41
Hidden symmetries and test fields in rotating black hole spacetimes part II Separability Pavel Krtouˇ s Charles University, Prague, Czech Republic [email protected] http://utf.mff.cuni.cz/~krtous/ with Valeri P. Frolov, David Kubizˇ ak Atlantic General Relativity Conference Antigonish, June 6, 2018

Separability - utf.mff.cuni.cz

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Separability - utf.mff.cuni.cz

Hidden symmetries and test fields inrotating black hole spacetimes

part II

Separability

Pavel Krtous

Charles University, Prague, Czech Republic

[email protected]

http://utf.mff.cuni.cz/~krtous/

with

Valeri P. Frolov, David Kubiznak

Atlantic General Relativity Conference

Antigonish, June 6, 2018

Page 2: Separability - utf.mff.cuni.cz

Contents

• Kerr–NUT–(A)dS geometry

• Integrability of the geodesic motion

• Separability

• Separability of the scalar field equation

• Separability of the vector field equation

• Quasi-normal modes

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 1

Page 3: Separability - utf.mff.cuni.cz

Off-shell Kerr–NUT–(A)dS geometry

geometry given by the existence of hidden symmetries encoded in

the principal tensor

(non-degenerate closed conformal Killing–Yano tensor of rank 2)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 2

Page 4: Separability - utf.mff.cuni.cz

Off-shell Kerr–NUT–(A)dS geometryfor simplicity

even dimensionD = 2N

g =

N∑µ=1

[UµXµ

dx2µ +

XµUµ

(N−1∑j=0

A(j)µ dψj

)2]

explicit polynomials in coordinates xµ

A(k) =

N∑ν1,...,νk=1ν1<···<νk

x2ν1. . . x2

νkA(j)µ =

N∑ν1,...,νj=1ν1<···<νjνi 6=µ

x2ν1. . . x2

νjUµ =

N∏ν=1ν 6=µ

(x2ν − x2

µ)

unspecified N metric functions of one variable

Xµ = Xµ(xµ)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 3

Page 5: Separability - utf.mff.cuni.cz

On-shell Kerr–NUT–(A)dS geometryfor simplicity

even dimensionD = 2N

g =

N∑µ=1

[UµXµdx2

µ +Xµ

( N−1∑j=0

A(j)µ dψj

)2]

Einstein equations ⇒

Xµ = λ

N∏ν=1

(a2ν − x2

µ

)− 2bµ xµ

Parameters:

λ cosmological parameter related to the cosmological constant Λ = (2N − 1)(N − 1)λ

bµ mass and NUT parameters

aµ rotational parameters

freedom in scaling of coordinates ⇒ one parameter can be fixed by a gauge condition

exact interpretation of parameters depends on coordinate ranges, signature, and gauge choices

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 4

Page 6: Separability - utf.mff.cuni.cz

Kerr–NUT–(A)dS geometry – Lorentzian signature

g =

N∑µ=1

[UµXµdx2

µ +Xµ

( N−1∑j=0

A(j)µ dψj

)2]

Wick rotation:

time: τ = ψ0 radial coordinate: xN = ir mass: bN = im

Gauge condition:

a2N = −1

λ (suitable for limit λ→ 0)

New Killing coordinates:

t = τ +∑k

A(k+1)ψkφµaµ

= λτ −∑k

(A(k)µ − λA(k+1)

µ

)ψk

barred quantities refer to ranges of indices given by N → N = N − 1

(i.e., µ = 1, . . . , N and j = 0, . . . , N − 1, etc.)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 5

Page 7: Separability - utf.mff.cuni.cz

Kerr–NUT–(A)dS geometry – Lorentzian signature

g = −∆r

Σ

(∏ν

1 + λx2ν

1 + λa2ν

dt−∑ν

J(a2ν)

aν(1 + λa2ν)Uν

dφν

)2

∆rdr2

+∑µ

(r2+x2µ)

∆µ/Uµdx2

µ +∑µ

∆µ/Uµ(r2+x2

µ)

(1−λr2

1+λx2µ

∏ν

1+λx2ν

1+λa2ν

dt +∑ν

(r2+a2ν)Jµ(a2

ν)

aν(1+λa2ν) Uν

dφν

)2

∆r = −XN =(1−λr2

)∏ν

(r2+a2

ν

)− 2mr Σ = UN =

∏ν

(r2 + x2ν)

∆µ = −Xµ =(1+λx2

µ

)J (x2

µ) + 2bµxµ Uµ =∏ν

ν 6=µ

(x2ν − x2

µ)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 6

Page 8: Separability - utf.mff.cuni.cz

Kerr–NUT–(A)dS geometry – Lorentzian signature

g = −∆r

Σ

(∏ν

1 + λx2ν

1 + λa2ν

dt−∑ν

J(a2ν)

aν(1 + λa2ν)Uν

dφν

)2

∆rdr2

+∑µ

(r2+x2µ)

∆µ/Uµdx2

µ +∑µ

∆µ/Uµ(r2+x2

µ)

(1−λr2

1+λx2µ

∏ν

1+λx2ν

1+λa2ν

dt +∑ν

(r2+a2ν)Jµ(a2

ν)

aν(1+λa2ν) Uν

dφν

)2

∆r = −XN =(1−λr2

)∏ν

(r2+a2

ν

)− 2mr Σ = UN =

∏ν

(r2 + x2ν)

∆µ = −Xµ =(1+λx2

µ

)J (x2

µ) + 2bµxµ Uµ =∏ν

ν 6=µ

(x2ν − x2

µ)

Rotating black holes with NUTs and ΛPavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 6

Page 9: Separability - utf.mff.cuni.cz

Off-shell Kerr–NUT–(A)dS geometry

g =

N∑µ=1

[UµXµ

dx2µ +

XµUµ

(N−1∑j=0

A(j)µ dψj

)2]

explicit function polynomial in coordinates xµ (symmetric polynomials)

A(k) =N∑

ν1,...,νk=1ν1<···<νk

x2ν1. . . x2νk A(j)

µ =N∑

ν1,...,νj=1ν1<···<νjνi 6=µ

x2ν1. . . x2νj Uµ =

N∏ν=1ν 6=µ

(x2ν − x2µ)

unspecified N metric functions of one variable

Xµ = Xµ(xµ)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 7

Page 10: Separability - utf.mff.cuni.cz

Killing tower and hidden symmetries

g =

N∑µ=1

[UµXµdx2

µ +Xµ

( N−1∑j=0

A(j)µ dψj

)2]

Principal tensor

h =∑µ

xµ eµ ∧ eµ

Primary Killing vector

ξ = ∂ψ0

Hidden symmetries – Killing tensors

k(j) =∑µ

A(j)µ

(eµeµ + eµeµ

) Explicit symmetries – Killing vectors

l(j) = ∂ψj

[k(i),k(j)

]NS

= 0[k(i), l(j)

]NS

= 0[l(i), l(j)

]NS

= 0

Darboux frame

forms:

eµ =(UµXµ

)12dxµ eµ =

(Xµ

)12

N−1∑j=0

A(j)µ dψj

vectors:

eµ =(Xµ

)12∂xµ eµ =

(UµXµ

)12

N−1∑k=0

(−x2µ)N−1−k

Uµ∂ψk

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Kerr–NUT–(A)dS geometry 8

Page 11: Separability - utf.mff.cuni.cz

Integrability of the geodesic motion

Killing tower

hidden symmetries – Killing tensors of rank 2

k(j)

explicit symmetries – Killing vectors

l(j)

commutation in sense of Nijenhuis–Schouten brackets[k(i),k(j)

]NS

= 0[k(i), l(j)

]NS

= 0[l(i), l(j)

]NS

= 0

Conserved quantities

observables quadratic in momentum

Kj = p · k(j) · pobservables linear in momentum

Lj = l(j) · p

Hamiltonian

k(0) = g ⇒ H =1

2K0 =

1

2p2

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Integrability 9

Page 12: Separability - utf.mff.cuni.cz

Integrability of the geodesic motion

Killing tower

hidden symmetries – Killing tensors of rank 2

k(j)

explicit symmetries – Killing vectors

l(j)

commutation in sense of Nijenhuis–Schouten brackets[k(i),k(j)

]NS

= 0[k(i), l(j)

]NS

= 0[l(i), l(j)

]NS

= 0

Conserved quantities

observables quadratic in momentum

Kj = p · k(j) · pobservables linear in momentum

Lj = l(j) · p

Hamiltonian

k(0) = g ⇒ H =1

2K0 =

1

2p2

Integrability

D observables Kj and Lj which are in involution and commute with the Hamiltonian{Ki, Kj

}= 0

{Ki, Lj

}= 0

{Li, Lj

}= 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Integrability 9

Page 13: Separability - utf.mff.cuni.cz

Integrability of the geodesic motion

Killing tower

hidden symmetries – Killing tensors of rank 2

k(j)

explicit symmetries – Killing vectors

l(j)

commutation in sense of Nijenhuis–Schouten brackets[k(i),k(j)

]NS

= 0[k(i), l(j)

]NS

= 0[l(i), l(j)

]NS

= 0

Conserved quantities

observables quadratic in momentum

Kj = p · k(j) · pobservables linear in momentum

Lj = l(j) · p

Hamiltonian

k(0) = g ⇒ H =1

2K0 =

1

2p2

Integrability

D observables Kj and Lj which are in involution and commute with the Hamiltonian{Ki, Kj

}= 0

{Ki, Lj

}= 0

{Li, Lj

}= 0

Separability of Hamilton–Jacobi equation

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Integrability 9

Page 14: Separability - utf.mff.cuni.cz

Separability of field equations

The field equations on the off-shell Kerr–NUT–(A)dS background can be separated for:

• Scalar field [2007] VF, PK, DK, A. Seregyeyev

•Dirac field [2011] T. Oota, Y. Yasui, M. Cariglia, PK, DK

•Vector field [2017] O. Lunin, VF, PK, DK

(including the electromagnetic case)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability 10

Page 15: Separability - utf.mff.cuni.cz

Standard method of separation of variables

Equation for a sum of terms depending on different variables

N∑µ=1

fµ(xµ) = S

implies

fµ(xµ) = Sµ

where Sµ are constants satisfyingN∑µ=1

Sµ = S

Solution is given by N − 1 independent separation constants

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability 11

Page 16: Separability - utf.mff.cuni.cz

Standard method of separation of variables

Equation for a sum of terms depending on different variables

N∑µ=1

fµ(xµ) = S

implies

fµ(xµ) = Sµ

where Sµ are constants satisfyingN∑µ=1

Sµ = S

Solution is given by N − 1 independent separation constants

U-separation of variables

Equation for a composition of terms depending on different variables

N∑µ=1

1

Uµfµ(xµ) = C0

implies

fµ(xµ) = Cµ

where Cµ =N−1∑j=0

Cj(−x2µ)N−1−j are polynomials of degree N − 1 with the same coefficients Cj

Solution is given by N − 1 independent separation constants Cj

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability 11

Page 17: Separability - utf.mff.cuni.cz

U-separation of variables

Equation for a composition of terms depending on different variables

N∑µ=1

1

Uµfµ(xµ) = C0 Uµ =

N∏ν=1ν 6=µ

(x2ν − x2

µ)

implies

fµ(xµ) = Cµ Cµ =

N−1∑j=0

Cj(−x2µ)N−1−j

Cµ are polynomials in variable x2µ of degree N−1 with the same coefficients Cj

Solution is given by N − 1 independent separation constants Cj, j = 1, . . . , N−1

Related to the fact that A(j)µ and

(−x2µ)N−1−j

Uµare inverse matrices

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability 12

Page 18: Separability - utf.mff.cuni.cz

Separability of the scalar field equation

Massive scalar field equation

�φ−m2φ = 0 � = ∇ · g ·∇

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 13

Page 19: Separability - utf.mff.cuni.cz

Separability of the scalar field equation

Scalar field equation as the eigenfunction equation

K0 φ = K0 φ K0 = −∇ · g ·∇ K0 = −m2

Multiplicative separation ansatz

φ =

N∏µ=1

N−1∏k=0

exp(iLkψk

)Rµ = Rµ(xµ)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 13

Page 20: Separability - utf.mff.cuni.cz

Separability of the scalar field equation

Scalar field equation as the eigenfunction equation

K0 φ = K0 φ K0 = −∇ · g ·∇

Multiplicative separation ansatz

φ =

N∏µ=1

N−1∏k=0

exp(iLkψk

)Rµ = Rµ(xµ)

Eigenfunction equation in coordinates

K0 φ = K0 φ ⇔∑ν

1

1

((XνR

′ν

)′− L2

ν

XνRν

)= K0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 13

Page 21: Separability - utf.mff.cuni.cz

Separability of the scalar field equation

Scalar field equation as the eigenfunction equation

K0 φ = K0 φ K0 = −∇ · g ·∇

Multiplicative separation ansatz

φ =

N∏µ=1

N−1∏k=0

exp(iLkψk

)Rµ = Rµ(xµ)

Eigenfunction equation in coordinates

K0 φ = K0 φ ⇔∑ν

1

1

((XνR

′ν

)′− L2

ν

XνRν

)︸ ︷︷ ︸

= Kµ

= K0

Separated ODEs (XνR

′ν

)′− L2

ν

XνRν − KνRν = 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 13

Page 22: Separability - utf.mff.cuni.cz

Separation constants as eigenvalues

Multiplicative separation ansatz

φ =

N∏µ=1

N−1∏k=0

exp(iLkψk

)Rµ = Rµ(xµ ; Kj , Lj )

Separated ODEs (XνR

′ν

)′− L2

ν

XνRν − KνRν = 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 14

Page 23: Separability - utf.mff.cuni.cz

Separation constants as eigenvalues

Multiplicative separation ansatz

φ =

N∏µ=1

N−1∏k=0

exp(iLkψk

)Rµ = Rµ(xµ ; Kj , Lj )

Separated ODEs (XνR

′ν

)′− L2

ν

XνRν − KνRν = 0

Symmetry operators corresponding to the Killing tower

Kj = −∇a kab(j) ∇b Lj = −i la(j)∇a

Commutativity of the symmetry operators[Kk,Kl

]= 0

[Kk,Ll

]= 0

[Lk,Ll

]= 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 14

Page 24: Separability - utf.mff.cuni.cz

Separation constants as eigenvalues

Multiplicative separation ansatz

φ =

N∏µ=1

N−1∏k=0

exp(iLkψk

)Rµ = Rµ(xµ ; Kj , Lj )

Separated ODEs (XνR

′ν

)′− L2

ν

XνRν − KνRν = 0

Symmetry operators corresponding to the Killing tower

Kj = −∇a kab(j) ∇b Lj = −i la(j)∇a

Commutativity of the symmetry operators[Kk,Kl

]= 0

[Kk,Ll

]= 0

[Lk,Ll

]= 0

Common eigenvalue problem with the eigenvalues given by the separation constants

Kjφ = Kjφ Ljφ = Ljφ

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Scalar field 14

Page 25: Separability - utf.mff.cuni.cz

Separability of the vector field equation

Proca field equation

∇ · F = m2 A F = dA

Vacuum Maxwell equations: m2 = 0

∇ · F = 0 F = dA

Lorenz condition

∇ · A = 0 ⇐ Proca equation

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 15

Page 26: Separability - utf.mff.cuni.cz

Lunin’s ansatz

Covariant form of the ansatz

A = B ·∇Z

Polarization tensor B

B = (g − βh)−1 B ≡ B(β) depends on an auxiliary parameter β

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 16

Page 27: Separability - utf.mff.cuni.cz

Lunin’s ansatz

Covariant form of the ansatz

A = B ·∇Z

Polarization tensor B

B = (g − βh)−1 B ≡ B(β) depends on an auxiliary parameter β

Multiplicative separation ansatz

Z =

N∏µ=1

N−1∏k=0

exp(iLkψk

)Rµ = Rµ(xµ)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 16

Page 28: Separability - utf.mff.cuni.cz

Vector field equations

Proca equation follows from the Lorenz condition and:

[� + 2β ξ ·B ·∇

]Z = m2Z

m

∑ν

1

1

((1+β2x2

ν)( Xν

1+β2x2ν

R′ν

)′− L2

ν

XνRν + iβ

1−β2x2ν

1+β2x2ν

β2(1−N)LRν

)= C0 ≡ m2

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 17

Page 29: Separability - utf.mff.cuni.cz

Vector field equations

Proca equation follows from the Lorenz condition and:

[� + 2β ξ ·B ·∇

]Z = m2Z

m

∑ν

1

1

((1+β2x2

ν)( Xν

1+β2x2ν

R′ν

)′− L2

ν

XνRν + iβ

1−β2x2ν

1+β2x2ν

β2(1−N)LRν

)︸ ︷︷ ︸

= Cν

= C0 ≡ m2

Separated ODEs:

(1+β2x2ν)( Xν

1+β2x2ν

R′ν

)′− L2

ν

XνRν + iβ

1−β2x2ν

1+β2x2ν

β2(1−N)LRν − CνRν = 0

Cν =

N−1∑j=0

Cj(−x2ν)N−1−j separation constants Cj, j = 0, . . . , N − 1

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 17

Page 30: Separability - utf.mff.cuni.cz

Vector field equations

Lorenz condition:

∇ ·B ·∇Z = 0

m

∑ν

1

1

1+β2x2ν

1

((1+β2x2

ν)( Xν

1+β2x2ν

R′ν

)′− L2

ν

XνRν + iβ

1−β2x2ν

1+β2x2ν

β2(1−N)LRν

)= 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 18

Page 31: Separability - utf.mff.cuni.cz

Vector field equations

Lorenz condition:

∇ ·B ·∇Z = 0

m

∑ν

1

1

1+β2x2ν

1

((1+β2x2

ν)( Xν

1+β2x2ν

R′ν

)′− L2

ν

XνRν + iβ

1−β2x2ν

1+β2x2ν

β2(1−N)LRν

)︸ ︷︷ ︸

= Cν

= 0

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 18

Page 32: Separability - utf.mff.cuni.cz

Vector field equations

Lorenz condition:

∇ ·B ·∇Z = 0

m

∑ν

1

1

1+β2x2ν

1

((1+β2x2

ν)( Xν

1+β2x2ν

R′ν

)′− L2

ν

XνRν + iβ

1−β2x2ν

1+β2x2ν

β2(1−N)LRν

)︸ ︷︷ ︸

= Cν︸ ︷︷ ︸∝ C(β2)

= 0

Condition on β:

C(β2) ≡N−1∑j=0

Cjβ2j = 0

β2 must be a root of the polynomial with coefficients given by the separation constants

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 18

Page 33: Separability - utf.mff.cuni.cz

Polarizations (just guessing)

Condition on β:

C(β2) ≡N−1∑j=0

Cjβ2j = 0

β2 must be a root of the polynomial with coefficients given by the separation constants

Polarization modes

choice of the root ⇔ choice of the polarization

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 19

Page 34: Separability - utf.mff.cuni.cz

Polarizations (just guessing)

Condition on β:

C(β2) ≡N−1∑j=0

Cjβ2j = 0

β2 must be a root of the polynomial with coefficients given by the separation constants

Polarization modes

choice of the root ⇔ choice of the polarization

• N − 1 roots

• N − 1 complex polarizations

• 2N − 2 = D − 2 real polarizations

• 1 polarization missing!

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Separability: Vector field 19

Page 35: Separability - utf.mff.cuni.cz

Quasi-normal modes of Proca field in 4 dimensions

[ with J. E. Santos ]

• Kerr solution in 4 dimensions

• massive vector field

• numerical search for quasi-normal modes

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Quasi-normal modes 20

Page 36: Separability - utf.mff.cuni.cz

Quasi-normal modes of Proca field in 4 dimensions

[ with J. E. Santos ]

• Kerr solution in 4 dimensions

• massive vector field

• numerical search for quasi-normal modes

• separability allows much more effective calculations

• agreement with previous results based on numeric solution of PDEs and analytic aproximations

• possibility to extend a “computable” range of parameters

• recovering 2 polarizations (out of 3)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���� ���� ���� ����

��-�

��-�

��-�

��-�

�����

�����

�����

●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●■■■■

■■■■■■■■

■■■■■■■■■■

■■■■■■■■■■■■■

■■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���� ���� ���� ������-��

��-��

��-��

��-��

��-�

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Quasi-normal modes 20

Page 37: Separability - utf.mff.cuni.cz

Quasi-normal modes of Proca field in 4 dimensions

Sam R. Dolan: Instability of the Proca field on Kerr spacetime, arXiv 1806.01604 (yesterday)

All three polarizations recovered!

�����

�����

�����

�����

�����

�����

�����

�����

������

�����

����� ���� ���� ���� ����

�����

������

�����

������

���������

����

���

���

������

�������

���

FIG. 1. Growth rate of the fundamental (n = 0) corotating dipole (m = 1) modes of the Proca field,

for the three polarizations S = −1 [solid], S = 0 [dashed] and S = +1 [dotted], and for BH spins of

a/M ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.995}. The vertical axis shows the growth rate τ−1 = (GM/c3)Im(ω) on

a logarithmic scale, and the horizontal axis shows Mµ.

S n ωR ωI νR νI

−1 0 0.35920565 2.36943× 10−4 −0.60028373 −3.336873× 10−4

0 0 0.38959049 2.15992× 10−6 1.84437950 −9.497225× 10−7

+1 0 0.39606600 2.565202× 10−10 0.21767208 −3.367574× 10−11

−1 1 0.38814529 5.996892× 10−5 −0.64326832 −9.391193× 10−5

−1 2 0.39509028 1.781747× 10−5 −0.65428679 −2.863793× 10−5

TABLE I. Parameters for the bound state modes shown in Fig. 3, with m = 1, a/M = 0.99 and Mµ = 0.4.

overtones of the dominant S = −1 mode will grow more substantially more rapidly than the funda-

mental mode. In essence, this is because in Eq. (2) the coefficient depends on the overtone n and

polarization S, whereas the index depends only on S.

Figure 5 shows the growth rate of the higher modes of the S = −1 polarization with azimuthal

numbers m = 2, 3 and 4. The superradiant instability persists for higher modes at larger values of

Mµ, but the rate becomes insignificant for Mµ� 1, due to the exponential fall off of MωmaxI with

Mµ seen in Fig. 5.

Figure 6 highlights the maximum growth rate for the dominant S = −1, m = 1 mode. For

a = 0.999M , we find a maximum growth rate of MωI ≈ 4.27 × 10−4 which occurs at Mµ ≈ 0.542.

This corresponds to a minimum e-folding time of τmin ≈ 2.34 × 103(GM/c3). For comparison, a

11

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Quasi-normal modes 21

Page 38: Separability - utf.mff.cuni.cz

Quasi-normal modes of Proca field in 4 dimensions

So, how is it with those polarizations?

-N

ew

York

er

Cart

oon

Post

er

Pri

nt

by

Sam

Gro

ssat

the

Conde

Nast

Collecti

on

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Quasi-normal modes 22

Page 39: Separability - utf.mff.cuni.cz

Summary

Hidden symmetries encoded in the principal tensor determine geometry

• Off-shell Kerr–NUT–(A)dS spacetimes

– includes generally rotating BH in higher dimensions

– includes charged BH in 4 dimensions

– includes conformally rescaled Plebanski–Demianski metric

These spacetimes have nice properties:

• Integrability of the geodesic motion

• Separability of standard field equations

– scalar field

– Dirac field

– vector field (including EM)

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Summary 23

Page 40: Separability - utf.mff.cuni.cz

Summary

Hidden symmetries encoded in the principal tensor determine geometry

• Off-shell Kerr–NUT–(A)dS spacetimes

– includes generally rotating BH in higher dimensions

– includes charged BH in 4 dimensions

– includes conformally rescaled Plebanski–Demianski metric

These spacetimes have nice properties:

• Integrability of the geodesic motion

• Separability of standard field equations

– scalar field

– Dirac field

– vector field (including EM)

suitable for calculation of quasi-normal modes and

study of an instability of the Proca field

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 Summary 23

Page 41: Separability - utf.mff.cuni.cz

References

Kerr–NUT–(A)dS and Hidden symmetries

• Frolov V. P., Krtous P., Kubiznak D.: Black holes, hidden symmetries, and complete integrability,Living Rev. Relat. 20 (2017) 6, arXiv:1705.05482

Scalar field

• Frolov V. P., Krtous P., Kubiznak D.: Separability of Hamilton-Jacobi and Klein-Gordon Equations in General Kerr-NUT-AdS Spacetimes,JHEP02(2007)005, arXiv:hep-th/0611245

• Sergyeyev A., Krtous P.: Complete Set of Commuting Symmetry Operators for Klein–Gordon Equation in . . . Spacetimes,Phys. Rev. D 77 (2008) 044033, arXiv:0711.4623

Dirac field

• Oota T., Yasui Y.: Separability of Dirac equation in higher dimensional KerrNUTde Sitter spacetime,Phys. Lett. B 659 (2008) 688, arXiv:0711.0078

• Cariglia M., Krtous P., Kubiznak D.: Dirac Equation in Kerr-NUT-(A)dS Spacetimes: Intrinsic Characterization of Separability . . . ,Phys. Rev. D 84 (2011) 024008, arXiv:1104.4123

• Cariglia M., Krtous P., Kubiznak D.: Commuting symmetry operators of the Dirac equation, Killing-Yano and Schouten-Nijenhuis brackets,Phys. Rev. D 84 (2011) 024004, arXiv:1102.4501

Vector field

• Lunin O.: Maxwell’s equations in the Myers-Perry geometry,JHEP12(2017)138, arXiv:1708.06766

• Krtous P., Frolov V. P., Kubiznak D.: Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes,preprint (2018), arXiv:1803.02485

• Frolov V. P., Krtous P., Kubiznak D.: Separation of variables in Maxwell equations in Plebanski-Demianski spacetime,Phys. Rev. D 97 (2018) 101701(R), arXiv:1802.09491

• Frolov V. P., Krtous P., Kubiznak D., Santos J. E.: Massive vector fields in rotating black-hole spacetimes: Separability and quasinormal modes,Phys. Rev. Lett. 120 (2018) 231103, arXiv:1804.00030

Pavel Krtous, Charles University Hidden symmetries and test fields in BH spacetimes: Separability, Antigonish, June 6, 2018 References 24