62
1 Semitool Confidential Semitool Confidential Semitool Confidential Semitool Confidential Copper Damascene Plating 1/5/06 Brandon Brooks Process Development Engineer

Semitool Confidential

Embed Size (px)

DESCRIPTION

Copper Damascene Plating 1/5/06 Brandon Brooks Process Development Engineer. Semitool Confidential. Outline Why Cu Interconnects? Damascene Process Flow Parameters Affecting Cu Interconnects Backside Clean and Bevel Etch. Damascene Plating?. Why Cu Interconnects?. Best!. Al. Cu. - PowerPoint PPT Presentation

Citation preview

Page 1: Semitool Confidential

1Semitool ConfidentialSemitool ConfidentialSemitool ConfidentialSemitool Confidential

Copper Damascene Plating

1/5/06

Brandon BrooksProcess Development Engineer

Page 2: Semitool Confidential

2Semitool ConfidentialSemitool Confidential

Outline

•Why Cu Interconnects?

•Damascene Process Flow

•Parameters Affecting Cu Interconnects

•Backside Clean and Bevel Etch

Page 3: Semitool Confidential

3Semitool ConfidentialSemitool Confidential

Damascene Plating?

Page 4: Semitool Confidential

4Semitool ConfidentialSemitool Confidential

Why Cu Interconnects?

Al Cu W

Melting Pt (°C) 660 1,083 3,410

Oxidation in Air Rapid; Self-Sealing

Slow; Not Self-Sealing

Inert

Resistivity (m-cm)

Crystalline 2.82 1.77 5.6

As Deposited 3.0-3.3* 1.8-2.0 8-11

Self-Diffusion Coefficient (cm2s-1) @ 100 °C 2.1·10-20 2.1·10-30

Coefficient of Thermal Expansion (Unit/°C)

24·10-6 17·10-6 4.3·10-6

* Alloy (Si, Cu)

Resistivity Melting PointThermal Expansion Electromigration

Al

Resistivity Melting PointThermal Expansion Electromigration

Cu

Best!

Interconnect Metal Properties

Page 5: Semitool Confidential

5Semitool ConfidentialSemitool Confidential

Why Cu Interconnects?

Al Cu Ag

Etch Properties Cl & Br Plasmas Cl & Br Plasmas F & Cl Plasmas

Etch Rate (Å/min)

5,000 500 5,000

Cu has a very slow etch rate•Cu halides are solid at normal temperatures

Changing from Al to Cu interconnects requires new process flow•Enter Damascene plating

Interconnect Metal Properties

Page 6: Semitool Confidential

6Semitool ConfidentialSemitool Confidential

Damascene Process Flow

Typical Damascene Process Flow

1. Dielectric Deposition2. Photoresist Deposition3. UV Exposure4. Develop Photoresist5. Etch Dielectric6. Remove Photoresist7. Barrier Deposition8. Seed Layer Deposition9. Electrochemical Deposition (ECD)10. Backside Clean and Bevel Etch11. Anneal12. Chemical Mechanical Polish (CMP)13. Repeat Steps 1-10 for Every Metal Layer

Today’s Main Topics

Page 7: Semitool Confidential

7Semitool ConfidentialSemitool Confidential

Damascene Process Flow

Page 8: Semitool Confidential

8Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters

Key Factors Affecting Cu Interconnect Performance

1. Gap-Fill2. CD Uniformity3. Overburden4. Anneal

AMD’s 9 Cu Levels

Page 9: Semitool Confidential

9Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Gap-Fill

Key Parameters for Gap-Fill

1. Seed and Barrier Layers1. Uniformity2. Thickness

2. Plating Recipe1. Hot Start (Initiation)2. Fill Current Density3. Waveform

3. Plating Chemistry1. Inorganic2. Organic

0.12m, 8.3:1AR Trenches

Page 10: Semitool Confidential

10Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Gap-Fill

Physical Vapor Deposition (PVD) Effects

Seed and Barrier Layers

Page 11: Semitool Confidential

11Semitool ConfidentialSemitool Confidential

Edge Shadowing Optimized Seed Layer

Copper Interconnect Parameters: Gap-Fill

Seed and Barrier Layer Uniformity

Page 12: Semitool Confidential

12Semitool ConfidentialSemitool Confidential

1500Å Total Seed Thickness 2000Å Total Seed Thickness

0.30micron, 4.8:1 AR Vias 0.30micron, 4.8:1 AR Vias

Copper Interconnect Parameters: Gap-Fill

Seed and Barrier Layer Thickness

Page 13: Semitool Confidential

13Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Gap-Fill

Plating Recipe Hot Start

0.180 m Line Width Trenches48 Coulombs ECD

No Hot Start 2V Hot Start

2X Fill Rate on the 2V Hot Start

Page 14: Semitool Confidential

14Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Gap-Fill

Plating Recipe Current Density

Current too Low

Current too High

The Effect of Current Density upon Gap Fill

Bad

Good

0.35μm, 4.3:1 AR Vias 0.35μm, 4.3:1 AR Vias

0.18μm, 5.1:1 AR Trench 0.18μm, 5.1:1 AR Trench

Gap

Fill

Current Density

Low High

Optimum Fillfor feature D

Optimum Current

Optimum Current

Page 15: Semitool Confidential

15Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Gap-Fill

Plating Recipe Waveform

Waveform Cu Diffusion Additive Adsorption Bottom Up Fill

Direct Current (DC)

- + 0

Pulse DC + - 0

Pulse Reverse (PR) + - 0

DC plating provides better additive adsorption

Pulsed plating provides better Cu diffusion

Page 16: Semitool Confidential

16Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Gap-Fill

Plating Chemistry

Inorganic Components

1. Copper Sulfate (CuSO4)2. Hydrochloric Acid (HCl)3. Sulfuric Acid (H2SO4)

Organic Components

1. Suppressor (PEG)2. Accelerator (SPS)3. Leveler (Amine)

Page 17: Semitool Confidential

17Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Gap-Fill

Inorganic Plating Chemistry

Copper Effect on Gap Fill

High Copper

Low Copper

Page 18: Semitool Confidential

18Semitool ConfidentialSemitool Confidential

Inorganic Plating Chemistry

Copper Interconnect Parameters: Gap-Fill

Chloride Effect on Gap-Fill

Cl- Effect on Suppressor

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200

Cl Concentration ppm

CV

S S

trip

pin

gP

ea

k A

rea

(m

C)

Bad

Good

HighLow

Ga

p F

ill

Chloride (ppm)

Page 19: Semitool Confidential

19Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Gap-Fill

Inorganic Plating Chemistry

Bad

Good

HighLow

Ga

p F

ill

Acid (g/l)

pH 3

pH 2

Acid Effect on Gap Fill

pH 2

Page 20: Semitool Confidential

20Semitool ConfidentialSemitool Confidential

• Accelerator– Catalytic effect

– Requires very small amount of Cl-

– Increased current for a given potential

• Suppressor– Suppresses deposition

– Requires Cl- to adsorb onto copper surface

– Decreases current for a given potential

• Leveler– Suppresses deposition at high current density areas

– Very low concentration (diffusion limited)

Copper Interconnect Parameters: Gap-Fill

Organic Plating Chemistry

Organic Effect on Gap Fill

Page 21: Semitool Confidential

21Semitool ConfidentialSemitool Confidential

A

C

B

A = VMS

B = VMS + Suppressor

C = VMS + Sup. & Accel.

I

V

Cyclic Voltammetric Stripping Analysis (CVS)

Copper Interconnect Parameters: Gap-Fill

Organic Plating Chemistry

Plating Region

Stripping Region

Page 22: Semitool Confidential

22Semitool ConfidentialSemitool Confidential

0

0.1

0.2

0.3

0 0.01 0.02 0.03 0.04 0.05

Suppressor Concentration

80 g/l

Low Acid (10g/l)

High Acid 150 g/l

0

5

10

15

20

25

30

0 1 2 3 4 5

Accelerator Concentration

80 g/l H2SO4

High Acid 150 g/l

Wors

eB

ett

er

Str

ippi

ng A

rea

Wors

eB

ett

er

Str

ipp

ing

Are

aCopper Interconnect Parameters: Gap-Fill

Organic Plating Chemistry

Page 23: Semitool Confidential

23Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Gap-Fill

Organic Plating Chemistry

Page 24: Semitool Confidential

24Semitool ConfidentialSemitool Confidential

Organic Plating Chemistry

Copper Interconnect Parameters: Gap-Fill

Page 25: Semitool Confidential

25Semitool ConfidentialSemitool Confidential

Organic Plating Chemistry

Copper Interconnect Parameters: Gap-Fill

Page 26: Semitool Confidential

26Semitool ConfidentialSemitool Confidential

Organic Plating Chemistry

Copper Interconnect Parameters: Gap-Fill

Page 27: Semitool Confidential

27Semitool ConfidentialSemitool Confidential

Organic Plating Chemistry

Copper Interconnect Parameters: Gap-Fill

Page 28: Semitool Confidential

28Semitool ConfidentialSemitool Confidential

Organic Plating Chemistry

Copper Interconnect Parameters: Gap-Fill

Page 29: Semitool Confidential

29Semitool ConfidentialSemitool Confidential

Key Parameters for Current Density Uniformity

1. Chemistry1. High Acid2. Low Acid

2. CFD Reactor1. Electric Field Control

Intel: 8 Cu Levels

Copper Interconnect Parameters: CD Uniformity

Page 30: Semitool Confidential

30Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: CD Uniformity

+

Cathode(Reduction)

Current Path

Anode(Oxidation)

Cu2++2e- Cu0Cu0 Cu2++2e-

e- e-e- e-

Cu2+

V0

Electrolyte

Cu2+

Generalized Electrochemical SchematicElectrolytic Copper Deposition

Ammeter

Surface Area

Current Density = Current Surf. Area

Page 31: Semitool Confidential

31Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: CD Uniformity

= Surface Area

Relec 1/Bath Conductivity

Rcat 1/Seed Thickness

Rcat Wafer Radius

Relec

Ranode= 0

V+

Electrolyte

Cathode(Thin)

Anode(Thick)

Rcat

Relec

elecedge R

VI

)R(R

VI

cateleccenter

= Area

Page 32: Semitool Confidential

32Semitool ConfidentialSemitool Confidential

Relec

Ranode= 0

V+

Electrolyte

Cathode (Thin)

Anode (Thick)

Rcat

Relec

Edge I Loop

Center I Loop

)( catelecelec

catECcenteredge RRR

VRIII

How To Make ECI Small?

VCurrent DensityThroughput

Rcat

Seed Layer ThicknessWafer Radius

Relec

Bath Conductivity

Copper Interconnect Parameters: CD Uniformity

Page 33: Semitool Confidential

33Semitool ConfidentialSemitool Confidential

Conductivity at Various Bath ConditionsConductivity at Various Bath Conditions

0

100

200

300

400

500

600

Con

du

ctiv

ity

(mS

/cm

)

175 g/l H2SO4

17 g/l Cu

80 g/l H2SO4

50 g/l Cu

10 g/l H2SO4

50 g/l Cu

“Low” Acid

“High” Acid

70

247

511

Copper Interconnect Parameters: CD Uniformity

Page 34: Semitool Confidential

34Semitool ConfidentialSemitool Confidential

0sec

5sec

15sec

30sec

60sec

120sec

Cu

rren

t D

ensi

ty

Wafer Radius

Plating Time

(0,0)

Copper Interconnect Parameters: CD Uniformity

Terminal Effect

Page 35: Semitool Confidential

35Semitool ConfidentialSemitool Confidential

Current too Low

Current too High

The Effect of Current Density upon Gap FillThe Effect of Current Density upon Gap Fill

Bad

Good

0.35mm, 4.3:1 AR Vias 0.35mm, 4.3:1 AR Vias

0.18mm, 5.1:1 AR Trench 0.18mm, 5.1:1 AR Trench

Gap

Fill

Current Density

Low High

Optimum Fillfor feature D

Optimum Current

Optimum Current

Copper Interconnect Parameters: CD Uniformity

Page 36: Semitool Confidential

36Semitool ConfidentialSemitool Confidential

Are the center and edge receiving the same process?

Copper Interconnect Parameters: CD Uniformity

Page 37: Semitool Confidential

37Semitool ConfidentialSemitool Confidential

Cathode

Anode2

V1+

V2+

Anode1

Advanced Reactor Design: Multiple Anodes

Robust system that can handle multiple chemistries

Built for the future with the ability to handle shrinking die size

Cost effective ability to handle increasing wafer diameters

Copper Interconnect Parameters: CD Uniformity

0 ECIV1 and V2 adjusted until Independent of Rc and Relec

Page 38: Semitool Confidential

38Semitool ConfidentialSemitool Confidential

Dielectric

Electrolyte Virtual Anodes

Physical Anodes

WaferConventional Reactor CFD Reactor

Electrolyte

Copper Interconnect Parameters: CD Uniformity

Page 39: Semitool Confidential

39Semitool ConfidentialSemitool Confidential

ConcentricAnnular Anodes

ElectrolyteBubble Trap

Rotating Wafer

Dielectric

Flow Inlet

Overflow

Virtual Anode

Copper Interconnect Parameters: CD Uniformity

Page 40: Semitool Confidential

40Semitool ConfidentialSemitool Confidential

Superposition of Electric Field

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120

Wafer Diameter (mm)

Nor

mal

ized

Vol

tage

at C

atho

de (

V)Anode 1

Anode 2Anode 3

Anode 4

Summed Field

Copper Interconnect Parameters: CD Uniformity

Page 41: Semitool Confidential

41Semitool ConfidentialSemitool Confidential

100 nm Seed layer, 1100 nm Seed layer, 1m depositionm depositionH

igh

Aci

d51

1mS/

cmL

ow A

cid

70m

S/c

m

Conventional SEMITOOL - CFD

14

18

22

26

30

34

Cu

rren

t D

ensi

ty (

mA

/cm

^2) 0sec

5sec

15sec30sec60sec120sec

133%

14

18

22

26

30

34

0 25 50 75 100 125 150

Cu

rren

t D

ensi

ty (

mA

/cm

^2)

0sec

120sec

20%

<5%

0 25 50 75 100 125 150

<5%

Wafer Radius (mm)

Copper Interconnect Parameters: CD Uniformity

Page 42: Semitool Confidential

42Semitool ConfidentialSemitool Confidential

Dynamic Compensation for Constant Current DensityDynamic Compensation for Constant Current Density

1.0

1.5

2.0

2.5

0 20 40 60 80 100 120Deposition Time (sec)

An

ode

Cu

rren

t (A

mp

s)

Anode 2

Anode 3Anode 1

Anode 4

Copper Interconnect Parameters: CD Uniformity

Page 43: Semitool Confidential

43Semitool ConfidentialSemitool Confidential

Key Parameters for Overburden

A. Local Overburden (Overplating) – Fill Step1. Chemistry

1. 3-Component2. 2-Component

2. Waveform1. Direct Current2. Pulse Reverse

B. Global Overburden – Cap Step1. Chemistry

1. High Acid2. Low Acid

2. CFD Reactor

Copper Interconnect Parameters: Overburden

Page 44: Semitool Confidential

44Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Local Overburden

Direct Current POR

3-Component Organic Package

Moderate Acid Electrolyte

Pulse Reverse POR 2-Component Organic Package

High Acid Electrolyte

Step Up No Step Up

Page 45: Semitool Confidential

45Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Local Overburden

Insufficient Leveler

Planar Deposition

Optimized Organic Conditions

Overplating

Post-CMP Residual Cu

No Post-CMP Residual Cu

Page 46: Semitool Confidential

46Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Global Overburden

-100mm 0 100-800

-600

-400

-200

0

200

400

600

800Å

Radial control of Thickness Variation (Å)

Cu

Th

ick

nes

s (Å

)

Wafer Diameter (mm)

Page 47: Semitool Confidential

47Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Global Overburden

Raider CFD Profile Before & After 30s CMP

4,000

8,000

12,000

16,000

Th

ick

ness

(A

)

POR Profile Before & After 30s CMP

4,000

8,000

12,000

16,000

Wafer Diameter

Th

ick

ness

(A

)

Early Clearing!

POR Profile before CMP

Profile after 30s CMP

Profile after 30s CMP

EdgeResidual!

CFD Profile before CMP

Uniform Post-CMP Profile

Page 48: Semitool Confidential

48Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Global Overburden

CMP Profile Matching

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

-150 -100 -50 0 50 100 150

Wafer Radius (mm)

No

rma

lize

d T

hic

kn

ess

ECD Profile CMP Profile

Page 49: Semitool Confidential

49Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Anneal

Key Parameters for Anneal1. Temperature

2. Feature Size

3. Barrier Layer

Page 50: Semitool Confidential

50Semitool ConfidentialSemitool Confidential

As Deposited

Self Annealed

Thermally Annealed

Small Grains

Large Grains

Copper Interconnect Parameters: Anneal

Effect of Temperature

Page 51: Semitool Confidential

51Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Anneal

1.0m Trenches

0.25m Trenches

Effect of Feature Size

Furnace AnnealSelf-Anneal

Page 52: Semitool Confidential

52Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Anneal

Ta Barrier Layer

TiNx Barrier Layer

•Strong Surface Interaction

•Reduced Migration

•Weak Surface Interaction

•Increased Migration

•Large Voids

Effect of Barrier Layer

Page 53: Semitool Confidential

53Semitool ConfidentialSemitool Confidential

Copper Interconnect Parameters: Anneal

Anneal Temp

Lin

e R

esis

tanc

e

Ta

TaNx

TiNx

Grain Growth

Void Formation

Optimum

Optimum Anneal Condition

Page 54: Semitool Confidential

54Semitool ConfidentialSemitool Confidential

Backside Clean and Bevel Etch

Why Backside Clean and Bevel Etch?• Cu is a highly mobile ion

• Backside contamination can have adverse effects across the fab

• Unstable films on the edge of the wafer can cause surface damage at CMP

Objective1. Remove bulk Cu on the edge of the wafer

1. Delamination

2. Flaking

3. Yield Problems

2. Remove atomic Cu on the back of the wafer1. Common Photolithography

2. Common Metrology

3. Cu ion diffusion

Page 55: Semitool Confidential

55Semitool ConfidentialSemitool Confidential

Backside Clean and Bevel Etch

Capsule 1 Chamber Cut Away

Edge Exclusion Hardware

Capsule 1 Features

1. Hardware control of bevel etch (BE)

2. 0-4mm BE edge exclusion (EE) range

3. No front side protection needed

4. BE & backside clean simultaneously

5. Clean N2 purged microenvironment

Page 56: Semitool Confidential

56Semitool ConfidentialSemitool Confidential

Backside Clean and Bevel Etch

Capsule Dynamics

WaferDevice Up

Seal

Chamber Rotation

Back Side Inlet: -Dilute Piranha Solution-DI H2O-N2

Front Side Inlet: -DI H2O-N2

Page 57: Semitool Confidential

57Semitool ConfidentialSemitool Confidential

Backside Clean and Bevel Etch

Capsule Dynamics

Seal

Chamber Rotation

Back Side Inlet: -Dilute Piranha Solution-DI H2O-N2

Front Side Inlet: -DI H2O-N2

WaferDevice Up

Page 58: Semitool Confidential

58Semitool ConfidentialSemitool Confidential

Backside Clean and Bevel Etch

A concentric 1.5mm EE BE clears the notch

Precision Control of Chemical Wrap-Around

Critical Bevel Etch Parameters1. Concentricity

2. Complete Cu Clearing

3. Clearing the Notch

Page 59: Semitool Confidential

59Semitool ConfidentialSemitool Confidential

Backside Clean and Bevel Etch

Precision Control of Concentricity

Concentricity Spec (a) ≤ 0.2mm

Page 60: Semitool Confidential

60Semitool ConfidentialSemitool Confidential

Backside Clean and Bevel Etch

E Beam Spot Magn WD 10 µm

10.0kV 2.0 3500x 17.1 STI. Bevel Etch

No Copper on Edge Exclusion Zone

No undercut

Target ECD 1.0µm

1 µm ECD Copper

1.5 mm Edge Exclusion Profilometer Reading

52º Tilt on SEM

<10 µm

Precision Control of Copper Removal

Page 61: Semitool Confidential

61Semitool ConfidentialSemitool Confidential

Why Cu Interconnects?•Resistivity•Reliability

Damascene Process Flow•Photolithography to CMP

Parameters Affecting Cu Interconnects•Gap-Fill•Current Density Uniformity•Overburden•Anneal

•Backside Clean and Bevel Etch•Bulk Cu on the Edge •Atomic Cu on the Backside

Summary

Page 62: Semitool Confidential

62Semitool ConfidentialSemitool Confidential

Acknowledgements

John Klocke – Cu Damascene Group Leader

Kevin Witt – Cu Damascene Business Development Leader

Tom Ritzdorf – Director of ECD Technology

Jake Cook – Marketing Communications

All Semitool personnel that have contributed data to this presentation