19
1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia 2 Novosibirsk State University, Novosibirsk, Russia 3 Siberian Regional Hydrometeorological Research Institute, Novosibirsk, Russia Sensitivity Operator Inverse Modeling Framework for Advection-Diffusion-Reaction Models with Heterogeneous Measurement Data Alexey Penenko 1,2 , Vladimir Penenko 1,2 , Elena Tsvetova 1 , Alexander Gochakov 3 , Elza Pyanova 1 , and Viktoriia Konopleva 1,2 vEGU, 2021 E-mail: [email protected]

Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia

2 Novosibirsk State University, Novosibirsk, Russia3 Siberian Regional Hydrometeorological Research Institute, Novosibirsk, Russia

Sensitivity Operator Inverse Modeling Framework

for Advection-Diffusion-Reaction Models with Heterogeneous Measurement Data

Alexey Penenko 1,2, Vladimir Penenko 1,2, Elena Tsvetova 1, Alexander Gochakov 3, Elza Pyanova 1, and

Viktoriia Konopleva 1,2

vEGU, 2021

E-mail: [email protected]

Page 2: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

•Unified approach to different measurement data including image-type measurement data

(large volume of data with unknown value w.r.t. the considered inverse modelling task):

•Pointwise and time-series concentrations data (in situ data)

•Concentration profiles (aircraft sensing, lidar profiles, etc).

•Satellite images of concentration fields.

Motivation

•The progress in parallel computations technologies: the algorithms should allow natural mapping to the parallel

computation architectures (ensemble algorithms, splitting, decomposition, etc.)

•Unified framework for inverse and data assimilation problems (briefly, inverse modeling problems) for non-

stationary advection-diffusion-reaction models in various applications. E.g.

•Air quality studies (environmental applications)

•Biological problems (morphogen theory & developmental biology)

•The progress in nonlinear ill-posed operator equation solution (different regularization methods, SVD,

convergence theory, etc.) and analysis methods.

2

Solve & Analyze in the same way

Combine various sources of data

Page 3: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Measurement operators

Advection-diffusion-reaction model

( )( )diag ( , , ) = ( , , ) ,ll ll

l l l l lP t t ft

r

− − + + +

yu φ φ y

0= , , = 0,l l t x

The domain

( )( )diag = , ( , ) (0, ],R

l l l l l outt T + n x

[0, ]T T =

= , ( , ) (0, ],D

l l int T xBC:

: ,Q

q

→ φ

Direct problem

operator

advection-diffusion destruction-production

= [qH +( )I φ ] I,

Inverse problem

IC:

rectangular

Given NoiseTo find

• Pointwise concentrations

• 2D images

• vertical profiles,

• etc

Model scale: 0D,1D,2D,3D 1, , cl N= - number of species

{ , , }q r y=

3

H

, :l lP

• Polynomial

• Sigmoid

functions

• Integral

Uncertainty

function

specification

Page 4: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Conventionally used to

evaluate misfit cost

function gradients

(2) (2) (2) (1) (1), , , ,[ , ] [ , ] ( , , , , ) ,yR

K t q qy

+ = + +h H φ h H φδ h φμ δ φr δ φH

Sensitivity relation

( ) = 0,T+Ψ

Lagrange type identity (sensitivity relation)

-divided difference operator

( ) ( ) ( )1 1( ( ) ) ( ( , , ) ) = ,l

l l l ldiag G tt

h

− − − +

2u μ φ φ Ψ

( ) ( ) ( )( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )1 1 1 1( , , ) , , , , , ,G t diag P t P t diag t

= + − 2 2 2 2

φ φφ φ φ φ φ φ φ φ

+ adjoint problem

boundary conditions

(( )) [ ]m mq=φ φ

Sensitivity functions

Adjoint problem: Given find:( ) ( )

, , , 1, 2,m m

m =h φ μ

Linear parametrizations: m m

m

rr = , = , [ ]m m Rm

r

h φ h

Ψ

(2) (1) = −φ φ φ

= , 1, ,m

m

t ll m MH=

=

4

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )1(2) (2) (1) (1)( , , , , ) , ; , ; ,y yK t q q t P t diag= −2 2 1 2 2 1

φ φ φ y ,y φ y ,y φ

Page 5: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Sensitivity Operator Construction

5

Page 6: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Sensitivity operator

Sensitivity relation (Lagrange type identity)

measU U

= (ξ)uGiven functions (functionals)

( )2 1 1 ( )( )[ ] [ ] [ ] [ ]UH

− = − ( ) ( ) (2) ( )φ q φ uq φ q φ q e

( )( )] [ ][ ] [Q

M

− = −(2) (1) (2) (1)(2) (1)qφ q φ q u qu qq

Image (model) to structure operator

[Dimet et al,2015]

Sensitivity operator ( ) ( )[ ][ ]

,U

R

R

MM

(2) (

(

1)

2) (1)

q q uq q

z z e

The inverse problem solution for any and satisfy( )

q q U

( ) ( )( )[ ] = [ , ] .PrU U UU

meas

H M H

− − + I φ q q q q q I

Parametric family of quasi-linear

operator equations

Parallel computation w.r.t.

U

To control the data considered and dimensionality

Idea: [Marchuk G. I., On the formulation of certain inverse problems, Dokl. Akad. Nauk SSSR, 156:3 (1964), 503–506], 6

Page 7: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Sensitivity relation based

• Coarse-fine mesh method (Sequential solution refinement with sequential adjoint problems solving) [Hasanov, A.; DuChateau, P. &

Pektas, B. An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation//

Journal of Inverse and Ill-Posed Problems, 2006 , 14 , 1-29]

• Using sensitivity function aggregates (supports, level sets, etc.): [Pudykiewicz, J. A. Application of adjoint tracer transport equations for

evaluating source parameters Atmospheric Environment, Elsevier BV, 1998, 32, 3039-3050], [Penenko, V. et al. Methods of sensitivity theory and

inverse modeling for estimation of source parameters, Future Generation Computer Systems, Elsevier BV, 2002, 18, 661-671], [Bieringer, P. E. et

al. Automated source term and wind parameter estimation for atmospheric transport and dispersion applications Atmospheric

Environment, Elsevier BV, 2015, 122, 206-219]

• Adjoint function for each measurement datum with the solution of the resulting operator equation [Marchuk G. I., On the

formulation of certain inverse problems, Dokl. Akad. Nauk SSSR, 156:3 (1964), 503–506],

• Passive tracer (linear) case: [Issartel, J.-P. Rebuilding sources of linear tracers after atmospheric concentration measurements //

Atmospheric Chemistry and Physics, Copernicus GmbH, 2003 , 3 , 2111-2125]

• Nonlinear case, pointwise sources: [Mamonov, A. V. & Tsai, Y.-H. R. Point source identification in nonlinear advection-diffusion-

reaction systems Inverse Problems, IOP Publishing, 2013 , 29 , 035009]

Cost function based

• Cost functional gradients with adjoint problem solution (single element ensemble for the discrepancy).

• Gradient computation with adjoint ensemble when adjoint is independent of direct solution [Karchevsky, A., Eurasian journal of

mathematical and computer applications, 2013 , 1 , 4-20]

• Representer method (optimality system decomposition, ensemble generated for discrepancies for each measurement data) [Bennett,

A. F. Inverse Methods in Physical Oceanography (Cambridge Monographs on Mechanics) Cambridge University Press, 1992]

Adjoint problem solution ensemblesin inverse problem algorithms

7

Page 8: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Adjoint ensemble construction

= | [0, ], [0, ], [0, ], ,x x y y t t mesU L ηθ θ θx y t

e• Fourier cos-basis

• Wavelets, curvlets, etc. [Dimet et al.,2015]

«a priori» approach – ensemble for the class of problems (smoothness)

=1

1( , , ) ( , , ) ( , , ), =

= ,

0,

Nc

k

t x i y j

x y t

l

C T t C X x C Y y le

l

2 cos , > 01( , , ) = .

1, = 0

t

C T t TT

«a posteriori» approach – ensemble for the considered problem

• «Adaptive basis»: chose elements of with maximal projections

[Penenko, A. V.; Nikolaev, S. V.; Golushko, S. K.; Romashenko, A. V. & Kirilova, I. A. Numerical Algorithms for Diffusion Coefficient Identification in Problems of Tissue Engineering //

Math. Biol. Bioinf., 2016 , 11 , 426-444 (In Russian)]

• «Informative basis»: use left singular vectors of the operator [ , ]Um

(0) (0)r r

U[ ] ,Pr

Umes

−(0)

ηθ θ θx y t

φ r I e

[Penenko, A.; Zubairova, U.; Mukatova, Z. & Nikolaev, S. Numerical algorithm for morphogen synthesis region identification with indirect image-type measurement data //

Journal of Bioinformatics and Computational Biology, World Scientific Pub Co Pte Lt, 2019 , 17 , 1940002]

(inverse source problem, 2D, components are measured )

Defined by the adjoint problem sources sets

8

Page 9: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Inversion algorithm

( )( ) ( )( ) ( )( ), [ , ] [ ,, ]]Pr [=UU

m

UU

e s

UU

a

H m Hm m − − + + − −

* **qφ q q q qq qI q q q δIq

,

= .Pr,

T T

unknowns

UUT T

mesunknowns

m mm NH I

m m m N

+

+

δq φ q

C+

-truncated SVD inversion parametrized by conditional number

, inversesource problem

, inversecoefficient problem

src t x y

unknowns

coeff

L N N NN

N

=

Newton-

Kantorovich

-type update

[ , ]Um m q q

( )unknownsN

Nonlinearity:

sequential increase of

the conditional number

Admissible solutions:

projection regularization

Noise:

discrepancy

principle

Optional monotonicity:

monotonic decrease of the

discrepancy

Theoretical foundations: [Issartel, J.-P., 2003], [Cheverda V.A., Kostin V.I., 1995], [Kaltenbacher et al, 2008],

[Vainikko, Veretennikov, 1986] 9

Page 10: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Adjoint ensemble inverse modeling framework

Inverse Problem Statement(PDE/ODE)

Adjointproblem

Lagrange-type Identity

Family of quasi-linear ill-posed operator

equations

Generalensemble

Inverse problem solution algorithm

Sensitivity function

Finite ensemble

Ill-posed nonlinear

operator equation

methods

# computation

threads &

memory available

Data assimilation mode

Sensitivity operator analysis

measUProcess model

10

«Illumination»functions

Singular spectrum

Measurement

data

specification

Uncertainty function

specification

Information quantity

Projection to the kernel

Page 11: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Heterogeneous Measurement Data

11

Page 12: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Heterogeneous measurement data

12

• «Timeseries»

• «Pointwise»

• «Integral»

• «Snapshot»

0=1

, = ( , ) ( , ) .

Nc T

l lHl

a b a t b t d dt

x x x

( )

( ) ( ) ( )( ) ( ) ( , ), 0, , , ,m m m

m measl

x t t T x l L ( ) ( ) ( ) ( )= ( , , ) ( ) ( );h C T t x x l l

− −

( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( , ), , , ,m m m m m

Tm measl

x t x t l L ( ) ( ) ( ) ( )= ( ) ( ) ( );h x x t t l l

− − −

( )

( ) ( ) ( )( ) ( ) 0( , ) , , ,

T m m m

m measl

x t dt x l L ( ) ( ) ( )= ( ) ( ).h x x l l

− −

( )

( ) ( ) ( )( ) ( ) ( , ), , 0, , ,m m m

m measlx t t l T L x ( ) ( ) ( ) ( ) ( )

= ( , , ) ( , , ) ( ) ( );x yh C X x C Y y t t l l

− −

In variational approach we sum the misfit functions

for different measurements, in the adjoint ensemble-

based approach we join the corresponding

ensembles

A. Penenko, V. Penenko, E. Tsvetova, A. Gochakov, E. Pyanova, V. Konopleva Sensitivity Operator-Based Approach to the Interpretation

of Heterogeneous Air Quality Monitoring Data // submitted

Page 13: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Specific measurement types

13

O3 Monitoring sites locations

(b): time series (red crosses),

pointwise measurements in

space and time (blue circles),

integrals over a time interval

(magenta triangles).

Pointwise (100) Time-series (60)

Integral (5) Snapshot (20x20)

3.5 day-long

summer

scenario,

source-term

uncertainty,

NOx-O3 cycle

NO Emission sources

Page 14: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

«Composite»measurements

14

Composite

Concentration field

«сcontinuation» error

Uncertainty (source-term)

identification error

Page 15: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

15

Estimating the inverse modeling result prior to solution

Inverse problem solution times measured

in direct problem solution times

Relative error vs computation time

Page 16: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Sensitivity operator analysis

16

( )( ) ( )( )M q q H I A q− = −

( )( ) ( )( )T T T TM MM M q q M MM H I A q+ +

− = −

«Illumination» function characteristics: [ ] T T

l l lE M M MM M+

=

( )1

NT T T T

l ll

M MM M diag M MM M+ +

=

=

Projector to the orthogonalcomplement of the sensitivity

operator kernel

Equivalent to the generalized Sensitivity functions

Issartel, J.-P. Emergence of a tracer source from air concentration measurements, a new strategy

for linear assimilation // Atmospheric Chemistry and Physics, 2005, 5, 249-273

( )T Tdiag M M M M+

Kappel, F. & Munir, M. Generalized sensitivity functions for multiple output systems // Journal of Inverse and Ill-posed Problems, 2017, 25

Pseudo-inverse

( )( )T TM MM M q q+

Singular spectrum decay

Page 17: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

17

Sensitivity operator analysis«Illumination»

function Reconstructed

solution (~500 iters.)

Projection of the

«Exact»

solutions to the

orthogonal

complement

of the sensitivity

operator kernel

(~1 iter.) Reconstruction error & its

predictions by projection

Singular spectrum

Page 18: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Thank you for your attention!

18

The work has been supported by

Ministry of Science and Higher Education of the Russian Federation Large Scientific Project

No. 075-15-2020-787 (heterogeneous measurement systems)

Penenko A.V. Penenko V.V.

Pianova E.A.Gochakov A.V.

Tsvetova E.A.

Konopleva V.S.

Page 19: Sensitivity Operator Inverse Modeling Framework for Advection … · 2021. 4. 26. · Sensitivity relation ,T Lagrange type identity (sensitivity relation)-divided difference operator

Sensitivity Operator & Adjoint Ensemble References

19

1. Penenko, A. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-

type measurements // Inverse Problems & Imaging (AIMS), 2020, 14, 757-782 doi:10.3934/ipi.2020035

2. Penenko, A. V.; Mukatova, Z. S. & Salimova, A. B. Numerical study of the coefficient identification algorithm based on ensembles of adjoint problem

solutions for a production-destruction model // International Journal of Nonlinear Sciences and Numerical Simulation, accepted doi:

10.1515/ijnsns-2019-0088

3. Penenko, A. V. & Salimova, A. B. Source Identification for the Smoluchowski Equation Using an Ensemble of Adjoint Equation Solutions // Numerical

Analysis and Applications, 2020, 13, 152-164 doi: 10.1134/s1995423920020068

4. Penenko, A.; Zubairova, U.; Mukatova, Z. & Nikolaev, S. Numerical algorithm for morphogen synthesis region identification with indirect image-type

measurement data // Journal of Bioinformatics and Computational Biology, 2019 , 17 , 1940002 doi:10.1142/s021972001940002x

5. V. V. Penenko A. V. Penenko, E. A. Tsvetova and A. V. Gochakov Methods for studying the sensitivity of atmospheric quality models and inverse

problems of geophysical hydrothermodynamics // Journal of Applied Mechanics and Technical Physics, 2019, Vol. 60, No. 2, pp. 392–399 doi:

10.1134/S0021894419020202

6. Penenko, A. V. A Newton–Kantorovich Method in Inverse Source Problems for Production-Destruction Models with Time Series-Type Measurement

Data // Numerical Analysis and Applications, 2019 , 12 , P. 51-69 doi: 10.1134/s1995423919010051

7. Penenko, A. V. Consistent Numerical Schemes for Solving Nonlinear Inverse Source Problems with Gradient-Type Algorithms and Newton–

Kantorovich Methods // Numerical Analysis and Applications, 2018 , 11 , P.73-88 doi:10.1134/s1995423918010081

8. Penenko, A. V.; Nikolaev, S. V.; Golushko, S. K.; Romashenko, A. V. & Kirilova, I. A. Numerical Algorithms for Diffusion Coefficient Identification in

Problems of Tissue Engineering // Math. Biol. Bioinf., 2016 , 11 , 426-444 doi: 10.17537/2016.11.426 (In Russian)

9. Penenko, A. On a solution of the inverse coefficient heatconduction problem with the gradient projection method // Siberian electronic

mathematical reports, 2010, 23 , 178-198. (in Russian)