53
Sentaurs TCAD Tutorial – Santander, 24 th June 2015 1 IMB-CNM (CSIC) Universidad de Sevilla Francisco Rogelio Palomo Pinto Dept. Ingeniería Electrónica, Escuela Superior de Ingenieros, Universidad de Sevilla, Spain Pablo Fernández-Martínez Centro Nacional de Microelectrónica (IMB-CNM- CSIC) 26th RD 50 Workshop Santander 24th June 2015 Sentaurus TCAD Tutorial With specific focus on Radiation Detector issues

Sentaurs TCAD Tutorial – Santander, 24 th June 2015 1 IMB-CNM (CSIC)Universidad de Sevilla Francisco Rogelio Palomo Pinto Dept. Ingeniería Electrónica,

Embed Size (px)

Citation preview

Using PowerPoint to Typeset Nice Presentations

Francisco Rogelio Palomo PintoDept. Ingeniera Electrnica, Escuela Superior de Ingenieros, Universidad de Sevilla, SpainPablo Fernndez-MartnezCentro Nacional de Microelectrnica (IMB-CNM- CSIC)

26th RD 50 WorkshopSantander 24th June 2015Sentaurus TCAD TutorialWith specific focus on Radiation Detector issuesSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaI- Synopsys Sentaurus TCAD as a Finite Element Simulation SuiteI. Sentaurus TCAD as a FEM Simulation SuiteSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaFinite Element Simulation (I)Our Problem: Solution of Laplace Equation and Continuity equations in regions

PoissonElectron continuityHole continuitywhere (dd)See Fichtner, Rose, Bank, Semiconductor Device Simulation, IEEE Trans. Electron Devices 30 (9), pp1018, 1983Different versions of physics models availableDifferent models of mobility, bandgapGeneration and recombination rates may include avalanche effects, charge generation by high-energy particlesPhysics models: Works by modelling electrostatic potential (Poissons equation) and carrier continuity (drift-diffusion, dd, mainly)where (dd)I. Sentaurus TCAD as a FEM Simulation SuiteSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaFinite Element Simulation (II)Equations and solving methodsPoisson and Continuity Equations to solve the Electrostatic potential carrier concentrationDifferent Current Models for carrier transport (three options)1. Drift-diffusion (isothermal)2. Thermodynamics (temperature gradient)3.Hydrodynamics (other gradients: temperature, concentration, effective mass)

General Drift-Diffussion3. General Hydrodinamics+Einstein relations1. Drift Difussion2. Thermodinamics+Lattice TemperaturegradientI. Sentaurus TCAD as a FEM Simulation SuiteSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaFinite Element Simulation (III)Finite Element Method for Numerical Simulations (or how to solve Electromagnetic Partial Differential Equations, PDE, in a computer)1. Discretizing the solution regin into a finite number of elements2. Deriving governing equations for a typical element (Test Functions)3. Assembling all elements in the solution regin (Variationals)4. Solving the system of equations obtained (Iteration Solver)

Test FunctionTest Functionin terms of finiteelement vertexvalues

Element Variational(potential energy)Total Energy

PDE Solution in discretized regionis the variational minimum

1234 From Numerical Techniques in Electromagnetics, M.N.O.Sadiku, 2nd Ed. CRC PressI. Sentaurus TCAD as a FEM Simulation SuiteSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaFinite Element Simulation (IV)Newton-Raphson + Bank-Rose (damping) numerical solver

Ex. Newton-Raphson for f(x)=04. FEM analysis produces a set of nonlinear equations F(x)=0to be solved by the Newton-Raphson (Bank-Rose) numerical algorithmGeneral N-R (B-R) algorithmGlobal approximate Newton methods, R.E.Bank, D.J.Rose, Numerische Mathematik, 1981, 37(2), pp. 279-295x0= Initial Guess, k=0Repeat {Compute F(xk),JF(xk)Solve JF(xk)Dxk+1=-F(xk) for Dxkxk+1=xk+limited(Dxk+1) k=k+1} Until||Dxk+1||, ||F(xk+1)|| small enoughI. Sentaurus TCAD as a FEM Simulation SuiteSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaFinite Element Simulation (V)Basic tools in a Finite Element simulatorAutomatic Mesher Creator tool(Sentaurus Structure Editor, SSE)Visualization tool(SVisual)Solver toolSentaurus Device

SSE:A CAD tool togenerate volumes for FEM meshingSVisualI. Sentaurus TCAD as a FEM Simulation SuiteSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaII- Working with Structures:Sentaurus Structure Editor & Sentaurus VisualII. Working with Structures: S. Structure EditorSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaSentaurus Structure Editor:II. Working with Structures: S. Structure Editor

Tool used for creating the structures (devices) to be simulatedDefining Device Materials and GeometryDefining and Placing Doping RegionsDefining and Placing Contacts> sdeCommand Script:

Can be fully managed with the comprehensive user interface options and menusOr introducing command code from a .scm file(more flexible and powerful)Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de Sevilla

II. Working with Structures: S. Structure EditorWorking with a .scm file:Diode.scm

The .scm file includes the commands to:Create the structure (boundary)Define and place the contacts and doping regions Build a proper discretization mesh for the subsequent FEM simulationExample of a PiN Diode with Gaussian-Shaped N- and P-type electrodes, and constant lowly doped p-type substrateSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaII. Working with Structures: S. Structure EditorDefining Regions and Materials:

SILICON

OXIDEEntity Viewer; *** Creation of the substrate bulk (SUB) ***(sdegeo:create-rectangle (position Xmin Ymin 0) (position Xmax Ymax 0) Silicon SUB);*** Creation of the Oxide layers (OX_L & OX_R)(sdegeo:create-rectangle (position Xmin Ymin 0) (position XElectrodeN_Min YOx_max 0) Oxide OX_L)(sdegeo:create-rectangle (position XElectrodeN_Max Ymin 0) (position Xmax YOx_max 0) Oxide OX_L)Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaII. Working with Structures: S. Structure EditorDefining and Placing Contacts:

Electrode P; *** Contact Declaration***(sdegeo:define-contact-set ElectrodeN 4.0 (color:rgb 1.0 0.0 0.0) ##)(sdegeo:define-contact-set ElectrodeP 4.0 (color:rgb 0.0 0.0 1.0) ##);*** Contact placement (Electrode N)***(define Xn (+ XElectrodeN_Min (/< DElectrodeN 2)))(define CN (find-edge-id (position Xn Ymin 0)))

(sdegeo:set-current-contact-set ElectrodeN(sdegeo:set-contact-edges CN)

Electrode N;*** Contact placement (Electrode P) ***(define Xp (+ Xmin (/ Xmax 2)))(define CP (find-edge-id (position Xp Ymax 0)))

(sdegeo:set-current-contact-set ElectrodeP(sdegeo:set-contact-edges CP)Identifying the edge segment where the contact will be placedSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaII. Working with Structures: S. Structure EditorDefining and Placing Doping Regions:; *** Substrate: Constant Doping***(sdepe:doping-constant-placement Sub_Dop_Placement BoronActiveConcentration Dop_Sub SUB)Regions with Constant DopingSingle Command for defining and placingDoping Value; *** N-Type Electrode: Gaussian profile***(sdedr:define-refeval-window "DRW_NPlus" "Line" (position XElectrodeN_Min Ymin 0) (position XElectrodeN_Max Ymin 0))(sdedr:define-gaussian-profile "DGP_NPlus" "PhosphorusActiveConcentration" "PeakPos" YElectrodeN_Peak "PeakVal" Dop_Nplus "ValueAtDepth" Dop_Sub "Depth" YElectrodeN_Junction "Gauss" "Factor" LatFactor)(sdedr:define-analytical-profile-placement "APP_NPlus" "DGP_NPlus" "DRW_NPlus" "Positive" "NoReplace" "Eval")WindowProfilePlacement

Window NplusWindow PplusRegions with Gaussian ProfileBefore the mesh building, SDE only shows Ref. windowsSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de Sevilla

Ref. GeneralRef. NPlusII. Working with Structures: S. Structure EditorDefining and Placing a discretization mesh:; *** N-Type Electrode Refinement***(sdedr:define-refeval-window "RFW_Nplus" "Rectangle" (position XElectrodeN_Min Ymin 0) (position XElectrodeN_Max YElectrodeN_Junction 0))(sdedr:define-refinement-size "RFS_Nplus" (/ DElectrodeN 10) (/ tElectrodeN 2) (/ DElectrodeN 2000) (/ tElectrodeN 50))(sdedr:define-refinement-function "RFS_Nplus" "DopingConcentration" "MaxTransDiff" 0.4)(sdedr:define-refinement-placement "RFP_Nplus" "RFS_Nplus" "RFW_Nplus")WindowSizePlacementRef. PPlusA function can be defined to adapt the mesh size to the Doping variationSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de Sevilla

II. Working with Structures: S. Structure EditorBuilding the discretization mesh:Recent Versions only include Svisual as the viewer toolSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de Sevilla

Building the discretization mesh: SDE viewerII. Working with Structures: S. Structure EditorSeveral files are created while building the meshDiode_msh.cmdDiode_msh.logDiode_bnd.tdrDiode_msh.tdrImput File for the FEM SimulationsSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaII. Working with Structures: SVisual

Sentaurus Visual:Preferred tool for visualizing structures and representing fields and curves

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de Sevilla

II. Working with Structures: SVisualInspecting the created structure: Visualizing meshIn Recent Versions Build mesh Command links directly to svisual Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaII. Working with Structures: SVisualInspecting the created structure: Visualizing Fields (Doping)

Boron Active ConcentrationPhosphorus Active ConcentrationSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII- Finite Element Method Simulations:Sentaurus DeviceIII. FEM Simulations: SDeviceSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de Sevilla

Mixed ModeDevice ModeII. FEM Simulations: SDeviceSentaurus Device:Tool used for FEM Simulations

Files to Solve the ModelPhysics ModelsTypes of Analysis: Quasistationary, Transient, ACCoupledDevices in the CircuitFile with Spice elementsElements in the Circuit and their connectionsSdevice has not a graphical interface. Instructions are introduced from a command file (.cmd)Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceDevice Mode Simple Simulation: I-V curve on a DiodeDiode_IV.cmdElectrode { {Name=ElectrodeN Voltage = 0.0} {Name=ElectrodeN Voltage = 0.0}}Physics { AreaFactor = 1 Temperature = 300

Mobility (DopingDependenceeHighFieldSaturationhHighFieldSaturationEnormalCarrierCarrierScattering) Recombination (SRH (DopingDependence)Auger (withGeneration)Avalanche (UniBo Eparallel)Band2Band (Hurkx)) EffectiveIntrinsicDensity (OldSlotboom)}Math { #Cylindrical Method=Pardiso Number_of_threads = 4 Stacksize=200000000 Extrapolate Derivatives AvalDerivatives RelErrControl Iterations=15 Notdamped=60

BreakCriteria { Current (Contact = "ElectrodeN" maxval = 1e-8) }}File { Grid= Diode_msh.tdr Current= Diode_IV.plt Plot= Diode_IV.tdr Output= Diode_IV.log}Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceDevice Mode Simple Simulation: I-V curve on a Diode (Quasistationary)Diode_IV.cmdPlot { eDensity hDensity eCurrent/Vector hCurrent/Vector Current/Vector Potential ElectricField/Vector SpaceCharge eMobility hMobility eVelocity hVelocity DopingConcentration DonorConcentration AcceptorConcentration srhRecombination AugerRecombination AvalancheGeneration eAvalanche hAvalanche TotalRecombination}Solve { Coupled (Iterations=50) {Poisson} Coupled (Iterations=15) {Hole Poisson} Coupled (Iterations=15) {Electron Hole Poisson} QuasiStationary ( InitialStep = 1e-6 MaxStep = 0.01 MinStep = 1e-9 Goal {Name="ElectrodeN" Voltage=1000} Plot {Range = (0 1) Intervals=2}) {Coupled {Hole Electron Poisson}Plot ( FilePrefix="IV_" Time=(0.01; 0.05; 0.1; 0.5) NoOverwrite )}}Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceDevice Mode Simple Simulation: I-V curve on a Diode

Diode_IV.pltSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceDevice Mode Simple Simulation: I-V curve on a Diode

.tdr FilesSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceDevice Mode Simple Simulation: I-V curve on a Diode

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceDevice Mode Simple Simulation: I-V curve on a Diode

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceMixed Mode Simple Simulation: C-V curve on a Diode (AC Coupled)device Diode {

Electrode { ..}

File { Grid= "Diode_msh.tdr" Current= "Diode_CV_1kHz.plt" Plot= "Diode_CV_1kHz.tdr"}

Physics { .....}

Plot { .....}

} #End device DiodeSystem { Diode diodesystem ("ElectrodeN"=front "ElectrodeP"=0) Vsource_pset vn (front 0) {dc=0}}

File { Output ="Diode_CV_1kHz.log" ACExtract = "Diode_CV_AC_1kHz.plt"}Diode_CV.cmdSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceMixed Mode Simple Simulation: C-V curve on a Diode (AC Coupled)Solve { Coupled (Iterations=50) {Poisson} Coupled (Iterations=15) {Hole Poisson} Coupled (Iterations=15) {Electron Hole Poisson} Coupled (Iterations=15) {Electron Hole Poisson Contact}

QuasiStationary (InitialStep = 1e-6MaxStep = 1e-2MinStep = 1e-7Increment = 2Decrement = 4Goal {Parameter = vn.dc Voltage=100}){ACCoupled ( StartFrequency=1e3 EndFrequency=1e3 NumberOfPoints =1 Decade Iterations=15 Node (front) ACMethod=Blocked ACSubMethod("diodesystem")=ParDiSo){ Poisson Electron Hole Contact Circuit}}}Diode_CV.cmdSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDevice

Mixed Mode Simple Simulation: C-V curve on a Diode (AC Coupled)Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Heavy Ion Impact

Physics { ... HeavyIon (Direction = (0,1)Location = (200, 0)Time = 1e-9Length = [0 0.001 100 100.001]Wt_hi = [1.0 1.0 1.0 1.0]LET_f =[0 8.7e-6 8.7e-6 0]GaussianPicoCoulomb)}Solve { . NewCurrentPrefix = "trans_" Transient (InitialTime = 0FinalTime = 35e-9MinStep = 1e-17MaxStep = 1e-10){Coupled { Poisson Electron Hole Circuit }Plot (FilePrefix="TransHI_" Time=(0.5e-9; 1e-9; 2e-9; 5e-9; 10e-9) NoOverwrite)}}Diode_HI.cmdSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Heavy Ion Impact

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Heavy Ion Impact

HeavyIonGenerationSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Heavy Ion Impact

HeavyIonChargeDensitySentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Heavy Ion Impact

hDensitySentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Laser Illumination

Optics ( OpticalGeneration ( ComputeFromMonochromaticSource () TimeDependence ( WaveTime = (1e-9 1e-9) WaveTSigma = 50e-12 ) Scaling = 0 ) Excitation ( Wavelength = 0.8 *um Intensity = 0.06 *W/cm2 Window("L1") ( Origin = (200,0) XDirection = (1,0,0) Line (Dx = 10) )Theta = 0 * Angle from positive y-axis) OpticalSolver ( OptBeam (LayerStackExtraction ( WindowName ="L1" WindowPosition = Center Mode = ElementWise )) ) ComplexRefractiveIndex (WavelengthDep (real imag)))Solve { . NewCurrentPrefix = "trans_" Transient (InitialTime = 0FinalTime = 60e-9MinStep = 1e-17MaxStep = 1e-10){Coupled { Poisson Electron Hole Circuit }}}Diode_Opt.cmdSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Laser Illumination

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Laser Illumination

Optical Generation 800 nmSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Laser IlluminationOptical Generation 1064 nm

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Laser IlluminationhDensity 800 nm

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceTransient Simulation: Laser IlluminationhDensity 1064 nm

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaSystem {Set(ground=0) Vsource_pset V_bias (cathode ground) {dc=0}Diode diodesystem ("ElectrodeN"=cathode "ElectrodeP"=anode)Inductor_pset L_leak(anode ground){inductance=1e6}#CSF input capacitanceCapacitor_pset C_in (anode ground){capacitance=1e-12}#CSF passive feedback network: Capacitor_pset C_csf (anode out) {capacitance=8e-15}Resistor_pset R_csf (anode out) {resistance=100e6} #CSA amp internal out resistenceResistor_pset R_sh(out ground){resistance=1}#CSA external capacitanceCapacitor_pset C_out (out ground){capacitance=1e-12}Plot "CircuitCSF" (time() v(anode ground) v(out ground) v(anode out) i(L_leak anode) i(C_in anode) i(R_sh out) i(C_out out))}III. FEM Simulations: SDeviceMixed Simulation with a more complicated circuit# Detector connected to a CSF (charge sensitive filter) #Vbias between ground and cathode#Detector between cathode and anode#C_in between anode and ground#CSF Passive network#L_leak between anode and ground#C_csf and R_csf between anode and outamp#R_outamp between outamp and ground

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDevice

Mixed Simulation with a more complicated circuitSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceSimulation of the Radiation EffectsPhysics (material="Silicon") { Traps ( (Acceptor Level EnergyMid=0.42 fromCondBand Conc=2.3226E15 Randomize=0.29 eXsection=9.5E-15 hXsection=9.5E-14) #Conc=Fluence*1.1613 (Acceptor Level EnergyMid=0.46 fromCondBand Conc=1.8E15 Randomize=0.23 eXsection=5E-15 hXsection=5E-14 ) #Conc=Fluence*0.9 (Donor Level EnergyMid=0.36 fromValBand Conc=1.8E15 Randomize=0.31 eXsection=3.23E-13 hXsection=3.23E-14 ) #Conc=Fluence*0.9 ) }

Physics (MaterialInterface="Oxide/Silicon") { # Traps (FixedCharge Conc=5e10) Charge(Conc=1.5e11)}Diode_Rad_IV.cmdDiode_Rad_CV.cmdSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceSimulation of the Radiation Effects : I-V Simulation

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIII. FEM Simulations: SDeviceSimulation of the Radiation Effects : C-V Simulation

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIV- Additional Tools:Sentaurus Workbench & Sentaurus ProcessIV. Additional Tools: SWorkbench & SProcessSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaSentaurus Workbench (SWB) IV. Additional Tools: Sentaurus WorkbenchA window-like interface to manage the different tools and the simulation flowIt creates simulation trees with variation of parameter in a matrix organizationEvery instance in SWB is called project. When a project is saved, a directory is created, containing ASCII files with the details of the saved project.

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIV. Additional Tools: Sentaurus WorkbenchSentaurus Workbench (SWB) Essential vocabulary:Tool: one of the Sentaurus TCAD tools (e.g. sde, sdevice, svisual, etc)Parameter: a variable (it can be a dimension, a physical property, a logic flag, etc)Experiment: a row in the simulation matrix (with a certain value for each parameter)Node: a point in the simulation matrix. They can be real (if they can be executed) or virtual (if they cannot be executed)

Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIV. Additional Tools: Sentaurus WorkbenchSentaurus Workbench (SWB) Command file used to execute the simulations without SWB, can be used as the input file when a new tool is added to the SWB project Parameters should be indicated in the file always between @.....

(define Thickness @Thickness@)

.

(sde:build-mesh snmesh @node@_msh)File { Grid= @tdr@ Current= @plot@ Plot= @tdrdat@ Output= @log@}

..

Solve { ACCoupled (StartFrequency=@Frequency@FinalFrequency=@Frequency@..) .}A number of complete examples are included in SWB

SDE input FileSdevice input FileBuild-mesh command should be included at the end of the scriptSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de Sevilla

IV. Additional Tools: SProcessSentaurus Process

Tool for emulating the technological steps of a fabrication processA specific mesh is created to solve the process emulation equationsIt allows emulating:Deposition of layers of different materialsLocalized etching of material with a maskIon implantationDiffusion of the implanted species (thermal steps)Oxide and epitaxial growthEtc (almost any process you can perform in a real clean room)Usually, this mesh is not suitable for device simulationIt is a powerful tool, that can faithfully reproduce the fabrication processes of a given clean room.Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIV. Additional Tools: SProcessSentaurus Process: Point of view from a foundry1st Mode: From device performance to fabrication processCombined SDE and Sdevice Simulations are performance to obtain a given characteristicSprocess simulation is performed to determine the technological steps that can give us the desired characteristic2nd Mode: From fabrication process to device performanceA given technological step is simulated with sprocessThe performance of the whole device is analyzed with the aid of a SDE+Sdevice simulationGeneral Simulation flow

Complete Process EmulationRe-meshing and adjustmentFEM SimulationRegular use of Sprocess in a foundry (at least at IMB-CNM) Sentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de SevillaIV. Additional Tools: SProcess

Thanks for your [email protected]@imb-cnm.csic.esSentaurs TCAD Tutorial Santander, 24th June 2015 NIMB-CNM (CSIC)Universidad de Sevilla