

Vadj = 1.25 RyVn (I-shaped links)= 1.40 RyVn (built-up tubular links)

May be multiplied by 0.88 for beams outside links and for columns in structures more than 3 storeys

R. Tremblay, Polytechnique Montreal, Canada 94

Design – Columns and Beams

Must resist gravity loads plus Vadj

Column sections must meet hd. Beam outside links and braces must meet md section requirements

e/2e/2 L/2- /2e

adj

adj

adj

adj

adj

beam

beam

beam

brace

col

L/2

V

V

V

V

V

P

V

M

P

P

Page 48: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

48

R. Tremblay, Polytechnique Montreal, Canada 95

Design – Columns and Beams

Must resist gravity loads plus Vadj

Column sections must meet hd. Beam outside links and braces must meet md section requirements

e/2e/2 L/2- /2e

adj

adj

adj

adj

adj

beam

beam

beam

brace

col

L/2

V

V

V

V

V

P

V

M

P

P

SCBF

5500

EBF BRBF

8 @

4

00

0 =

32

00

0

[mm]ELEVATIONS

MR

F (

typ

.)

BF (typ.)

5 @ 9000 = 45 000

[mm]PLAN

300(slab edge)

5 @

90

00

= 4

5 0

00

Gravity loads: Roof: Dead = 3.2 kPa Live = 1.0 kPa Floor: Dead = 3.5 kPa Partitions = 1.0 kPa Live = 3.8 kPa Exterior walls = 1.5 kPa

Seismic Load Data (NCh433): Zone 2 Soil Type C A= 0.30 g In-plane torsion omitted

Load Combinations: 1.2D + 1.6L 1.2D + 1.0L + 1.4E 0.9D + 1.4E

Seismic weight: P = 7720 kN (Level 9) 12635 kN (Levels 2-8) 12840 kN (Level 1)

Steel: BRB cores: Fyc = 260-290 MPa Other members: Fy = 345 MPa

R. Tremblay, Polytechnique Montreal, Canada 96

Page 49: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

49

EBFs – Modular Linkswith N. Mansour & C. Christopoulos, Univ. of Toronto

R. Tremblay, Polytechnique Montreal, Canada 97

R. Tremblay, Polytechnique Montreal, Canada 98

Page 50: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

50

R. Tremblay, Polytechnique Montreal, Canada 99

R. Tremblay, Polytechnique Montreal, Canada 100

Page 51: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

51

R. Tremblay, Polytechnique Montreal, Canada 101

102

Page 52: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

52

Repair using Self-compacting concrete(Sikacrete-08 SCC)Repair of main transverse surface

cracks using Low-viscosity injection resin (Sikadur 52)

R. Tremblay, Polytechnique Montreal, Canada 103

R. Tremblay, Polytechnique Montreal, Canada 104

Page 53: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

53

Comparisons for cycles at 0.08 rad.:

(¼’’ reinforcement plates)(3/16’’ reinforcement plates)

R. Tremblay, Polytechnique Montreal, Canada 105

R. Tremblay, Polytechnique Montreal, Canada 106

Page 54: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

54

Buckling Restrained Braced Frames

Energy dissipated in bracing members through tensile and compression axial yielding

Connections and other members expected to remain essentially elastic

P

P

PP

P

Cross-Section

SteelCore

MortarFill

SteelTube

UnbondingMaterial

R. Tremblay, Polytechnique Montreal, Canada 107

Wakabayashi et al. (1973)

Watanabe et al. (1988)

R. Tremblay, Polytechnique Montreal, Canada 108

Page 55: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

55

École Polytechnique 1998 Québec City (1999)

Buckling Restrained Braced Frames

-4.0 -2.0 0.0 2.0 4.0-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

V /

V

/

y

y

R. Tremblay, Polytechnique Montreal, Canada 109

R. Tremblay, Polytechnique Montreal, Canada 110

Page 56: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

56

Québec City (1999)

Vancouver (RJC)

Montreal (Canam)

R. Tremblay, Polytechnique Montreal, Canada 111

0 5 10 15 20 25Time (s)

-0.2

0.0

0.2

Ac

cel.

(g)

-0.8-0.40.00.40.8

R

oo

f / h

n

-0.8-0.40.00.40.8

R

oo

f / h

n

-0.8-0.40.00.40.8

R

oo

f / h

n

-20000

-10000

0

10000

20000

V B

ase

(k

N)

-20000

-10000

0

10000

20000

V B

as

e (

kN

)

-1.0 0.0 1.0

1/ hs (%)

-20000

-10000

0

10000

20000

V B

as

e (

kN

)

BRB-L

CBF

BRB-L

CBF

.

BRB-S

BRB-S

R. Tremblay, Polytechnique Montreal, Canada 112

Page 57: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

57

PP

L

EI , d

a Core

Concrete Fill r r

0

PPGap

PP

Global buckling:

Local (core) buckling:

R. Tremblay, Polytechnique Montreal, Canada 113

-10 -8 -6 -4 -2 0 2 4 6 8 10

y

-2.0

-1.0

0.0

1.0

2.0

V/V

y

All-steel BRBs

R. Tremblay, Polytechnique Montreal, Canada 114

Page 58: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

58

R. Tremblay, Polytechnique Montreal, Canada 115

Eryasar & Topkaya 2010Usami et al. 2008

R. Tremblay, Polytechnique Montreal, Canada 116

Page 59: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

59

R. Tremblay, Polytechnique Montreal, Canada 117

R. Tremblay, Polytechnique Montreal, Canada 118

Page 60: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

60

R. Tremblay, Polytechnique Montreal, Canada 119

R. Tremblay, Polytechnique Montreal, Canada 120

Page 61: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

61

http://www.corebrace.com/

http://www.starseismic.net/

http://www.unbondedbrace.com/

Specialized suppliers (U.S.)

R. Tremblay, Polytechnique Montreal, Canada 121

No special requirements (BRB have nearly symmetrical response)

May be controlled by drift limit or available BRB capacities

Design – Bracing Configuration

R. Tremblay, Polytechnique Montreal, Canada 122

Page 62: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

62

Select Ac:

BRB assumed not resist gravity loads=> required axial strength from lateral loads only

Pn = AcFyc (compression & tension) with = 0.9

Notes: use lower bound for Fyc

round-off Ac

Verify availability of BRB and test data

Determine stiffness factor KF for analysis

= KBrace / (EAc/Lc/c)

Design – BRB members

R. Tremblay, Polytechnique Montreal, Canada 123

9000

O41.64500

+/-

6021

L

L

c/c

c

4000

R. Tremblay, Polytechnique Montreal, Canada 124

Page 63: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

63

Two cyclic tests: individual BRB + sub-assemblage

Specimen Pysc within 50-120% of prototype

Specimen design, fabrication and quality control as for prototype

Test displacements based on design storey drift bm

Tests used to demonstrate performance of the member and connections and to provide design data

Qualification tests of BRBs:

R. Tremblay, Polytechnique Montreal, Canada 125

Adjusted (max) brace strengths from tests:

Tadj = AcFyc

Cadj = AcFyc

with and from C and T at the maximum testdeformations

Note: use upper bound for Fyc

Design – BRB adjusted axial strength

-8.0 -4.0 0.0 4.0 8.0 y

-2.0

-1.0

0.0

1.0

2.0

P/P

y

Tmax

Cmax

R. Tremblay, Polytechnique Montreal, Canada 126

Page 64: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

64

Must resist gravity loads plus forces induced when the braces reach their adjusted strengths

Section must meet hd (md for flanges if e < 1.6 Mp/Vp )

Design – Columns and Beams

R. Tremblay, Polytechnique Montreal, Canada 127

C

C

C

C

T C

adj

adj

adj

adj

adj adj

Beam Design

Column Design

ChevronBRB

F

F

C

C

T

T

F

F

L,x

L,x

R,x

R,x

C

C

C

C

T

T

T

T

and

adjx+1

adjx+1

adj,x

adj,x

adj,x

adj,x

u

u

u

u

adj,x

adj,x

0.9 w

1.2 w + 1.6 w

D

D L

R. Tremblay, Polytechnique Montreal, Canada 128

Page 65: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

65

• At design stage, verify:

– Range of Fyc

– Strength factors &

– Stiffness factors KF

– Py range for which test data is available

• On drawings, specify:

– Minimum Py (or Ac & Fyc), with tolerances

– Factors , and KF

– Req’d test brace axial deformations

Communication with BRB suppliers

R. Tremblay, Polytechnique Montreal, Canada 129

Fyc = 260-290 MPaKF = 1.5

R = 6.0 (as EBF)T = 0.99 sQ0 = 871 kN / Frame

BRBF

R. Tremblay, Polytechnique Montreal, Canada 130

Page 66: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

66

BRBFSCBF

R. Tremblay, Polytechnique Montreal, Canada 131

Moment Resisting Frames

Energy dissipated by plastic hinging in beams and limited shear yielding in column panel zones. Plastic hinging in columns permitted at the base and in single-storey structures.

Connections and other members expected to remain essentially elastic

R. Tremblay, Polytechnique Montreal, Canada 132

Page 67: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

67

Section must meet hd

Must resist expected shear demand upon hinging

Must be laterally braced

Design – Beams

L'

L

L' = L - 2 x - d c

w

pb

1.1 R My pb

1.1 R My pb

V = wL' / 2 + 2.2 R M / L'h y pb

Vh Vh

R. Tremblay, Polytechnique Montreal, Canada 133

Section must meet hd

Must satisfy “weak beam-strong column” criteriaexcept for:

Columns with Puc < 0.3 AcFy in single-storey buildings or at the top storey of multi-storey buildings;

Columns with Puc < 0.3 AcFy when their total shear contribution < 20% of total storey shear resistance and 33% of storey shear resistance along their MF line; or

Columns that have shear capacity to demand ratio 50% gretaer than in the storey above.

Design – Columns

R. Tremblay, Polytechnique Montreal, Canada 134

Page 68: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

68

L'

L

L' = L - 2 x - d c x + d /2c x + d /2c

w

w w

1.1 R My pb

1.1 R My pb

1.1 R My pb

1.1 R My pb

V = wL' / 2 + 2.2 R M / L'h y pb

Vh Vh

Vh

Vh

M'rc, i+1

M'rc, i

Cf, i

Cf, i+1

“Weak beam-strong column” criteria:

M*: projected at membercenter lines

R. Tremblay, Polytechnique Montreal, Canada 135

x + d /2c x + d /2c

1.1 R My pb

1.1 R My pb Vh

Vh

V

V

Must meet: t > (dz + wz)/90

Shear strength, Rn:

Design – Column panel zone

R. Tremblay, Polytechnique Montreal, Canada 136

Page 69: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

69

L/2

V

L/2

h /2s

h /2s

Design – Beam-to-column connections

Must accommodate 4% storey drift angle

Measured flexural resistance at column face at 4% storey drift angle > 80% Mpb

Performance considered as demonstrated if pre-qualified connections are used; otherwise must be demonstrated through physical cyclic testing

R. Tremblay, Polytechnique Montreal, Canada 137

http://www.aisc.org

• Design requirements

• Welding requirements

• Bolting requirements

• Requirements for 6pre-qualified connections

R. Tremblay, Polytechnique Montreal, Canada 138

Page 70: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

70

Welded Unreinforced Flange

Welded Web

Bolted End Plate

Kaiser Bolted Bracket

Bolted Flange PlateReduced Beam Section

Conxtech Conxl

R. Tremblay, Polytechnique Montreal, Canada 139

R. Tremblay, Polytechnique Montreal, Canada 140

Page 71: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

71

MRF

Example

R. Tremblay, Polytechnique Montreal, Canada 141

R. Tremblay, Polytechnique Montreal, Canada 142

Page 72: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

72

At Level 1:

M*pb = 656 + 738 = 1394 kN-m

R. Tremblay, Polytechnique Montreal, Canada 143

R. Tremblay, Polytechnique Montreal, Canada 144

Page 73: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

73

R. Tremblay, Polytechnique Montreal, Canada 145

Steel Plate Shear Walls

Energy dissipated through web plate (infill panel) yielding and plastic hinging in beams and at the base of columns

Connections and other members expected to remain essentially elastic

R. Tremblay, Polytechnique Montreal, Canada 146

Page 74: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

74

ING St-HyacintheQuirion Metal

R. Tremblay, Polytechnique Montreal, Canada 147

Louis Crépeault Groupe Technika R. Tremblay, Polytechnique Montreal, Canada 148

Page 75: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

75

University of Alberta (1997)

R. Tremblay, Polytechnique Montreal, Canada 149

Work by Bruneau, Tsai et al.

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Interstory Drift (%)

Ba

se S

hea

r F

orc

e (k

N)

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Interstory Drift (%)

2F

Sh

ea

r F

orc

e (

kN

)

R. Tremblay, Polytechnique Montreal, Canada 150

Page 76: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

76

MF + web plate

V

+ ==

mf

wV

V

Distribution of Vx from analysis

Infill panel designed for 100% Vx

Beams Mpb such that VMF = 2 Mpb/hs > 0.25 Vx

R. Tremblay, Polytechnique Montreal, Canada 151

Design of web plate

R. Tremblay, Polytechnique Montreal, Canada 152

Page 77: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

77

M' M'

M'

V

V

V

C C F

C

q

h

h

i

i+1 i

w,i yi2 2

i+1

i

i+1

ipb,i

pb,i

pb,i

b,ib,i

r,i

br,i

br,i

c

c

b,i

bl,i

b,i

L - 2 x - d

x + d /2

C (T h sin ) (T h sin ) ] = [ + / 2

T = t F

(T sin )(T cos )

(T cos ) (T sin )

i+1i+1

i i

L

Design of beams (HBE)and columns (VBE)

R. Tremblay, Polytechnique Montreal, Canada 153

Beam-to-Column Connections

M'

M'

Beam

V

V

PP

q

i

i+1

i

pbr,i

pbl,i

br,i

br,i

c

bl,i

bl,i

L - 2 x - d

i+1

i

Columns:Class 1, W Shapes

Beams:Class 1 or 2

CP groove weldsBacking bar removedRun-off tabs removedReinforcing fillet weldsTr = 60% Tr in Cl. 21.3

Type LD MRF

R. Tremblay, Polytechnique Montreal, Canada 154

Page 78: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

78

Corner cut-outs

Vian, D. and Bruneau, M. 2004. Testing of Special LYS Steel Plate Shear walls. Proc. 13th WCEE,

Vancouver, BC. Paper No. 978.

Purba, R. and Bruneau, M. 2007. Design Recommendations for Perforated Steel Plate Shear Walls. Report MCEER-07-0011, SUNY Buffalo, NY.

R. Tremblay, Polytechnique Montreal, Canada 155

Berman, J.W. and Bruneau, M. 2005. Experimental Investigation of Light-Gauge Steel Plate ShearWalls. ASCE J. of Struct. Eng., 131, 2, 259-267.

Optimization of infill plates

Use of thin infill plates

0.9 mm thick ASTM A1008 (cold-rolled, carbon, commercial steel sheet)

R. Tremblay, Polytechnique Montreal, Canada 156

Page 79: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

79

Perforated infill plates

Vian, D. and Bruneau, M. 2004. Testing of Special LYS Steel Plate Shear walls. Proc. 13th WCEE,

Vancouver, BC. Paper No. 978.

Purba, R. and Bruneau, M. 2007. Design Recommendations for Perforated Steel Plate Shear Walls. Report MCEER-07-0011, SUNY Buffalo, NY.

R. Tremblay, Polytechnique Montreal, Canada 157

Perforation(typ.)

V

D

* D * D + 0.7 S< <

D / S > 0.6

diag

diag

*

V> 4 rows

iL

> 4 rows

4545oo

diag

diag

S

S

R. Tremblay, Polytechnique Montreal, Canada 158

Page 80: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

80

R. Tremblay, Polytechnique Montreal, Canada 159

R. Tremblay, Polytechnique Montreal, Canada 160

Page 81: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

81

R. Tremblay, Polytechnique Montreal, Canada 161

Warning!

Only basic design requirements have been discussed; several other requirements must be applied including those related to loads and load combinations, demand critical welds, protected zones, bracing, quality control, etc.

Only the systems designed and detailed for high ductility have been introduced; provisions also exist for other systems exhibiting moderate and limited ductility that may be more appropriate for some applications.

R. Tremblay, Polytechnique Montreal 162

Page 82: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

82

Bruneau, M., Sabelli, R., and Uang C.-M. (2003) Ductile Design of Steel Structures, 2nd

ed., Wiley

AISC. (2013) Seismic Design Manual, 2nd ed., AISC

Filiatrault, A., Tremblay, R., Christopoulos, C., Foltz, B., and Pettinga, D. (2013)Elements of Earthquake Engineering and Structural Dynamics, 3rd ed.,Presses Internationales Polytechnique (PIP)

R. Tremblay, Polytechnique Montreal 163

R. Tremblay, Polytechnique Montreal, Canada 164

Page 83: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

83

R. Tremblay, Polytechnique Montreal, Canada 165

Seismic Design of Heavy Industrial Buildings : Challenges

R. Tremblay, Polytechnique Montreal, Canada 166

Page 84: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

84

• Structures are not buildings:– Irregular structures with heavy point masses and loads

and low damping

– Design is process driven and structure will likely be modified to accommodate changes to the process

– Equipment may interact with the structure

– …

• Structures may have limited redundancy

• Damage under severe earthquakes must be limited:

– Structures may contain hazardous material

– No or short downtimes

• Application of ductile seismic systems not practical, often impossible

• Current building code provisions not suitable

Observations / Issues:

R. Tremblay, Polytechnique Montreal, Canada 167

1. Simple code provisions to control inelastic demand: low R factors , use of dynamic analysis, etc.

2. Use of ductile anchorage systems with minimum stretch lengths in combination with shear keys

3. Use ductile fuses in key structural elements to control the force demand

4. Where applicable, use sliding or rocking systems to control input

Possible avenues:

Above avenues are listed in order of ease of implementation implementation and flexibility for future process changes;

however, the latest ones could be more effective

Ductility (or alternative similar approach) needed to accommodate uncertainty in ground motions and seismic response

R. Tremblay, Polytechnique Montreal, Canada 168

Page 85: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

85

In Canada, industrial structures are buildings and National Building Code (NBCC) applies.

New Annex proposed for inclusion in CSA S16-14 and which would be referenced in NBCC 2015:

R. Tremblay, Polytechnique Montreal, Canada 169

1. Demand prediction from RS analysis

2. Use/design of ductile anchorage

3. Ductile structural fuses

4. Multi-tiered braced frames

Recent related research work:

R. Tremblay, Polytechnique Montreal, Canada 170

Page 86: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

86

Demand Prediction from RS Analysis

R. Tremblay, Polytechnique Montreal, Canada 171

• Plan dimensions: 36 m x 60 m x 40 m

• Heavy equipment, including 1200t & 750t tanks

• Irregularities in mass and stiffness

• Montreal Site Class C

• Static, Response Spectrum & Linear response history analyses

R. Tremblay, Polytechnique Montreal, Canada 172

Page 87: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

87

Structure has a large number of contributing modes

R. Tremblay, Polytechnique Montreal, Canada 173

0

20

40

60

80

100

120

140

Dis

pla

cem

ent (

mm

)

Level

STAT-CNBCSTAT-ASCESPECTRALETH-MÉDIANETH-84e CEN

R. Tremblay, Polytechnique Montreal, Canada 174

Page 88: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

88

Use & Design of Ductile Anchors

22 4

00

16 8

00

5600

25 000 1675 1675

2 x 40t cranes

 

3 sites: Montreal, Vancouver & Seattle

Seismic force demand from linear response history analysis

Ductile anchors at column bases

R. Tremblay, Polytechnique Montreal, Canada 175

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Strength ( = 1)

Strength ( = -1)

Stability ( = 1)

Stability ( = -1)

P/RyPy

M/RyMp

R. Tremblay, Polytechnique Montreal, Canada 176

Page 89: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

89

Elastic time history analysis

0.71

%

0.70

%

0.67

%

0.87

%

0.67

%

0.66

%

0.63

%

0.81

%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

STAT SPEC TH-MedTH-84th

c/h

,

r/h (%

)

Analysis method

Crane levelRoof level

0.44

0.37

0.51

0.42

0.42

0.52

0.0

0.2

0.4

0.6

STAT SPEC TH-Med TH-84th

Acc

eler

atio

n (g

)

Analysis method

Crane levelRoof level

n.a. 120%

121%

115%

149%

107%

106%

102%

120%

0%

50%

100%

150%

STAT SPEC TH-Med TH-84th

Stre

ss R

atio

(%)

Analysis method

Ext. base col.

Top column

Seattle (Site Class D)

0.46

0.44

0.57

0.53

0.52

0.72

0.0

0.2

0.4

0.6

0.8

STAT SPEC TH-Med TH-84th

Acc

eler

atio

n (g

)

Analysis method

)

Crane levelRoof level

n.a.1.00

%

0.88

%

0.78

%

1.01

%

0.91

%

0.79

%

0.70

%

0.93

%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

STAT SPEC TH-MedTH-84th

c/h

,

r/h (%

)

Analysis method

)

Crane levelRoof level

Vancouver (Site Class C)

160%

142%

115%

156%

94%

86%

76%

93%

0%

50%

100%

150%

200%

STAT SPEC TH-Med TH-84th

Stre

ss R

atio

(%)

Analysis method

)

Ext. base col.

Top column

R. Tremblay, Polytechnique Montreal, Canada 177

Ductile anchorage at column bases

total = e + i

e = total/Ri = total/(1 ‐ R)

e i

total = e + i

e = total/Ri = total/(1 ‐ R)i =  x H/h

= i x h/H

L = / = /0.03

H

h

e i

,

verticalfuse

sh y fuse

FA

R F

R. Tremblay, Polytechnique Montreal, Canada 178

Page 90: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

90

 

Anchor rodSpring for stability of analysis

 

1

2 3

4

5

6

7 8

Inelastic time history analysis

R. Tremblay, Polytechnique Montreal, Canada 179

R. Tremblay, Polytechnique Montreal, Canada 180

Page 91: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

91

1.40%

1.56%

1.14%

1.77%

1.24%

1.38%

1.14%

1.77%

0.0%

0.5%

1.0%

1.5%

2.0%

TH-MÉD TH-84e CEN TH-MÉD TH-84e CEN

c/h

, r

/h (

%)

Crane levelRoof level

With anchor yielding

Without anchor yielding

R. Tremblay, Polytechnique Montreal, Canada 181

NCh2369 (2003)

Is 8db or 250 mm suitable for all applications?

R. Tremblay, Polytechnique Montreal, Canada 182

Page 92: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

92

R. Tremblay, Polytechnique Montreal, Canada 183

Other buildings to be examined

HeadFrame (Mining)

Chemical Industry

R. Tremblay, Polytechnique Montreal, Canada 184

Page 93: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

93

Conveyor Towers

Pipe Racks

R. Tremblay, Polytechnique Montreal, Canada 185

Tank Supporting Structures

R. Tremblay, Polytechnique Montreal, Canada 186

Page 94: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

94

Ductile

Structural

Fuses

R. Tremblay, Polytechnique Montreal, Canada 187

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

/ h (%)

-0.5

0.0

0.5

1.0

1.5

V /

Vy

Brace Fuse Test 3CTWithout Fuse

With Fuse

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

/ h (%)

-0.5

0.0

0.5

1.0

1.5

V /

Vy

Brace Fuse Test 4CTWithout Fuse

With Fuse

HS 102x102x4.8

280

200

200

40(typ.)

25.4 bolts@ 80x80 (typ.)

133

133271

64 hole(4 sides)

64 x 335 slotted hole(4 sides)

PL 6x63x250(2 sides)1

4

3

R. Tremblay, Polytechnique Montreal, Canada 188

Page 95: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

95

Fuses forHSS braces

P

P

P

P

C

C

C

C

T

T

T

T

C

C

C

C

T

T

T

T

T

L

L

L

T

C

F

F

c

C

u

uF

u

u

u

uF

uF

u

f

f

f

f

f

f

f

f

Section A

A

Steel Core

Mortar Fill

Steel Tube

T

C

C/TC/T

R. Tremblay, Polytechnique Montreal, Canada 189

0 5 10 15 20

Time (s)

-1.0

0.0

1.0

/

hn (

%)

Without Brace FusesWith Brace Fuses

-0.2

0

0.2

ag (

g)

M7.0 1989 Loma PrietaStandford Univ. 360o

-2.0 -1.0 0.0 1.0 2.0

/ y

-1.0

-0.5

0.0

0.5

1.0

P /

Tu

-1.0 -0.5 0.0 0.5 1.0

B / hn (%)

-0.5

0.0

0.5

V /

W

Without Brace Fuses

With Brace Fuses

V NBCC

V NBCC

R. Tremblay, Polytechnique Montreal, Canada 190

Page 96: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

96

L

b

Angle withreduced section

Cut inHSS

HSS brace

Bucklingrestraining box

L Lf

f

t w

Typ.

A

R. Tremblay, Polytechnique Montreal, Canada 191

1000 kNDynamicactuator

3.75

m

Loadingarm

W36

0x34

7 (t

yp.)

W310x179 (typ.)

Horizontalreaction block

6.0 m

Bracestudied

Bracefuse

Frame support(typ.)

Pin(typ.)

Pin(typ.)

R. Tremblay, Polytechnique Montreal, Canada 192

Page 97: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

97

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

/ h (%)

-0.5

0.0

0.5

1.0

1.5

V /

Vy

Brace Fuse Test 5CCWithout Fuse

With Fuse

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

/ h (%)

-0.5

0.0

0.5

1.0

1.5

V /

Vy

Brace Fuse Test 6CTWithout Fuse

With Fuse

280

280

40(typ.)

25.4 bolts@ 80x80 (typ.)

1034

Cut

BraceFuse

PL 6x63x250(2 sides)1

5-6

R. Tremblay, Polytechnique Montreal, Canada 193

R. Tremblay, Polytechnique Montreal, Canada 194

Page 98: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

98

R. Tremblay, Polytechnique Montreal, Canada 195

Fuses in W-Shapes (Canam Group, Montreal)

R. Tremblay, Polytechnique Montreal, Canada 196

Page 99: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

99

R. Tremblay, Polytechnique Montreal, Canada 197

R. Tremblay, Polytechnique Montreal, Canada 198

Page 100: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

100

R. Tremblay, Polytechnique Montreal, Canada 199

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

/ hs

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

P /

AF

y

Design

Design

Cu

Tu

Test 1 - LF/LH = 0.11

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

/ hs

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

P /

AF

y

Design

Design

Cu

Tu

Test 3 - LF/LH = 0.07

R. Tremblay, Polytechnique Montreal, Canada 200

Page 101: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

101

Multi-Tiered Braced Frames

R. Tremblay, Polytechnique Montreal, Canada 201

= 6.8

= 1.6

= 4.2

0.0 5.0 10.0 15.0 20.0Time (s)

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

Dri

ft (

% h

n)

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

Dri

ft (

% h

n)

Drift at h = 10.0 mDrift at h = 6.8 m

-1.0

-0.5

0.0

0.5

1.0

Ac

cel.

(g)

X-braced CBF vs Multi-tiered CBFs

R. Tremblay, Polytechnique Montreal, Canada 202

Page 102: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

102

2-tiered CBFsDesigned in accordance with AISC 341-10SCBF – R = 6.0Los Angeles, CA - Site class D

Design Storey Drift (Cd∆/H) = 0.86% < 2%

Braces: HSS 102x102x6.4Columns: W310x174

Strut: W250x58

R. Tremblay, Polytechnique Montreal, Canada 203

R. Tremblay, Polytechnique Montreal, Canada 204

Page 103: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

103

Design Storey (Cd∆)

1

2

Frame LateralDeformation

Column Shear &Bending Moment

Member Forces(axial loads in columns not shown)

u1

u2 u2

u1

1

c1c1

c2 c2

c1c1

c1c1

T

T C

C’

VV

V V

MM

M M

H

2

c1

c2

c1

H

M

M

V

V

Vc c

1

2

R. Tremblay, Polytechnique Montreal, Canada 205

R. Tremblay, Polytechnique Montreal, Canada 206

Page 104: Seismic Design of Steel Structures: North ... - ICHA.clicha.cl/wp-content/uploads/2014/03/icha_presentacion_robert... · Seismic Design of Steel Structures: North American Practice

104

Conclusions

• Design provisions to achieve ductile seismic performance for building steel structures are now available for application in practice

• Design objective is to prevent structural collapse and structural damage & residual deformations are expected

• Some issues still need to be addressed

• Application of this design approach not suitable for heavy industrial applications; specific design provisions needed for these structures

R. Tremblay, Polytechnique Montreal, Canada 207