77
logo1 Introduction Δ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation Separation of Variables – Legendre Equations Bernd Schr ¨ oder Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Separation of Variables – Legendre Equations

Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separation of Variables – LegendreEquations

Bernd Schroder

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 2: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separation of Variables1. Solution technique for partial differential equations.

2. If the unknown function u depends on variables ρ,θ ,φ , weassume there is a solution of the form u = R(ρ)T(θ)P(φ).

3. The special form of this solution function allows us toreplace the original partial differential equation withseveral ordinary differential equations.

4. Key step: If f (ρ) = g(θ ,φ), then f and g must be constant.5. Solutions of the ordinary differential equations we obtain

must typically be processed some more to give usefulresults for the partial differential equations.

6. Some very powerful and deep theorems can be used toformally justify the approach for many equations involvingthe Laplace operator.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 3: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separation of Variables1. Solution technique for partial differential equations.2. If the unknown function u depends on variables ρ,θ ,φ , we

assume there is a solution of the form u = R(ρ)T(θ)P(φ).

3. The special form of this solution function allows us toreplace the original partial differential equation withseveral ordinary differential equations.

4. Key step: If f (ρ) = g(θ ,φ), then f and g must be constant.5. Solutions of the ordinary differential equations we obtain

must typically be processed some more to give usefulresults for the partial differential equations.

6. Some very powerful and deep theorems can be used toformally justify the approach for many equations involvingthe Laplace operator.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 4: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separation of Variables1. Solution technique for partial differential equations.2. If the unknown function u depends on variables ρ,θ ,φ , we

assume there is a solution of the form u = R(ρ)T(θ)P(φ).3. The special form of this solution function allows us to

replace the original partial differential equation withseveral ordinary differential equations.

4. Key step: If f (ρ) = g(θ ,φ), then f and g must be constant.5. Solutions of the ordinary differential equations we obtain

must typically be processed some more to give usefulresults for the partial differential equations.

6. Some very powerful and deep theorems can be used toformally justify the approach for many equations involvingthe Laplace operator.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 5: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separation of Variables1. Solution technique for partial differential equations.2. If the unknown function u depends on variables ρ,θ ,φ , we

assume there is a solution of the form u = R(ρ)T(θ)P(φ).3. The special form of this solution function allows us to

replace the original partial differential equation withseveral ordinary differential equations.

4. Key step: If f (ρ) = g(θ ,φ), then f and g must be constant.

5. Solutions of the ordinary differential equations we obtainmust typically be processed some more to give usefulresults for the partial differential equations.

6. Some very powerful and deep theorems can be used toformally justify the approach for many equations involvingthe Laplace operator.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 6: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separation of Variables1. Solution technique for partial differential equations.2. If the unknown function u depends on variables ρ,θ ,φ , we

assume there is a solution of the form u = R(ρ)T(θ)P(φ).3. The special form of this solution function allows us to

replace the original partial differential equation withseveral ordinary differential equations.

4. Key step: If f (ρ) = g(θ ,φ), then f and g must be constant.5. Solutions of the ordinary differential equations we obtain

must typically be processed some more to give usefulresults for the partial differential equations.

6. Some very powerful and deep theorems can be used toformally justify the approach for many equations involvingthe Laplace operator.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 7: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separation of Variables1. Solution technique for partial differential equations.2. If the unknown function u depends on variables ρ,θ ,φ , we

assume there is a solution of the form u = R(ρ)T(θ)P(φ).3. The special form of this solution function allows us to

replace the original partial differential equation withseveral ordinary differential equations.

4. Key step: If f (ρ) = g(θ ,φ), then f and g must be constant.5. Solutions of the ordinary differential equations we obtain

must typically be processed some more to give usefulresults for the partial differential equations.

6. Some very powerful and deep theorems can be used toformally justify the approach for many equations involvingthe Laplace operator.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 8: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

How Deep?

plus about 200 pages of reallyawesome functional analysis.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 9: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

How Deep?

plus about 200 pages of reallyawesome functional analysis.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 10: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

The Equation ∆u = f (ρ)u

1. For constant f , this is an eigenvalue equation for theLaplace operator, which arises, for example, in separationof variables for the heat equation or the wave equation.

2. The time independent Schrodinger equation

− h2m

∆φ +Vφ = Eφ describes certain quantummechanical systems, for example, the electron in a

hydrogen atom. m is the mass of the electron, h =h

2π,

where h is Planck’s constant, V(ρ) is the electric potentialand E is the energy eigenvalue.

3. The equation ∆u = f (ρ)u had already been investigated inelectrodynamics when its importance for the states of anelectron in a hydrogen atom became clear.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 11: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

The Equation ∆u = f (ρ)u1. For constant f , this is an eigenvalue equation for the

Laplace operator, which arises, for example, in separationof variables for the heat equation or the wave equation.

2. The time independent Schrodinger equation

− h2m

∆φ +Vφ = Eφ describes certain quantummechanical systems, for example, the electron in a

hydrogen atom. m is the mass of the electron, h =h

2π,

where h is Planck’s constant, V(ρ) is the electric potentialand E is the energy eigenvalue.

3. The equation ∆u = f (ρ)u had already been investigated inelectrodynamics when its importance for the states of anelectron in a hydrogen atom became clear.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 12: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

The Equation ∆u = f (ρ)u1. For constant f , this is an eigenvalue equation for the

Laplace operator, which arises, for example, in separationof variables for the heat equation or the wave equation.

2. The time independent Schrodinger equation

− h2m

∆φ +Vφ = Eφ describes certain quantummechanical systems, for example, the electron in a

hydrogen atom. m is the mass of the electron, h =h

2π,

where h is Planck’s constant, V(ρ) is the electric potentialand E is the energy eigenvalue.

3. The equation ∆u = f (ρ)u had already been investigated inelectrodynamics when its importance for the states of anelectron in a hydrogen atom became clear.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 13: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

The Equation ∆u = f (ρ)u1. For constant f , this is an eigenvalue equation for the

Laplace operator, which arises, for example, in separationof variables for the heat equation or the wave equation.

2. The time independent Schrodinger equation

− h2m

∆φ +Vφ = Eφ describes certain quantummechanical systems, for example, the electron in a

hydrogen atom. m is the mass of the electron, h =h

2π,

where h is Planck’s constant, V(ρ) is the electric potentialand E is the energy eigenvalue.

3. The equation ∆u = f (ρ)u had already been investigated inelectrodynamics when its importance for the states of anelectron in a hydrogen atom became clear.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 14: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)

∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 15: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 16: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP

+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 17: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP

+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 18: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′

+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 19: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′

+1

ρ2 sin2(φ)RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 20: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P

= f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 21: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 22: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R

+2ρR′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 23: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R

+P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 24: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P

+cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 25: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P

+1

sin2(φ)T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 26: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T

= ρ2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 27: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 28: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 29: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 30: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 31: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 32: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0.

(QM: Laguerre polys.)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 33: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Radial Part)∂ 2u∂ρ2 +

∂u∂ρ

+1

ρ2∂ 2u∂φ 2 +

cos(φ)ρ2 sin(φ)

∂u∂φ

+1

ρ2 sin2(φ)∂ 2u∂θ 2 = f (ρ)u

R′′TP+2ρ

R′TP+1

ρ2 RTP′′+cos(φ)

ρ2 sin(φ)RTP′+

1ρ2 sin2(φ)

RT ′′P = f (ρ)RTP

ρ2 R′′

R+2ρ

R′

R+

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)

Bring all terms that depend on ρ to the right side:

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= ρ

2f (ρ)−ρ2 R′′

R−2ρ

R′

R,

Both sides must be constant.

ρ2f (ρ)−ρ

2 R′′

R−2ρ

R′

R=−λ , or

ρ2R′′+2ρR′−

(λR+ρ

2f (ρ))

R = 0. (QM: Laguerre polys.)Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 34: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= −λ

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+

T ′′

T= −λ sin2(φ)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = −T ′′

TBoth sides must be constant.

−T ′′

T= c leads to T ′′+ cT = 0.

But T must be 2π-periodic. Thus c = m2, where m is anonnegative integer.So the function T must be of the formT(θ) = c1 cos(mθ)+ c2 sin(mθ).

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 35: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= −λ

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+

T ′′

T= −λ sin2(φ)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = −T ′′

TBoth sides must be constant.

−T ′′

T= c leads to T ′′+ cT = 0.

But T must be 2π-periodic. Thus c = m2, where m is anonnegative integer.So the function T must be of the formT(θ) = c1 cos(mθ)+ c2 sin(mθ).

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 36: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= −λ

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+

T ′′

T= −λ sin2(φ)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = −T ′′

TBoth sides must be constant.

−T ′′

T= c leads to T ′′+ cT = 0.

But T must be 2π-periodic. Thus c = m2, where m is anonnegative integer.So the function T must be of the formT(θ) = c1 cos(mθ)+ c2 sin(mθ).

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 37: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= −λ

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+

T ′′

T= −λ sin2(φ)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = −T ′′

T

Both sides must be constant.

−T ′′

T= c leads to T ′′+ cT = 0.

But T must be 2π-periodic. Thus c = m2, where m is anonnegative integer.So the function T must be of the formT(θ) = c1 cos(mθ)+ c2 sin(mθ).

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 38: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= −λ

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+

T ′′

T= −λ sin2(φ)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = −T ′′

TBoth sides must be constant.

−T ′′

T= c leads to T ′′+ cT = 0.

But T must be 2π-periodic. Thus c = m2, where m is anonnegative integer.So the function T must be of the formT(θ) = c1 cos(mθ)+ c2 sin(mθ).

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 39: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= −λ

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+

T ′′

T= −λ sin2(φ)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = −T ′′

TBoth sides must be constant.

−T ′′

T= c leads to T ′′+ cT = 0.

But T must be 2π-periodic. Thus c = m2, where m is anonnegative integer.So the function T must be of the formT(θ) = c1 cos(mθ)+ c2 sin(mθ).

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 40: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= −λ

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+

T ′′

T= −λ sin2(φ)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = −T ′′

TBoth sides must be constant.

−T ′′

T= c leads to T ′′+ cT = 0.

But T must be 2π-periodic.

Thus c = m2, where m is anonnegative integer.So the function T must be of the formT(θ) = c1 cos(mθ)+ c2 sin(mθ).

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 41: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= −λ

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+

T ′′

T= −λ sin2(φ)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = −T ′′

TBoth sides must be constant.

−T ′′

T= c leads to T ′′+ cT = 0.

But T must be 2π-periodic. Thus c = m2, where m is anonnegative integer.

So the function T must be of the formT(θ) = c1 cos(mθ)+ c2 sin(mθ).

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 42: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)

P′′

P+

cos(φ)sin(φ)

P′

P+

1sin2(φ)

T ′′

T= −λ

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+

T ′′

T= −λ sin2(φ)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = −T ′′

TBoth sides must be constant.

−T ′′

T= c leads to T ′′+ cT = 0.

But T must be 2π-periodic. Thus c = m2, where m is anonnegative integer.So the function T must be of the formT(θ) = c1 cos(mθ)+ c2 sin(mθ).

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 43: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Polar Part)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = m2

sin2(φ)P′′+ sin(φ)cos(φ)P′+(

λ sin2(φ)−m2)

P = 0

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

This equation is complicated, because it involves trigonometricfunctions.It turns out that the substitution z = cos(φ) will simplify theequation.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 44: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Polar Part)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = m2

sin2(φ)P′′+ sin(φ)cos(φ)P′+(

λ sin2(φ)−m2)

P = 0

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

This equation is complicated, because it involves trigonometricfunctions.It turns out that the substitution z = cos(φ) will simplify theequation.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 45: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Polar Part)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = m2

sin2(φ)P′′+ sin(φ)cos(φ)P′+(

λ sin2(φ)−m2)

P = 0

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

This equation is complicated, because it involves trigonometricfunctions.It turns out that the substitution z = cos(φ) will simplify theequation.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 46: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Polar Part)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = m2

sin2(φ)P′′+ sin(φ)cos(φ)P′+(

λ sin2(φ)−m2)

P = 0

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

This equation is complicated, because it involves trigonometricfunctions.It turns out that the substitution z = cos(φ) will simplify theequation.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 47: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Polar Part)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = m2

sin2(φ)P′′+ sin(φ)cos(φ)P′+(

λ sin2(φ)−m2)

P = 0

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

This equation is complicated, because it involves trigonometricfunctions.

It turns out that the substitution z = cos(φ) will simplify theequation.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 48: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Separating the Equation ∆u = f (ρ)u (Polar Part)

sin2(φ)P′′

P+ sin(φ)cos(φ)

P′

P+λ sin2(φ) = m2

sin2(φ)P′′+ sin(φ)cos(φ)P′+(

λ sin2(φ)−m2)

P = 0

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

This equation is complicated, because it involves trigonometricfunctions.It turns out that the substitution z = cos(φ) will simplify theequation.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 49: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitution

ddφ

P =(

ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P =d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 50: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitutiond

dφP

=(

ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P =d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 51: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitutiond

dφP =

(ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P =d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 52: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitutiond

dφP =

(ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P =d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 53: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitutiond

dφP =

(ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P =d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 54: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitutiond

dφP =

(ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P

=d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 55: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitutiond

dφP =

(ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P =d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 56: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitutiond

dφP =

(ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P =d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 57: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitutiond

dφP =

(ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P =d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 58: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Derivatives for the Substitutiond

dφP =

(ddz

P)(

ddφ

z)

=(

ddz

P)(

ddφ

cos(φ))

=(

ddz

P)(

− sin(φ))

d2

dφ 2 P =d

((ddz

P)(

− sin(φ)))

=d

(ddz

P)(

− sin(φ))+

(ddz

P)(

− cos(φ))

=[

ddz

(ddz

P)(

− sin(φ))](

− sin(φ))+

(ddz

P)(

− cos(φ))

= sin2(φ)d2

dz2 P− cos(φ)(

ddz

P)

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 59: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)+

(λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0(

1− z2) d2P

dz2 −2zdPdz

+(

λ − m2

1− z2

)P = 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 60: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)+

(λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0(

1− z2) d2P

dz2 −2zdPdz

+(

λ − m2

1− z2

)P = 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 61: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)+

(λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0(

1− z2) d2P

dz2 −2zdPdz

+(

λ − m2

1− z2

)P = 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 62: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)

+(

λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0(

1− z2) d2P

dz2 −2zdPdz

+(

λ − m2

1− z2

)P = 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 63: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)+

(λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0(

1− z2) d2P

dz2 −2zdPdz

+(

λ − m2

1− z2

)P = 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 64: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)+

(λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0

(1− z2

) d2Pdz2 −2z

dPdz

+(

λ − m2

1− z2

)P = 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 65: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)+

(λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0(

1− z2) d2P

dz2

−2zdPdz

+(

λ − m2

1− z2

)P = 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 66: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)+

(λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0(

1− z2) d2P

dz2 −2zdPdz

+(

λ − m2

1− z2

)P = 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 67: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)+

(λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0(

1− z2) d2P

dz2 −2zdPdz

+(

λ − m2

1− z2

)P

= 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 68: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Generalized Legendre Equation

P′′+cos(φ)sin(φ)

P′+(

λ − m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −cos(φ)

dPdz

+cos(φ)sin(φ)

dPdz

(− sin(φ)

)+

(λ− m2

sin2(φ)

)P = 0

sin2(φ)d2Pdz2 −2cos(φ)

dPdz

+(

λ − m2

sin2(φ)

)P = 0(

1− z2) d2P

dz2 −2zdPdz

+(

λ − m2

1− z2

)P = 0

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 69: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Legendre EquationsLet λ be a real number and let m be a nonnegative integer. Thedifferential equation(

1− x2)

y′′−2xy′+(

λ − m2

1− x2

)y = 0

is called the generalized Legendre equation.

For nonnegative integers l, the differential equation(1− x2

)y′′−2xy′+ l(l+1)y = 0

is called the Legendre equation.Formally, both are actually families of differential equations,because m,λ and l are parameters.m is a nonnegative integer, because this is required through theequation for T(θ) in the separation of variables.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 70: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Legendre EquationsLet λ be a real number and let m be a nonnegative integer. Thedifferential equation(

1− x2)

y′′−2xy′+(

λ − m2

1− x2

)y = 0

is called the generalized Legendre equation.For nonnegative integers l, the differential equation(

1− x2)

y′′−2xy′+ l(l+1)y = 0

is called the Legendre equation.

Formally, both are actually families of differential equations,because m,λ and l are parameters.m is a nonnegative integer, because this is required through theequation for T(θ) in the separation of variables.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 71: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Legendre EquationsLet λ be a real number and let m be a nonnegative integer. Thedifferential equation(

1− x2)

y′′−2xy′+(

λ − m2

1− x2

)y = 0

is called the generalized Legendre equation.For nonnegative integers l, the differential equation(

1− x2)

y′′−2xy′+ l(l+1)y = 0

is called the Legendre equation.Formally, both are actually families of differential equations,because m,λ and l are parameters.

m is a nonnegative integer, because this is required through theequation for T(θ) in the separation of variables.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 72: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Legendre EquationsLet λ be a real number and let m be a nonnegative integer. Thedifferential equation(

1− x2)

y′′−2xy′+(

λ − m2

1− x2

)y = 0

is called the generalized Legendre equation.For nonnegative integers l, the differential equation(

1− x2)

y′′−2xy′+ l(l+1)y = 0

is called the Legendre equation.Formally, both are actually families of differential equations,because m,λ and l are parameters.m is a nonnegative integer, because this is required through theequation for T(θ) in the separation of variables.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 73: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Legendre Equations

In the Legendre equation(1− x2

)y′′−2xy′+ l(l+1)y = 0,

the parameter λ should be of the form l(l+1) with l anonnegative integer, because of the following:

1. For λ not of this form the solutions go to infinity as zapproaches ±1.

2. z approaching ±1 corresponds to cos(φ) approaching ±1,which corresponds to φ approaching 0 and π .

3. So, physically this would mean that for λ 6= l(l+1), thefunction u would be infinite on the z-axis, which is notsensible.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 74: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Legendre EquationsIn the Legendre equation(

1− x2)

y′′−2xy′+ l(l+1)y = 0,

the parameter λ should be of the form l(l+1) with l anonnegative integer, because of the following:

1. For λ not of this form the solutions go to infinity as zapproaches ±1.

2. z approaching ±1 corresponds to cos(φ) approaching ±1,which corresponds to φ approaching 0 and π .

3. So, physically this would mean that for λ 6= l(l+1), thefunction u would be infinite on the z-axis, which is notsensible.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 75: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Legendre EquationsIn the Legendre equation(

1− x2)

y′′−2xy′+ l(l+1)y = 0,

the parameter λ should be of the form l(l+1) with l anonnegative integer, because of the following:

1. For λ not of this form the solutions go to infinity as zapproaches ±1.

2. z approaching ±1 corresponds to cos(φ) approaching ±1,which corresponds to φ approaching 0 and π .

3. So, physically this would mean that for λ 6= l(l+1), thefunction u would be infinite on the z-axis, which is notsensible.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 76: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Legendre EquationsIn the Legendre equation(

1− x2)

y′′−2xy′+ l(l+1)y = 0,

the parameter λ should be of the form l(l+1) with l anonnegative integer, because of the following:

1. For λ not of this form the solutions go to infinity as zapproaches ±1.

2. z approaching ±1 corresponds to cos(φ) approaching ±1,which corresponds to φ approaching 0 and π .

3. So, physically this would mean that for λ 6= l(l+1), thefunction u would be infinite on the z-axis, which is notsensible.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations

Page 77: Separation of Variables -- Legendre Equations...Solution technique for partial differential equations. 2. If the unknown function u depends on variables ρ,θ,φ, we assume there is

logo1

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the Legendre Equation

Legendre EquationsIn the Legendre equation(

1− x2)

y′′−2xy′+ l(l+1)y = 0,

the parameter λ should be of the form l(l+1) with l anonnegative integer, because of the following:

1. For λ not of this form the solutions go to infinity as zapproaches ±1.

2. z approaching ±1 corresponds to cos(φ) approaching ±1,which corresponds to φ approaching 0 and π .

3. So, physically this would mean that for λ 6= l(l+1), thefunction u would be infinite on the z-axis, which is notsensible.

Bernd Schroder Louisiana Tech University, College of Engineering and Science

Separation of Variables – Legendre Equations